A Variational Taxonomy for Surface Reconstruction from Oriented Points

The problem of reconstructing a watertight surface from a finite set of oriented points has received much attention over the last decades. In this paper, we propose a general higher order framework for surface reconstruction. It is based on the idea that position and normal defined by each oriented...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 5; pp. 195 - 204
Main Authors: Schroers, C., Setzer, S., Weickert, J.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.08.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of reconstructing a watertight surface from a finite set of oriented points has received much attention over the last decades. In this paper, we propose a general higher order framework for surface reconstruction. It is based on the idea that position and normal defined by each oriented point can be used to construct an implicit local description of the unknown surface. On the one hand, this allows us to systematically explain and relate several popular methods, for example implicit moving least squares, smooth signed distance surface reconstruction as well as (screened) Poisson surface reconstruction. On the other hand, it allows to derive and discuss a number of new approaches for reconstructing either the signed distance or the indicator function of the sought object. All of these approaches are able to achieve competitive results but one of them turns out to be especially promising. To improve reconstructions in difficult real world scenarios where point clouds have been estimated from colour images, we introduce a hull constraint that encourages the surface to stay within a given region. Our framework is implemented on the GPU using a recent cyclic scheme called Fast Jacobi, which combines low implementational effort with high efficiency.
Bibliography:istex:8F660EA36E112A8495660D154B0B8CEE23B1B791
ark:/67375/WNG-SRK3QZB9-P
ArticleID:CGF12445
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12445