Differential frequency in imaging‐based outcome measurement: Bias in real‐world oncology comparative‐effectiveness studies

Background Comparative‐effectiveness studies using real‐world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of endpoints such as progression‐free survival (PFS) are based on progression events detected by imaging assessments. This study aimed to evalua...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pharmacoepidemiology and drug safety Ročník 31; číslo 1; s. 46 - 54
Hlavní autori: Adamson, Blythe J. S., Ma, Xinran, Griffith, Sandra D., Sweeney, Elizabeth M., Sarkar, Somnath, Bourla, Ariel B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Inc 01.01.2022
Wiley Subscription Services, Inc
Predmet:
ISSN:1053-8569, 1099-1557, 1099-1557
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Comparative‐effectiveness studies using real‐world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of endpoints such as progression‐free survival (PFS) are based on progression events detected by imaging assessments. This study aimed to evaluate the potential bias introduced by differential imaging assessment frequency when using electronic health record (EHR)‐derived data to investigate the comparative effectiveness of cancer therapies. Methods Using a nationwide de‐identified EHR‐derived database, we first analyzed imaging assessment frequency patterns in patients diagnosed with advanced non‐small cell lung cancer (aNSCLC). We used those RWD inputs to develop a discrete event simulation model of two treatments where disease progression was the outcome and PFS was the endpoint. Using this model, we induced bias with differential imaging assessment timing and quantified its effect on observed versus true treatment effectiveness. We assessed percent bias in the estimated hazard ratio (HR). Results The frequency of assessments differed by cancer treatment types. In simulated comparative‐effectiveness studies, PFS HRs estimated using real‐world imaging assessment frequencies differed from the true HR by less than 10% in all scenarios (range: 0.4% to −9.6%). The greatest risk of biased effect estimates was found comparing treatments with widely different imaging frequencies, most exaggerated in disease settings where time to progression is very short. Conclusions This study provided evidence that the frequency of imaging assessments to detect disease progression can differ by treatment type in real‐world patients with cancer and may induce some bias in comparative‐effectiveness studies in some situations.
AbstractList Comparative-effectiveness studies using real-world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of endpoints such as progression-free survival (PFS) are based on progression events detected by imaging assessments. This study aimed to evaluate the potential bias introduced by differential imaging assessment frequency when using electronic health record (EHR)-derived data to investigate the comparative effectiveness of cancer therapies.BACKGROUNDComparative-effectiveness studies using real-world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of endpoints such as progression-free survival (PFS) are based on progression events detected by imaging assessments. This study aimed to evaluate the potential bias introduced by differential imaging assessment frequency when using electronic health record (EHR)-derived data to investigate the comparative effectiveness of cancer therapies.Using a nationwide de-identified EHR-derived database, we first analyzed imaging assessment frequency patterns in patients diagnosed with advanced non-small cell lung cancer (aNSCLC). We used those RWD inputs to develop a discrete event simulation model of two treatments where disease progression was the outcome and PFS was the endpoint. Using this model, we induced bias with differential imaging assessment timing and quantified its effect on observed versus true treatment effectiveness. We assessed percent bias in the estimated hazard ratio (HR).METHODSUsing a nationwide de-identified EHR-derived database, we first analyzed imaging assessment frequency patterns in patients diagnosed with advanced non-small cell lung cancer (aNSCLC). We used those RWD inputs to develop a discrete event simulation model of two treatments where disease progression was the outcome and PFS was the endpoint. Using this model, we induced bias with differential imaging assessment timing and quantified its effect on observed versus true treatment effectiveness. We assessed percent bias in the estimated hazard ratio (HR).The frequency of assessments differed by cancer treatment types. In simulated comparative-effectiveness studies, PFS HRs estimated using real-world imaging assessment frequencies differed from the true HR by less than 10% in all scenarios (range: 0.4% to -9.6%). The greatest risk of biased effect estimates was found comparing treatments with widely different imaging frequencies, most exaggerated in disease settings where time to progression is very short.RESULTSThe frequency of assessments differed by cancer treatment types. In simulated comparative-effectiveness studies, PFS HRs estimated using real-world imaging assessment frequencies differed from the true HR by less than 10% in all scenarios (range: 0.4% to -9.6%). The greatest risk of biased effect estimates was found comparing treatments with widely different imaging frequencies, most exaggerated in disease settings where time to progression is very short.This study provided evidence that the frequency of imaging assessments to detect disease progression can differ by treatment type in real-world patients with cancer and may induce some bias in comparative-effectiveness studies in some situations.CONCLUSIONSThis study provided evidence that the frequency of imaging assessments to detect disease progression can differ by treatment type in real-world patients with cancer and may induce some bias in comparative-effectiveness studies in some situations.
BackgroundComparative‐effectiveness studies using real‐world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of endpoints such as progression‐free survival (PFS) are based on progression events detected by imaging assessments. This study aimed to evaluate the potential bias introduced by differential imaging assessment frequency when using electronic health record (EHR)‐derived data to investigate the comparative effectiveness of cancer therapies.MethodsUsing a nationwide de‐identified EHR‐derived database, we first analyzed imaging assessment frequency patterns in patients diagnosed with advanced non‐small cell lung cancer (aNSCLC). We used those RWD inputs to develop a discrete event simulation model of two treatments where disease progression was the outcome and PFS was the endpoint. Using this model, we induced bias with differential imaging assessment timing and quantified its effect on observed versus true treatment effectiveness. We assessed percent bias in the estimated hazard ratio (HR).ResultsThe frequency of assessments differed by cancer treatment types. In simulated comparative‐effectiveness studies, PFS HRs estimated using real‐world imaging assessment frequencies differed from the true HR by less than 10% in all scenarios (range: 0.4% to −9.6%). The greatest risk of biased effect estimates was found comparing treatments with widely different imaging frequencies, most exaggerated in disease settings where time to progression is very short.ConclusionsThis study provided evidence that the frequency of imaging assessments to detect disease progression can differ by treatment type in real‐world patients with cancer and may induce some bias in comparative‐effectiveness studies in some situations.
Background Comparative‐effectiveness studies using real‐world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of endpoints such as progression‐free survival (PFS) are based on progression events detected by imaging assessments. This study aimed to evaluate the potential bias introduced by differential imaging assessment frequency when using electronic health record (EHR)‐derived data to investigate the comparative effectiveness of cancer therapies. Methods Using a nationwide de‐identified EHR‐derived database, we first analyzed imaging assessment frequency patterns in patients diagnosed with advanced non‐small cell lung cancer (aNSCLC). We used those RWD inputs to develop a discrete event simulation model of two treatments where disease progression was the outcome and PFS was the endpoint. Using this model, we induced bias with differential imaging assessment timing and quantified its effect on observed versus true treatment effectiveness. We assessed percent bias in the estimated hazard ratio (HR). Results The frequency of assessments differed by cancer treatment types. In simulated comparative‐effectiveness studies, PFS HRs estimated using real‐world imaging assessment frequencies differed from the true HR by less than 10% in all scenarios (range: 0.4% to −9.6%). The greatest risk of biased effect estimates was found comparing treatments with widely different imaging frequencies, most exaggerated in disease settings where time to progression is very short. Conclusions This study provided evidence that the frequency of imaging assessments to detect disease progression can differ by treatment type in real‐world patients with cancer and may induce some bias in comparative‐effectiveness studies in some situations.
Comparative-effectiveness studies using real-world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of endpoints such as progression-free survival (PFS) are based on progression events detected by imaging assessments. This study aimed to evaluate the potential bias introduced by differential imaging assessment frequency when using electronic health record (EHR)-derived data to investigate the comparative effectiveness of cancer therapies. Using a nationwide de-identified EHR-derived database, we first analyzed imaging assessment frequency patterns in patients diagnosed with advanced non-small cell lung cancer (aNSCLC). We used those RWD inputs to develop a discrete event simulation model of two treatments where disease progression was the outcome and PFS was the endpoint. Using this model, we induced bias with differential imaging assessment timing and quantified its effect on observed versus true treatment effectiveness. We assessed percent bias in the estimated hazard ratio (HR). The frequency of assessments differed by cancer treatment types. In simulated comparative-effectiveness studies, PFS HRs estimated using real-world imaging assessment frequencies differed from the true HR by less than 10% in all scenarios (range: 0.4% to -9.6%). The greatest risk of biased effect estimates was found comparing treatments with widely different imaging frequencies, most exaggerated in disease settings where time to progression is very short. This study provided evidence that the frequency of imaging assessments to detect disease progression can differ by treatment type in real-world patients with cancer and may induce some bias in comparative-effectiveness studies in some situations.
Author Griffith, Sandra D.
Sarkar, Somnath
Sweeney, Elizabeth M.
Adamson, Blythe J. S.
Bourla, Ariel B.
Ma, Xinran
AuthorAffiliation 1 Flatiron Health, Inc. New York New York USA
3 Cornell University New York New York USA
2 University of Washington Seattle Washington USA
AuthorAffiliation_xml – name: 1 Flatiron Health, Inc. New York New York USA
– name: 3 Cornell University New York New York USA
– name: 2 University of Washington Seattle Washington USA
Author_xml – sequence: 1
  givenname: Blythe J. S.
  orcidid: 0000-0003-4251-2912
  surname: Adamson
  fullname: Adamson, Blythe J. S.
  email: badamson@flatiron.com
  organization: University of Washington
– sequence: 2
  givenname: Xinran
  orcidid: 0000-0002-7138-2638
  surname: Ma
  fullname: Ma, Xinran
  organization: Flatiron Health, Inc
– sequence: 3
  givenname: Sandra D.
  surname: Griffith
  fullname: Griffith, Sandra D.
  organization: Flatiron Health, Inc
– sequence: 4
  givenname: Elizabeth M.
  surname: Sweeney
  fullname: Sweeney, Elizabeth M.
  organization: Cornell University
– sequence: 5
  givenname: Somnath
  orcidid: 0000-0002-8158-3847
  surname: Sarkar
  fullname: Sarkar, Somnath
  organization: Flatiron Health, Inc
– sequence: 6
  givenname: Ariel B.
  orcidid: 0000-0002-9838-0544
  surname: Bourla
  fullname: Bourla, Ariel B.
  organization: Flatiron Health, Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34227170$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1TAQhi1URC8g8QQoEhs2OfgSJzYLJGi5SZVAAtaWjzM5uHLsg520Ors-As_IkzChpUAFqxlpvvnn8h-SvZgiEPKQ0RWjlD_d9mUlBRd3yAGjWtdMym5vyaWolWz1Pjks5YxSrOnmHtkXDecd6-gBuTzxwwAZ4uRtqIYMX2eIblf5WPnRbnzcfL_8trYF-irNk0sjVCPYMmcYsedZ9dLbssAZbEDyIuWAZHQppM2uQn5rs538OWARcJJb8gilVGWaew_lPrk72FDgwXU8Ip9fv_p0_LY-ff_m3fGL09o1QonataCcYop3Q-v42rJBStYp1UjFpeSUW8b6BriWVCjO3CCdpFaB1ZzKHl9zRJ5f6W7n9Qi9w-2zDWab8cy8M8l683cl-i9mk86N5poq2qLAk2uBnPBJZTKjLw5CsBHSXAyXjdK0bZVC9PEt9CzNOeJ5hreMiVaIRiL16M-Nblb5Zc7viS6nUjIMNwijZvHdoO9m8R3R1S3U-Qn_npZbfPhXQ33VcOED7P4rbD6cfPzJ_wCjPsLn
CitedBy_id crossref_primary_10_1016_j_jclinepi_2025_111841
crossref_primary_10_1158_1078_0432_CCR_22_0471
crossref_primary_10_1200_PO_24_00500
crossref_primary_10_2217_imt_2023_0002
crossref_primary_10_1002_cpt_2800
crossref_primary_10_3389_fdsfr_2024_1423493
crossref_primary_10_1002_jmri_29446
crossref_primary_10_1007_s43441_025_00849_0
crossref_primary_10_1002_pds_5886
crossref_primary_10_1093_jncics_pkad074
crossref_primary_10_1016_j_esmorw_2025_100118
crossref_primary_10_1002_cpt_3045
Cites_doi 10.1158/1078-0432.CCR-19-0820
10.1002/cncr.32383
10.1007/s10120-019-01008-9
10.1056/NEJMoa1606774
10.1093/jnci/djp369
10.1371/journal.pone.0227256
10.1001/jamainternmed.2020.1097
10.1136/bmjopen-2018-021864
10.1016/j.ejca.2008.10.026
10.1016/S1470-2045(14)70375-4
10.1007/s40273-019-00831-3
10.1186/s12916-017-0902-9
10.1093/oxfordjournals.aje.a009251
10.1200/CCI.19.00013
10.1007/s00330-005-0036-x
10.1016/S0140-6736(16)00587-0
10.1200/JCO.19.01006
10.1001/jamainternmed.2019.0583
10.1093/jnci/djk091
10.1002/cpt.1586
10.1002/cpt.1723
10.1002/sim.6529
10.1016/j.cct.2006.05.003
10.1007/s12325-019-00970-1
10.1101/2020.03.16.20037143
10.1016/S1470-2045(11)70393-X
10.1002/cncr.27528
ContentType Journal Article
Copyright 2021 Flatiron Health Inc. published by John Wiley & Sons Ltd.
2021 Flatiron Health Inc. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 Flatiron Health Inc. published by John Wiley & Sons Ltd.
– notice: 2021 Flatiron Health Inc. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
DOI 10.1002/pds.5323
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: [Open Access] Wiley Online Library OA Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Adamson et al
EISSN 1099-1557
EndPage 54
ExternalDocumentID PMC9290806
34227170
10_1002_pds_5323
PDS5323
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Flatiron Health, Inc.
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c4383-c6e8c81827f6c2ba1f551788458255202a11d4e29503821cf5c50a8ea9205d323
IEDL.DBID 24P
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000677839000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8569
1099-1557
IngestDate Tue Nov 04 01:53:51 EST 2025
Fri Sep 05 13:02:45 EDT 2025
Sat Nov 29 15:01:56 EST 2025
Thu Apr 03 07:04:33 EDT 2025
Tue Nov 18 22:37:49 EST 2025
Sat Nov 29 06:35:19 EST 2025
Wed Jan 22 16:26:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords real-word data (RWD)
simulation modeling
measurement bias
comparative-effectiveness analysis
cancer
scan timing
progression-free survival (PFS)
imaging assessment timing
Language English
License Attribution-NonCommercial
2021 Flatiron Health Inc. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4383-c6e8c81827f6c2ba1f551788458255202a11d4e29503821cf5c50a8ea9205d323
Notes Funding information
Flatiron Health, Inc.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Flatiron Health, Inc.
ORCID 0000-0002-9838-0544
0000-0003-4251-2912
0000-0002-8158-3847
0000-0002-7138-2638
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.5323
PMID 34227170
PQID 2611363345
PQPubID 105383
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9290806
proquest_miscellaneous_2548906688
proquest_journals_2611363345
pubmed_primary_34227170
crossref_primary_10_1002_pds_5323
crossref_citationtrail_10_1002_pds_5323
wiley_primary_10_1002_pds_5323_PDS5323
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Bethesda
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidemiol Drug Saf
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2009; 45
2015; 34
2015; 16
2019; 3
2020; 180
2006; 16
2019; 37
2019; 36
2016; 387
2020; 15
2019; 125
2020; 107
2012; 13
2007; 99
1997; 146
2007; 28
2018; 8
2017; 15
2019; 25
2019; 28
2019; 179
2009; 101
2016; 375
2018
2020; 23
2012; 118
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
Schurman B (e_1_2_10_2_1) 2019; 28
e_1_2_10_20_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 101
  start-page: 1642
  year: 2009
  end-page: 1649
  article-title: Detecting an overall survival benefit that is derived from progression‐free survival
  publication-title: J Natl Cancer Inst
– volume: 28
  start-page: 146
  year: 2007
  end-page: 152
  article-title: Optimizing randomized phase II trials assessing tumor progression
  publication-title: Contemp Clin Trials
– volume: 179
  start-page: 915
  year: 2019
  end-page: 921
  article-title: An overview of cancer drugs approved by the US Food and Drug Administration based on the surrogate end point of response rate
  publication-title: JAMA Intern Med.
– volume: 375
  start-page: 1823
  year: 2016
  end-page: 1833
  article-title: Pembrolizumab versus chemotherapy for PD‐L1‐positive non‐small‐cell lung cancer
  publication-title: N Engl J Med
– volume: 15
  year: 2020
  article-title: Concordance of real‐world versus conventional progression‐free survival from a phase 3 trial of endocrine therapy as first‐line treatment for metastatic breast cancer
  publication-title: PLoS One
– volume: 37
  start-page: 1537
  year: 2019
  end-page: 1551
  article-title: Assessment‐schedule matching in unanchored indirect treatment comparisons of progression‐free survival in cancer studies
  publication-title: Pharmacoeconomics
– volume: 15
  start-page: 134
  year: 2017
  article-title: Surrogate endpoints in oncology: when are they acceptable for regulatory and clinical decisions, and are they currently overused?
  publication-title: BMC Med
– volume: 45
  start-page: 228
  year: 2009
  end-page: 247
  article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)
  publication-title: Eur J Cancer
– volume: 107
  start-page: 369
  year: 2020
  end-page: 377
  article-title: Using electronic health records to derive control arms for early phase single‐arm lung cancer trials: proof‐of‐concept in randomized controlled trials
  publication-title: Clin Pharmacol Ther
– volume: 387
  start-page: 1837
  issue: 10030
  year: 2016
  end-page: 1846
  article-title: Atezolizumab versus docetaxel for patients with previously treated non‐small‐cell lung cancer (POPLAR): a multicentre, open‐label, phase 2 randomised controlled trial
  publication-title: Lancet
– volume: 13
  start-page: 239
  year: 2012
  end-page: 246
  article-title: Erlotinib versus standard chemotherapy as first‐line treatment for European patients with advanced EGFR mutation‐positive non‐small‐cell lung cancer (EURTAC): a multicentre, open‐label, randomised phase 3 trial
  publication-title: Lancet Oncol
– volume: 25
  start-page: 4993
  year: 2019
  end-page: 5001
  article-title: Design and evaluation of an external control arm using prior clinical trials and real‐world data
  publication-title: Clin Cancer Res
– year: 2018
– volume: 16
  start-page: e32
  year: 2015
  end-page: e42
  article-title: Outcomes and endpoints in trials of cancer treatment: the past, present, and future
  publication-title: Lancet Oncol
– volume: 107
  start-page: 806
  year: 2020
  end-page: 816
  article-title: Beyond randomized clinical trials: use of external controls
  publication-title: Clin Pharmacol Ther
– volume: 34
  start-page: 3181
  year: 2015
  end-page: 3193
  article-title: Bias in progression‐free survival analysis due to intermittent assessment of progression
  publication-title: Stat Med
– volume: 16
  start-page: 781
  year: 2006
  end-page: 790
  article-title: Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria
  publication-title: Eur Radiol
– volume: 99
  start-page: 428
  year: 2007
  end-page: 432
  article-title: When you look matters: the effect of assessment schedule on progression‐free survival
  publication-title: J Natl Cancer Inst
– volume: 23
  start-page: 133
  year: 2020
  end-page: 141
  article-title: Developing real‐world comparators for clinical trials in chemotherapy‐refractory patients with gastric cancer or gastroesophageal junction cancer
  publication-title: Gastric Cancer
– volume: 180
  start-page: 912
  year: 2020
  end-page: 914
  article-title: FDA acceptance of surrogate end points for cancer drug approval: 1992‐2019
  publication-title: JAMA Intern Med
– volume: 36
  start-page: 2122
  year: 2019
  end-page: 2136
  article-title: Generating real‐world tumor burden endpoints from electronic health record data: comparison of RECIST, radiology‐anchored, and clinician‐anchored approaches for abstracting real‐world progression in non‐small cell lung cancer
  publication-title: Adv Ther
– volume: 8
  year: 2018
  article-title: EU‐funded initiatives for real world evidence: descriptive analysis of their characteristics and relevance for regulatory decision‐making
  publication-title: BMJ Open
– volume: 125
  start-page: 4019
  year: 2019
  end-page: 4032
  article-title: Real‐world progression, treatment, and survival outcomes during rapid adoption of immunotherapy for advanced non‐small cell lung cancer
  publication-title: Cancer
– volume: 28
  start-page: 15
  year: 2019
  end-page: 17
  article-title: The framework for FDA's real‐world evidence program
  publication-title: Appl Clin Trials
– volume: 37
  start-page: 2360
  year: 2019
  end-page: 2367
  article-title: Pemetrexed, bevacizumab, or the combination as maintenance therapy for advanced nonsquamous non‐small‐cell lung cancer: ECOG‐ACRIN 5508
  publication-title: J Clin Oncol
– volume: 146
  start-page: 195
  year: 1997
  end-page: 203
  article-title: Logistic regression when the outcome is measured with uncertainty
  publication-title: Am J Epidemiol
– volume: 118
  start-page: 5358
  year: 2012
  end-page: 5365
  article-title: Impact of disease progression date determination on progression‐free survival estimates in advanced lung cancer
  publication-title: Cancer
– volume: 3
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Characterizing the feasibility and performance of real‐world tumor progression end points and their association with overall survival in a large advanced non‐small‐cell lung cancer data set
  publication-title: JCO Clin Cancer Inform
– ident: e_1_2_10_28_1
  doi: 10.1158/1078-0432.CCR-19-0820
– ident: e_1_2_10_11_1
  doi: 10.1002/cncr.32383
– ident: e_1_2_10_29_1
  doi: 10.1007/s10120-019-01008-9
– ident: e_1_2_10_21_1
  doi: 10.1056/NEJMoa1606774
– ident: e_1_2_10_18_1
  doi: 10.1093/jnci/djp369
– ident: e_1_2_10_10_1
  doi: 10.1371/journal.pone.0227256
– ident: e_1_2_10_5_1
  doi: 10.1001/jamainternmed.2020.1097
– ident: e_1_2_10_27_1
  doi: 10.1136/bmjopen-2018-021864
– ident: e_1_2_10_7_1
  doi: 10.1016/j.ejca.2008.10.026
– ident: e_1_2_10_6_1
  doi: 10.1016/S1470-2045(14)70375-4
– ident: e_1_2_10_32_1
  doi: 10.1007/s40273-019-00831-3
– ident: e_1_2_10_4_1
  doi: 10.1186/s12916-017-0902-9
– ident: e_1_2_10_12_1
  doi: 10.1093/oxfordjournals.aje.a009251
– ident: e_1_2_10_26_1
– ident: e_1_2_10_20_1
– ident: e_1_2_10_8_1
  doi: 10.1200/CCI.19.00013
– ident: e_1_2_10_13_1
  doi: 10.1007/s00330-005-0036-x
– ident: e_1_2_10_22_1
  doi: 10.1016/S0140-6736(16)00587-0
– ident: e_1_2_10_23_1
  doi: 10.1200/JCO.19.01006
– ident: e_1_2_10_3_1
  doi: 10.1001/jamainternmed.2019.0583
– ident: e_1_2_10_14_1
  doi: 10.1093/jnci/djk091
– ident: e_1_2_10_30_1
  doi: 10.1002/cpt.1586
– ident: e_1_2_10_31_1
  doi: 10.1002/cpt.1723
– ident: e_1_2_10_15_1
  doi: 10.1002/sim.6529
– ident: e_1_2_10_16_1
  doi: 10.1016/j.cct.2006.05.003
– ident: e_1_2_10_25_1
– ident: e_1_2_10_9_1
  doi: 10.1007/s12325-019-00970-1
– volume: 28
  start-page: 15
  year: 2019
  ident: e_1_2_10_2_1
  article-title: The framework for FDA's real‐world evidence program
  publication-title: Appl Clin Trials
– ident: e_1_2_10_19_1
  doi: 10.1101/2020.03.16.20037143
– ident: e_1_2_10_24_1
  doi: 10.1016/S1470-2045(11)70393-X
– ident: e_1_2_10_17_1
  doi: 10.1002/cncr.27528
SSID ssj0009994
Score 2.3940072
Snippet Background Comparative‐effectiveness studies using real‐world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of...
Comparative-effectiveness studies using real-world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of endpoints...
BackgroundComparative‐effectiveness studies using real‐world data (RWD) can be susceptible to surveillance bias. In solid tumor oncology studies, analyses of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 46
SubjectTerms Bias
Cancer
Carcinoma, Non-Small-Cell Lung - diagnostic imaging
Carcinoma, Non-Small-Cell Lung - epidemiology
comparative‐effectiveness analysis
Effectiveness studies
Electronic health records
Electronic medical records
Humans
imaging assessment timing
Lung cancer
Lung Neoplasms - diagnostic imaging
measurement bias
Non-small cell lung carcinoma
Oncology
Original
Patients
Progression-Free Survival
progression‐free survival (PFS)
real‐word data (RWD)
scan timing
simulation modeling
Solid tumors
Title Differential frequency in imaging‐based outcome measurement: Bias in real‐world oncology comparative‐effectiveness studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.5323
https://www.ncbi.nlm.nih.gov/pubmed/34227170
https://www.proquest.com/docview/2611363345
https://www.proquest.com/docview/2548906688
https://pubmed.ncbi.nlm.nih.gov/PMC9290806
Volume 31
WOSCitedRecordID wos000677839000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009994
  issn: 1053-8569
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCF92OhVEZCy6WhiR07MTdgWXGoqghatLfI8UNE2marzS7S3voT-I38EsZ2NmFVkJC4JAdPEseesb-xx98g9CpWmVBWppGwVEeprWwkDJGRYdxWrpulP1_x9SQ7Pc1nM1F0UZXuLEzgh-gX3Jxl-PHaGbis2uOBNPRSt28YJfQm2k8Smru0DSQtBsJd4ZMgAnygUc642BLPxuR4--TuVHQNX14Pk_wdvvr5Z3r3f2p-D93pUCd-F9TkPrphmgdoXATa6s0RPhtOYbVHeIyLgdB68xBdTbosKjAazLFdhujrDa4bXF_4LEc_r3646VDjxXoFtTH4Ylh6fIvf17J1woBP5yDpSVrxogmvx2rgH4fCEF_SDcG4DVGOj9D59OPZh09Rl7khUo76NFLc5AqgAMksV6SSiQVgBs6226RjjMREJolODRGOjIYkyjLFYpkbKUjMNDTNY7TXLBrzFGEuuOYm07lj-gOsUpGUaZ0BDpXM2JiP0OttJ5aqozV32TXmZSBkJiU0d-mae4Re9pKXgcrjDzIHWz0oO2NuS3AyE8opTRm8oi8GM3R7K7IxizXIgOcnAL7l-Qg9CWrTf4SmhIDXHI9QtqNQvYCj-N4taepvnuobwCtAevjJsVeov9a7LCZf3P3Zvwo-R7eJO8jhF5MO0N5quTYv0C31fVW3y0NvSnDNZvkh2p98np6f_AIusCsu
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VggQXypuFAkZCy6WhiRMncXsCSlXEsorEgnqLvI4tIm2z1WYXaW_9CfxGfknHdh6sChISpxw8cRx7xvP5Md8AvPJlwqUWkcd1WHiRnmqPKyo8xWI9NcMsbHzFt1EyHqenpzzbgsM2FsbxQ3QbbsYy7HxtDNxsSO_3rKHnRf2GhTS8BtcjdDJGyWmU9Yy73GZBRPwQeimLecs869P99s1NX3QFYF69J_k7frUO6Hjnv5p-B243uJO8dYpyF7ZUdQ-GmSOuXu-RSR-HVe-RIcl6Suv1fbg4avKo4HwwI3rh7l-vSVmR8szmOfp18dM4xILMV0tsjiJn_ebjAXlXitoII0KdoaSlaSXzylVPZM9AjoXuhkkzCZPa3XN8AF-PP0zen3hN7gZPGvJTT8YqlQgGaKJjSaci0AjNcLltjukYoz4VQVBEinJDR0MDqZlkvkiV4NRnBXbNQ9iu5pV6DCTmcRGrpEgN1x-ilSmNWFEkiEQFU9qPB_C6HcVcNsTmJr_GLHeUzDTH7s5Ndw_gZSd57sg8_iCz2ypC3phzneMyMwjjMIwYVtEVoyGa0xVRqfkKZXDtxxHApekAHjm96T4SRpTiutkfQLKhUZ2AIfneLKnK75bsG-Ergnr8yaHVqL-2O8-Ovpjnk38VfAE3TyafR_no4_jTU7hFTViH3Vrahe3lYqWewQ35Y1nWi-fWri4BdMUskQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXYS48H4UFjASKpfNbuLESQwnoFQgqqqCXbS3yPVDROqmVdMi9bY_gd_IL2Ec50G1ICFxysETx7Fn7G_s8TcAL3yZcGlE5HETKi8yM-NxTYWnWWxmdphFdb_i6ziZTNKzMz7dg9fNXRjHD9FuuFnLqOZra-B6qcxxxxq6VOURC2l4BfYjm0OmB_vDz6PTcce5y6s8iIggQi9lMW-4Z3163Ly7uxpdgpiXIyV_R7DVEjS6-V-NvwU3auRJ3jhVuQ17urgDg6mjrt4ekpPuJlZ5SAZk2pFab-_CxbDOpIIzwpyYlYvA3pK8IPl5leno58UPuyQqstissTmanHfbj6_I21yUVhgx6hwlK6JWsihc9UR2HORY6GJM6mmYlC7S8R6cjt6fvPvg1dkbPGnpTz0Z61QiHKCJiSWdicAgOEOH2x7UMUZ9KoJARZpyS0hDA2mYZL5IteDUZwq75j70ikWhHwKJeaxinajUsv0hXpnRiCmVIBYVTBs_7sPLZhQzWVOb2wwb88yRMtMMuzuz3d2H563k0tF5_EHmoFGErDboMkNHMwjjMIwYVtEWoyna8xVR6MUGZdD74wjh0rQPD5zetB8JI0rRc_b7kOxoVCtgab53S4r8W0X3jQAWYT3-5KDSqL-2O5sOv9jno38VfAbXpsNRNv44-fQYrlN7r6PaWzqA3nq10U_gqvy-zsvV09qwfgEj5y2n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+frequency+in+imaging%E2%80%90based+outcome+measurement%3A+Bias+in+real%E2%80%90world+oncology+comparative%E2%80%90effectiveness+studies&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Adamson%2C+Blythe+J+S&rft.au=Ma%2C+Xinran&rft.au=Griffith%2C+Sandra+D&rft.au=Sweeney%2C+Elizabeth+M&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1053-8569&rft.eissn=1099-1557&rft.volume=31&rft.issue=1&rft.spage=46&rft.epage=54&rft_id=info:doi/10.1002%2Fpds.5323&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon