Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment
Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N i...
Uložené v:
| Vydané v: | Ecology (Durham) Ročník 101; číslo 8; s. 1 - 11 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
John Wiley and Sons, Inc
01.08.2020
Ecological Society of America |
| Predmet: | |
| ISSN: | 0012-9658, 1939-9170, 1939-9170 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m−2·yr−1, but decreased substantially when N input exceeded 32 g N·m−2·yr−1. A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m−2·yr−1. Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state. |
|---|---|
| AbstractList | Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m−2·yr−1, but decreased substantially when N input exceeded 32 g N·m−2·yr−1. A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m−2·yr−1. Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state. Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high‐throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long‐term (13 yr), multi‐level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m−2·yr−1, but decreased substantially when N input exceeded 32 g N·m−2·yr−1. A meta‐analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m−2·yr−1. Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low‐diversity state. Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high‐throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long‐term (13 yr), multi‐level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m⁻²·yr⁻¹, but decreased substantially when N input exceeded 32 g N·m⁻²·yr⁻¹. A meta‐analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m⁻²·yr⁻¹. Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low‐diversity state. Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m-2 ·yr-1 , but decreased substantially when N input exceeded 32 g N·m-2 ·yr-1 . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m-2 ·yr-1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m-2 ·yr-1 , but decreased substantially when N input exceeded 32 g N·m-2 ·yr-1 . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m-2 ·yr-1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state. Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high‐throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long‐term (13 yr), multi‐level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m −2 ·yr −1 , but decreased substantially when N input exceeded 32 g N·m −2 ·yr −1 . A meta‐analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m −2 ·yr −1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low‐diversity state. Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m ·yr , but decreased substantially when N input exceeded 32 g N·m ·yr . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m ·yr . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state. |
| Author | Kuang, Jialiang Ling, Ning Liu, Weixing Wang, Zhou Wang, Shaopeng Peng, Ziyang Chen, Yongliang Jiang, Lin Zhang, Xingxu Tian, Rui Yang, Sen Liu, Lingli |
| Author_xml | – sequence: 1 givenname: Weixing surname: Liu fullname: Liu, Weixing – sequence: 2 givenname: Lin surname: Jiang fullname: Jiang, Lin – sequence: 3 givenname: Sen surname: Yang fullname: Yang, Sen – sequence: 4 givenname: Zhou surname: Wang fullname: Wang, Zhou – sequence: 5 givenname: Rui surname: Tian fullname: Tian, Rui – sequence: 6 givenname: Ziyang surname: Peng fullname: Peng, Ziyang – sequence: 7 givenname: Yongliang surname: Chen fullname: Chen, Yongliang – sequence: 8 givenname: Xingxu surname: Zhang fullname: Zhang, Xingxu – sequence: 9 givenname: Jialiang surname: Kuang fullname: Kuang, Jialiang – sequence: 10 givenname: Ning surname: Ling fullname: Ling, Ning – sequence: 11 givenname: Shaopeng surname: Wang fullname: Wang, Shaopeng – sequence: 12 givenname: Lingli surname: Liu fullname: Liu, Lingli |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32242918$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0UuPFCEQAGBi1rizq4l_QNOJFy898mhoOJrJ-kg28aIHT0hD9cikG0Zg1vS_l8nMronRyAVIfRRQdYUuQgyA0HOC1wRj-gbssmaYs0doRRRTrSI9vkArjAltleDyEl3lvMN1kE4-QZeM0o4qIlfo2yb54q2ZmpJMyHUdQxPHJkc_NYOxBZKvQefvINXo0pjgGhvnfTzbkvx2CwlcMyxN8CXFLYQGQvL2-wyhPEWPRzNleHaer9GXdzefNx_a20_vP27e3ra2Y5K11I4DscQ4YMwphuUgLR7JyKlU2HWDIoRwANdzIWVX9wYTJgjnvYOeMsOu0etT3n2KPw6Qi559tjBNJkA8ZE057RjlTPT_p0wKKkm9qtJXf9BdPKRQP6KPFeyFEBRX9fKsDsMMTu-Tn01a9H2ZK1ifgE0x5wSjtr6YY_1q1f2kCdbHPuraR33s4-8nPhy4z_kX2p7oTz_B8k-nbzZfz_7Fye9yienBU6GYqB9ivwDUD7Ra |
| CitedBy_id | crossref_primary_10_3389_fmicb_2021_665975 crossref_primary_10_3390_microorganisms12081548 crossref_primary_10_1016_j_scitotenv_2021_148943 crossref_primary_10_1016_j_envres_2025_120956 crossref_primary_10_1002_ecy_4534 crossref_primary_10_1038_s41467_024_47323_3 crossref_primary_10_1007_s10533_023_01062_7 crossref_primary_10_1016_j_scitotenv_2022_157660 crossref_primary_10_3389_fpls_2023_1109860 crossref_primary_10_1002_ldr_4304 crossref_primary_10_1016_j_jia_2024_07_033 crossref_primary_10_3389_fmars_2023_1131713 crossref_primary_10_3390_microorganisms11102471 crossref_primary_10_1111_gcb_17475 crossref_primary_10_1007_s11356_022_20770_5 crossref_primary_10_3389_fpls_2024_1411073 crossref_primary_10_3390_plants12223801 crossref_primary_10_1016_j_geoderma_2024_116886 crossref_primary_10_1186_s13213_022_01666_8 crossref_primary_10_1016_j_scitotenv_2024_173477 crossref_primary_10_1186_s12870_024_05351_7 crossref_primary_10_3389_fpls_2022_917645 crossref_primary_10_3390_agronomy13051356 crossref_primary_10_1038_s41467_025_59157_8 crossref_primary_10_1002_ece3_9016 crossref_primary_10_1016_j_apsoil_2022_104723 crossref_primary_10_1007_s11104_023_06043_1 crossref_primary_10_1016_j_apsoil_2022_104725 crossref_primary_10_1016_j_still_2025_106751 crossref_primary_10_1016_j_foreco_2022_120658 crossref_primary_10_1007_s11368_021_02892_4 crossref_primary_10_1016_j_catena_2023_107385 crossref_primary_10_1002_ldr_4772 crossref_primary_10_1111_gcbb_70050 crossref_primary_10_1111_1365_2745_14386 crossref_primary_10_1016_j_apsoil_2021_104311 crossref_primary_10_1038_s40494_025_01997_0 crossref_primary_10_1073_pnas_2419917122 crossref_primary_10_1007_s00253_023_12644_8 crossref_primary_10_3389_fmicb_2022_906818 crossref_primary_10_1016_j_scitotenv_2021_152406 crossref_primary_10_1111_gcb_15681 crossref_primary_10_1016_j_biteb_2024_101885 crossref_primary_10_1016_j_apsoil_2024_105341 crossref_primary_10_1038_s41598_021_84422_3 crossref_primary_10_3390_plants12071481 crossref_primary_10_1111_ejss_13553 crossref_primary_10_3390_microorganisms13010056 crossref_primary_10_3389_fmicb_2024_1514646 crossref_primary_10_3390_f16071096 crossref_primary_10_1016_j_geoderma_2021_114999 crossref_primary_10_1111_1365_2745_14179 crossref_primary_10_1007_s00248_021_01954_x crossref_primary_10_1007_s11368_022_03312_x crossref_primary_10_3389_fmicb_2024_1430682 crossref_primary_10_1186_s40793_022_00441_1 crossref_primary_10_3389_fevo_2023_1220111 crossref_primary_10_1016_j_catena_2023_107116 crossref_primary_10_1016_j_biortech_2022_128060 crossref_primary_10_1111_rec_70065 crossref_primary_10_1007_s00203_021_02535_9 crossref_primary_10_1007_s43615_024_00456_5 crossref_primary_10_1111_brv_13167 crossref_primary_10_1007_s11104_024_06694_8 crossref_primary_10_1002_ldr_4239 crossref_primary_10_1128_spectrum_03003_22 crossref_primary_10_3389_fmicb_2024_1369196 crossref_primary_10_1111_1462_2920_16095 crossref_primary_10_3390_f15010077 crossref_primary_10_1016_j_scitotenv_2020_142449 crossref_primary_10_1016_j_agwat_2021_107188 crossref_primary_10_1016_j_soilbio_2022_108864 crossref_primary_10_3389_fmicb_2021_714967 crossref_primary_10_3389_fmicb_2022_888121 crossref_primary_10_1016_j_pedsph_2022_06_055 crossref_primary_10_1016_j_soilbio_2023_109295 crossref_primary_10_3389_fmicb_2023_1302775 crossref_primary_10_1016_j_apsoil_2025_105963 crossref_primary_10_1016_j_jenvman_2024_120486 crossref_primary_10_1016_j_apsoil_2023_105049 crossref_primary_10_1111_1365_2745_70105 crossref_primary_10_1002_ldr_3935 crossref_primary_10_3390_microorganisms12122419 crossref_primary_10_3389_fmicb_2021_783925 crossref_primary_10_1016_j_ejsobi_2022_103393 crossref_primary_10_1002_ecs2_4033 crossref_primary_10_1016_j_soilbio_2024_109541 crossref_primary_10_1111_nph_18516 crossref_primary_10_1134_S1064229322080178 crossref_primary_10_1111_jipb_13179 crossref_primary_10_1186_s40793_025_00760_z crossref_primary_10_3390_w14111748 crossref_primary_10_1016_j_scitotenv_2022_154732 crossref_primary_10_1016_j_jenvman_2023_120012 crossref_primary_10_1016_j_scitotenv_2024_172100 crossref_primary_10_1111_1365_2745_70112 crossref_primary_10_1002_ldr_4977 crossref_primary_10_1016_j_geoderma_2021_115210 crossref_primary_10_1007_s12237_025_01580_7 crossref_primary_10_1016_j_scitotenv_2022_154295 crossref_primary_10_3390_f14101977 crossref_primary_10_3390_microorganisms13061393 crossref_primary_10_1007_s11104_023_06291_1 crossref_primary_10_1007_s10021_021_00633_9 crossref_primary_10_1002_ldr_5267 crossref_primary_10_3390_microorganisms12071273 crossref_primary_10_1016_j_cosust_2020_09_005 crossref_primary_10_1016_j_scitotenv_2022_157752 crossref_primary_10_1016_j_soilbio_2024_109499 crossref_primary_10_1128_spectrum_00933_22 crossref_primary_10_3389_fpls_2022_1016949 crossref_primary_10_3390_f16020276 crossref_primary_10_3390_microorganisms12071434 crossref_primary_10_3389_fmicb_2025_1534028 crossref_primary_10_1186_s40168_023_01539_5 crossref_primary_10_1016_j_scitotenv_2024_172671 crossref_primary_10_1002_imt2_194 crossref_primary_10_1111_gcb_17217 crossref_primary_10_3389_fmicb_2023_1013570 crossref_primary_10_3389_fmicb_2024_1375300 crossref_primary_10_1016_j_soilbio_2023_109009 crossref_primary_10_1134_S1064229324602373 crossref_primary_10_1016_j_physa_2023_128925 crossref_primary_10_1038_s41598_023_42981_7 crossref_primary_10_1016_j_agee_2024_109407 crossref_primary_10_3389_fmicb_2021_797306 crossref_primary_10_1093_jpe_rtaf071 crossref_primary_10_1093_plphys_kiab555 crossref_primary_10_1186_s13717_025_00597_x crossref_primary_10_3390_agronomy15051029 crossref_primary_10_1007_s00253_021_11666_4 crossref_primary_10_1128_msystems_01221_20 crossref_primary_10_1016_j_jenvman_2024_120379 crossref_primary_10_1111_1462_2920_16459 crossref_primary_10_1016_j_jenvman_2022_116376 crossref_primary_10_1016_j_apsoil_2025_106265 crossref_primary_10_1016_j_rhisph_2022_100656 crossref_primary_10_3390_microorganisms11061552 crossref_primary_10_1016_j_apsoil_2024_105678 crossref_primary_10_1007_s11104_024_06881_7 crossref_primary_10_3390_agronomy14030480 crossref_primary_10_3390_f14061154 crossref_primary_10_1007_s00248_023_02297_5 crossref_primary_10_1111_2041_210X_13946 crossref_primary_10_1007_s42729_023_01557_0 crossref_primary_10_1038_s41598_021_04623_8 crossref_primary_10_3389_fmicb_2022_999385 crossref_primary_10_3389_fmicb_2024_1455891 |
| Cites_doi | 10.1038/nrmicro2832 10.1126/science.1225244 10.3389/fmicb.2012.00417 10.1111/1574-6941.12231 10.1111/j.1461-0248.2006.00926.x 10.1899/09-148.1 10.1126/science.1094875 10.1093/bioinformatics/btr507 10.1111/j.1365-294X.2010.04933.x 10.1002/ecy.1670 10.1038/ismej.2011.139 10.1073/pnas.0507535103 10.2307/3236000 10.1038/ncomms12083 10.1016/j.soilbio.2010.02.003 10.1111/j.1365-2486.2012.02639.x 10.1890/10-0426.1 10.1002/bies.1091 10.1073/pnas.1508382112 10.1111/ele.12826 10.1126/science.aad2602 10.1038/ismej.2010.58 10.1038/nature22898 10.1016/j.soilbio.2015.09.018 10.1038/ismej.2013.54 10.1016/j.geoderma.2017.01.013 10.1093/bioinformatics/btq461 10.1038/ismej.2009.16 10.1073/pnas.0408648102 10.1038/ismej.2017.135 10.1128/AEM.00335-09 10.1007/s10533-004-0370-0 10.1016/j.geoderma.2018.07.008 10.1038/nmicrobiol.2016.160 10.1038/nmeth.f.303 10.1111/j.1365-2486.2009.01950.x 10.1016/j.soilbio.2014.09.009 10.1073/pnas.0808254105 10.7554/eLife.25051 10.1016/j.scitotenv.2017.12.142 10.1038/ismej.2012.8 10.1111/j.1461-0248.2011.01599.x 10.1371/journal.pbio.1002540 10.1111/mec.14275 10.1073/pnas.95.12.6578 10.1038/nrmicro.2017.87 10.1038/ismej.2014.235 10.1046/j.0269-8463.2001.00551.x 10.1073/pnas.1217382110 10.1126/science.1094678 10.1093/nar/gku1201 10.1086/682901 10.1249/00005768-199010000-00021 10.1111/ele.13212 10.1016/S1001-0742(11)60900-5 10.1126/science.1187512 10.1007/BF02568729 10.1073/pnas.1310880110 10.1038/nmeth.2604 10.1038/ismej.2011.159 10.1038/ncomms12285 10.1016/0169-5347(94)90088-4 10.1111/j.2041-210X.2009.00007.x 10.1111/j.1462-2920.2010.02189.x 10.18637/jss.v022.i07 10.1038/ncomms7707 10.1016/j.soilbio.2018.02.003 10.3389/fmicb.2016.01955 10.1007/s00248-016-0730-z 10.1111/ele.12381 10.1023/A:1020565523615 10.1111/j.1469-8137.1976.tb01532.x 10.1128/AEM.00062-07 |
| ContentType | Journal Article |
| Copyright | 2020 by the Ecological Society of America 2020 Ecological Society of America 2020 Ecological Society of America. |
| Copyright_xml | – notice: 2020 by the Ecological Society of America – notice: 2020 Ecological Society of America – notice: 2020 Ecological Society of America. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7T7 8FD C1K FR3 K9. P64 RC3 SOI 7X8 7S9 L.6 |
| DOI | 10.1002/ecy.3053 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Entomology Abstracts AGRICOLA MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology Environmental Sciences |
| EISSN | 1939-9170 |
| EndPage | 11 |
| ExternalDocumentID | 32242918 10_1002_ecy_3053 ECY3053 26936976 |
| Genre | article Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: State Key Laboratory of Grassland Agro‐Ecosystems, Lanzhou University – fundername: National Science Foundation of USA funderid: DEB-1856318; CBET-1833988 – fundername: CAS Interdisciplinary Innovation Team funderid: JCTD-2018-06 – fundername: the National Natural Science Foundation of China funderid: 31370488; 31770530; 31988102 – fundername: Chinese National Key Development Program for Basic Research funderid: 2017YFC0503900 – fundername: Chinese National Key Development Program for Basic Research grantid: 2017YFC0503900 – fundername: State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University – fundername: National Science Foundation of USA grantid: DEB-1856318 – fundername: National Science Foundation of USA grantid: CBET-1833988 – fundername: the National Natural Science Foundation of China grantid: 31988102 – fundername: the National Natural Science Foundation of China grantid: 31370488 – fundername: the National Natural Science Foundation of China grantid: 31770530 – fundername: CAS Interdisciplinary Innovation Team grantid: JCTD-2018-06 |
| GroupedDBID | --- -~X 0R~ 1OB 1OC 2AX 33P 4.4 5GY 85S AAESR AAHBH AAHKG AAHQN AAIHA AAISJ AAKGQ AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABAWQ ABBHK ABCUV ABDQB ABEFU ABGFU ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABSQW ABTLG ABXSQ ACAHQ ACCZN ACGFO ACGFS ACGOD ACHIC ACHJO ACKOT ACNCT ACPOU ACPRK ACSTJ ACUBG ACXBN ACXQS ADBBV ADKYN ADMHG ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFFPM AFRAH AFWVQ AFXHP AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIAGR AIDAL AIDQK AIDYY AILXY AITYG AIURR ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AQVQM AZFZN AZVAB BENPR BFHJK BKOMP BMXJE BRXPI CBGCD CS3 CUYZI D0L DCZOG DEVKO DRFUL DRSTM DU5 EBS ECGQY F5P HF~ HGLYW IAO IEA IGH IGS IOF IPO IPSME JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST LATKE LEEKS LITHE LOXES LU7 LUTES LYRES MEWTI MV1 MW2 N9A NHB NXSMM O9- OK1 P2P P2W PALCI ROL RSZ RWL RXW SA0 SJN SUPJJ TAE TN5 U5U UHB UKR V62 WBKPD WH7 WOHZO WXSBR XSW YR2 YV5 YYM YZZ Z0I ZCA ZO4 ZZTAW ~02 ~KM .-4 0VX 29G 2KS 3V. 42X 53G 692 6TJ 7X2 7X7 7XC 88A 88E 88I 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ A.K A6W AAFWJ AAHHS ABRJW ABUWG ABYAD ACCFJ ACKIV ACTWD ADULT ADZOD AEEZP AEQDE AEUQT AEUYN AFKRA AFQQW AGNAY AIWBW AJBDE AS~ ATCPS AZQEC BBNVY BCR BCU BEC BES BHPHI BKSAR BLC BPHCQ BVXVI C1A CCPQU D1J DDYGU DOOOF DWQXO E.L EJD FVMVE FYUFA GNUQQ GTFYD GUQSH HCIFZ HGD HMCUK HQ2 HTVGU HVGLF IAG IEP ITC JSODD KQ8 LK8 M0K M0L M1P M2O M2P M7P MVM OMK PATMY PCBAR PQQKQ PRG PROAC PSQYO PYCSY Q2X QZG R05 RJQFR SAMSI SJFOW UBC UKHRP VOH VQA WHG WYJ XIH Y6R YXE YYP ZCG AAYXX ABUFD ADXHL AFFHD AIQQE CITATION LH4 PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM VXZ YIN Z5M 7QG 7SN 7SS 7ST 7T7 8FD C1K FR3 K9. P64 RC3 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4383-2cfb1c1ade33d9308b8c0f1f52890d4b91115eed7568844b9a01361557de723a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 158 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548386700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0012-9658 1939-9170 |
| IngestDate | Fri Sep 05 17:19:39 EDT 2025 Sun Nov 09 12:35:11 EST 2025 Mon Oct 06 18:05:37 EDT 2025 Wed Feb 19 02:29:59 EST 2025 Sat Nov 29 03:24:16 EST 2025 Tue Nov 18 22:00:25 EST 2025 Wed Jan 22 16:34:37 EST 2025 Thu Jul 03 22:05:33 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | bacterial diversity plant diversity threshold acidification bacterial community composition life history |
| Language | English |
| License | 2020 Ecological Society of America. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4383-2cfb1c1ade33d9308b8c0f1f52890d4b91115eed7568844b9a01361557de723a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9430-8879 0000-0002-7114-0794 0000-0002-3432-536X 0000-0002-5696-3151 0000-0003-1250-4073 |
| OpenAccessLink | http://ir.lzu.edu.cn/handle/262010/421900 |
| PMID | 32242918 |
| PQID | 2429766620 |
| PQPubID | 34868 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2524325367 proquest_miscellaneous_2386281756 proquest_journals_2429766620 pubmed_primary_32242918 crossref_citationtrail_10_1002_ecy_3053 crossref_primary_10_1002_ecy_3053 wiley_primary_10_1002_ecy_3053_ECY3053 jstor_primary_26936976 |
| PublicationCentury | 2000 |
| PublicationDate | 20200801 August 2020 2020-08-00 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 8 year: 2020 text: 20200801 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Brooklyn |
| PublicationTitle | Ecology (Durham) |
| PublicationTitleAlternate | Ecology |
| PublicationYear | 2020 |
| Publisher | John Wiley and Sons, Inc Ecological Society of America |
| Publisher_xml | – name: John Wiley and Sons, Inc – name: Ecological Society of America |
| References | 2010; 12 2018; 120 2017; 6 2010; 16 2015; 186 2008; 105 2012; 18 2016; 71 2007; 73 2011; 14 2013; 7 2012; 10 2010; 26 2010; 1 2004; 70 2013; 10 2010; 29 2019; 22 2005; 102 2018; 332 2015; 43 2011; 20 2001; 15 2013; 110 1995; 164 2011; 27 1998; 95 2012; 24 2007; 22 2010; 4 2010; 7 2012; 338 1992; 3 2017; 20 2015; 6 2004; 303 2015; 18 2017; 26 2013; 87 2010; 328 2018; 624 2006; 9 2017; 292 2006 2002; 81 2016; 92 2002; 417 2001; 23 2015; 9 2004; 304 2016; 14 1994; 9 2015; 350 2016; 7 2010; 42 1990; 22 2016; 1 2012; 3 2009; 75 2017; 15 2017; 11 2017; 98 2015; 112 2014; 79 2015 2013 2012; 6 2009; 3 2010; 91 2006; 103 2017; 546 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 R Development Core Team (e_1_2_7_54_1) 2015 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 Byrne B. M. (e_1_2_7_10_1) 2006 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 11 start-page: 1 year: 2017 end-page: 5 article-title: Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters publication-title: ISME Journal – volume: 75 start-page: 5111 year: 2009 end-page: 5120 article-title: Pyrosequencing‐based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale publication-title: Applied and Environmental Microbiology – volume: 14 year: 2016 article-title: Resource availability modulates the cooperative and competitive nature of a microbial cross‐feeding mutualism publication-title: PLoS Biology – volume: 43 start-page: d593 year: 2015 end-page: d598 article-title: rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development publication-title: Nucleic Acids Research – volume: 350 start-page: 663 year: 2015 end-page: 666 article-title: The ecology of the microbiome: Networks, competition, and stability publication-title: Science – volume: 18 start-page: 1918 year: 2012 end-page: 1927 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Global Change Biology – volume: 91 start-page: 3463 year: 2010 end-page: 3470 article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems publication-title: Ecology – volume: 1 start-page: 16160 year: 2016 end-page: 16160 article-title: Exploiting rRNA operon copy number to investigate bacterial reproductive strategies publication-title: Nature Microbiology – volume: 26 start-page: 2460 year: 2010 end-page: 2461 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics – volume: 22 start-page: 684 year: 1990 end-page: 689 article-title: Using smoothing splines for detecting ventilatory thresholds publication-title: Medicine & Science in Sports & Exercise – volume: 79 start-page: 81 year: 2014 end-page: 90 article-title: Rate‐specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe publication-title: Soil Biology and Biochemistry – volume: 110 start-page: 6889 year: 2013 end-page: 6894 article-title: Plant diversity effects on soil food webs are stronger than those of elevated CO and N deposition in a long‐term grassland experiment publication-title: Proceedings of the National Academy of Sciences USA – volume: 103 start-page: 626 year: 2006 end-page: 631 article-title: The diversity and biogeography of soil bacterial communities publication-title: Proceedings of the National Academy of Sciences USA – volume: 29 start-page: 988 year: 2010 end-page: 997 article-title: Thresholds, breakpoints, and nonlinearity in freshwaters as related to management publication-title: Journal of the North American Benthological Society – volume: 9 start-page: 191 year: 1994 end-page: 193 article-title: Positive interactions in communities publication-title: Trends in Ecology & Evolution – volume: 12 start-page: 1842 year: 2010 end-page: 1854 article-title: The effect of nutrient deposition on bacterial communities in Arctic tundra soil publication-title: Environmental Microbiology – volume: 6 start-page: 610 year: 2012 end-page: 618 article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea publication-title: ISME Journal – volume: 7 start-page: 12083 year: 2016 article-title: Temperature mediates continental‐scale diversity of microbes in forest soils publication-title: Nature Communications – volume: 164 start-page: 16 year: 1995 end-page: 23 article-title: A new obligately chemolithoautotrophic, nitrite‐oxidizing bacterium, sp. nov. and its phylogenetic relationship publication-title: Archives of Microbiology – volume: 27 start-page: 2957 year: 2011 end-page: 2963 article-title: FLASH: fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics – volume: 4 start-page: 1340 year: 2010 end-page: 1351 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME Journal – volume: 3 start-page: 738 year: 2009 end-page: 744 article-title: Despite strong seasonal responses, soil microbial consortia are more resilient to long‐term changes in rainfall than overlying grassland publication-title: ISME Journal – volume: 70 start-page: 153 year: 2004 end-page: 226 article-title: Nitrogen cycles: past, present, and future publication-title: Biogeochemistry – volume: 23 start-page: 657 year: 2001 end-page: 661 article-title: Oligotrophs versus copiotrophs publication-title: BioEssays – volume: 303 start-page: 1876 year: 2004 end-page: 1879 article-title: Impact of nitrogen deposition on the species richness of grasslands publication-title: Science – volume: 332 start-page: 37 year: 2018 end-page: 44 article-title: Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition publication-title: Geoderma – volume: 15 start-page: 506 year: 2001 end-page: 514 article-title: Linking above‐ and below‐ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land publication-title: Functional Ecology – volume: 120 start-page: 126 year: 2018 end-page: 133 article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition publication-title: Soil Biology & Biochemistry – volume: 338 start-page: 344 year: 2012 end-page: 348 article-title: Anticipating critical transitions publication-title: Science – volume: 7 start-page: 12285 year: 2016 article-title: High‐order species interactions shape ecosystem diversity publication-title: Nature Communications – volume: 624 start-page: 407 year: 2018 end-page: 415 article-title: Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment publication-title: Science of the Total Environment – volume: 14 start-page: 380 year: 2011 end-page: 388 article-title: Fertilization decreases plant biodiversity even when light is not limiting publication-title: Ecology Letters – volume: 110 start-page: 11911 year: 2013 end-page: 11916 article-title: Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity publication-title: Proceedings of the National Academy of Sciences USA – volume: 6 year: 2015 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nature Communications – volume: 15 start-page: 579 year: 2017 end-page: 590 article-title: Embracing the unknown: disentangling the complexities of the soil microbiome publication-title: Nature Reviews Microbiology – volume: 73 start-page: 5261 year: 2007 end-page: 5267 article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy publication-title: Applied and Environmental Microbiology – volume: 18 start-page: 85 year: 2015 end-page: 95 article-title: Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide publication-title: Ecology Letters – year: 2015 – volume: 20 start-page: 429 year: 2011 end-page: 438 article-title: Nitrogen deposition mediates the effects and importance of chance in changing biodiversity publication-title: Molecular Ecology – volume: 22 start-page: 563 year: 2019 end-page: 571 article-title: Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities publication-title: Ecology Letters – volume: 42 start-page: 896 year: 2010 end-page: 903 article-title: Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil publication-title: Soil Biology & Biochemistry – volume: 22 start-page: 1 year: 2007 end-page: 19 article-title: The ecodist package for dissimilarity‐based analysis of ecological data publication-title: Journal of Statistical Software – volume: 6 year: 2017 article-title: Lotka‐Volterra pairwise modeling fails to capture diverse pairwise microbial interactions publication-title: eLife – volume: 95 start-page: 6578 year: 1998 end-page: 6583 article-title: Prokaryotes: the unseen majority publication-title: Proceedings of the National Academy of Sciences USA – volume: 186 start-page: 452 year: 2015 end-page: 459 article-title: Diversity increases indirect interactions, attenuates the intensity of competition, and promotes coexistence publication-title: American Naturalist – volume: 417 start-page: 844 year: 2002 end-page: 848 article-title: Positive interactions among alpine plants increase with stress publication-title: Nature – volume: 6 start-page: 1621 year: 2012 end-page: 1624 article-title: Ultra‐high‐throughput microbial community analysis on the Illumina HiSeq and MiSeq platformsOpen publication-title: ISME Journal – volume: 292 start-page: 25 year: 2017 end-page: 33 article-title: Differential responses of soil bacterial communities to long‐term N and P inputs in a semi‐arid steppe publication-title: Geoderma – volume: 7 year: 2016 article-title: The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification publication-title: Frontiers in Microbiology – volume: 112 start-page: 10967 year: 2015 end-page: 10972 article-title: Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe publication-title: Proceedings of the National Academy of Sciences USA – volume: 546 start-page: 56 year: 2017 end-page: 64 article-title: Beyond pairwise mechanisms of species coexistence in complex communities publication-title: Nature – volume: 105 start-page: 17842 year: 2008 end-page: 17847 article-title: Environmental and anthropogenic controls over bacterial communities in wetland soils publication-title: Proceedings of the National Academy of Sciences USA – volume: 3 start-page: 69 year: 1992 end-page: 78 article-title: Study of spatial components of forest cover using partial Mantel tests and path analysis publication-title: Journal of Vegetation Science – volume: 10 start-page: 538 year: 2012 end-page: 550 article-title: Microbial interactions: from networks to models publication-title: Nature Reviews Microbiology – volume: 102 start-page: 4387 year: 2005 end-page: 4392 article-title: Functional‐ and abundance‐based mechanisms explain diversity loss due to N fertilization publication-title: Proceedings of the National Academy of Sciences USA – volume: 24 start-page: 1483 year: 2012 end-page: 1491 article-title: Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland publication-title: Journal of Environmental Sciences – volume: 26 start-page: 5500 year: 2017 end-page: 5514 article-title: Response to nitrogen addition reveals metabolic and ecological strategies of soil bacteria publication-title: Molecular Ecology – volume: 92 start-page: 41 year: 2016 end-page: 49 article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition publication-title: Soil Biology and Biochemistry – volume: 98 start-page: 555 year: 2017 end-page: 564 article-title: Low abundant soil bacteria can be metabolically versatile and fast growing publication-title: Ecology – volume: 16 start-page: 358 year: 2010 end-page: 372 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands publication-title: Global Change Biology – volume: 9 start-page: 1481 year: 2015 end-page: 1487 article-title: The physiology and ecological implications of efficient growth publication-title: ISME Journal – volume: 304 start-page: 1629 year: 2004 end-page: 1633 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science – volume: 1 start-page: 25 year: 2010 end-page: 37 article-title: A new method for detecting and interpreting biodiversity and ecological community thresholds publication-title: Methods in Ecology and Evolution – volume: 7 start-page: 1493 year: 2013 end-page: 1506 article-title: A meta‐analysis of changes in bacterial and archaeal communities with time publication-title: ISME Journal – volume: 328 start-page: 1164 year: 2010 end-page: 1168 article-title: Global biodiversity: indicators of recent declines publication-title: Science – volume: 87 start-page: 403 year: 2013 end-page: 415 article-title: Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm publication-title: FEMS Microbiology Ecology – year: 2006 – volume: 20 start-page: 1295 year: 2017 end-page: 1305 article-title: Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe publication-title: Ecology Letters – volume: 6 start-page: 1007 year: 2012 end-page: 1017 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients publication-title: ISME Journal – volume: 9 start-page: 683 year: 2006 end-page: 693 article-title: Multivariate dispersion as a measure of beta diversity publication-title: Ecology Letters – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nature Methods – volume: 71 start-page: 974 year: 2016 end-page: 989 article-title: Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community Variation publication-title: Microbial Ecology – volume: 3 start-page: 417 year: 2012 article-title: Fundamentals of microbial community resistance and resilience publication-title: Frontiers in Microbiology – volume: 81 start-page: 1 year: 2002 end-page: 4 article-title: Effects of above‐ground plant species composition and diversity on the diversity of soil‐borne micro‐organisms publication-title: Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology – volume: 10 start-page: 996 year: 2013 end-page: 998 article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads publication-title: Nature Methods – year: 2013 – ident: e_1_2_7_25_1 doi: 10.1038/nrmicro2832 – ident: e_1_2_7_59_1 doi: 10.1126/science.1225244 – ident: e_1_2_7_60_1 doi: 10.3389/fmicb.2012.00417 – ident: e_1_2_7_7_1 doi: 10.1111/1574-6941.12231 – ident: e_1_2_7_2_1 doi: 10.1111/j.1461-0248.2006.00926.x – ident: e_1_2_7_19_1 doi: 10.1899/09-148.1 – ident: e_1_2_7_68_1 doi: 10.1126/science.1094875 – ident: e_1_2_7_46_1 doi: 10.1093/bioinformatics/btr507 – ident: e_1_2_7_75_1 doi: 10.1111/j.1365-294X.2010.04933.x – ident: e_1_2_7_37_1 doi: 10.1002/ecy.1670 – ident: e_1_2_7_47_1 doi: 10.1038/ismej.2011.139 – ident: e_1_2_7_27_1 doi: 10.1073/pnas.0507535103 – ident: e_1_2_7_40_1 doi: 10.2307/3236000 – ident: e_1_2_7_77_1 doi: 10.1038/ncomms12083 – ident: e_1_2_7_23_1 doi: 10.1016/j.soilbio.2010.02.003 – ident: e_1_2_7_52_1 doi: 10.1111/j.1365-2486.2012.02639.x – ident: e_1_2_7_53_1 doi: 10.1890/10-0426.1 – ident: e_1_2_7_34_1 doi: 10.1002/bies.1091 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.1508382112 – ident: e_1_2_7_17_1 doi: 10.1111/ele.12826 – ident: e_1_2_7_15_1 doi: 10.1126/science.aad2602 – ident: e_1_2_7_57_1 doi: 10.1038/ismej.2010.58 – ident: e_1_2_7_42_1 doi: 10.1038/nature22898 – ident: e_1_2_7_73_1 doi: 10.1016/j.soilbio.2015.09.018 – ident: e_1_2_7_61_1 doi: 10.1038/ismej.2013.54 – ident: e_1_2_7_44_1 doi: 10.1016/j.geoderma.2017.01.013 – ident: e_1_2_7_20_1 doi: 10.1093/bioinformatics/btq461 – volume-title: Structural equation modeling with EQS: Basic concepts, applications, and programming year: 2006 ident: e_1_2_7_10_1 – ident: e_1_2_7_16_1 doi: 10.1038/ismej.2009.16 – ident: e_1_2_7_65_1 doi: 10.1073/pnas.0408648102 – ident: e_1_2_7_70_1 doi: 10.1038/ismej.2017.135 – ident: e_1_2_7_39_1 doi: 10.1128/AEM.00335-09 – ident: e_1_2_7_29_1 doi: 10.1007/s10533-004-0370-0 – ident: e_1_2_7_45_1 doi: 10.1016/j.geoderma.2018.07.008 – ident: e_1_2_7_56_1 doi: 10.1038/nmicrobiol.2016.160 – ident: e_1_2_7_13_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2486.2009.01950.x – ident: e_1_2_7_71_1 doi: 10.1016/j.soilbio.2014.09.009 – ident: e_1_2_7_31_1 doi: 10.1073/pnas.0808254105 – ident: e_1_2_7_48_1 doi: 10.7554/eLife.25051 – ident: e_1_2_7_49_1 doi: 10.1016/j.scitotenv.2017.12.142 – ident: e_1_2_7_14_1 doi: 10.1038/ismej.2012.8 – ident: e_1_2_7_18_1 doi: 10.1111/j.1461-0248.2011.01599.x – ident: e_1_2_7_32_1 doi: 10.1371/journal.pbio.1002540 – ident: e_1_2_7_58_1 doi: 10.1111/mec.14275 – ident: e_1_2_7_69_1 doi: 10.1073/pnas.95.12.6578 – ident: e_1_2_7_26_1 doi: 10.1038/nrmicro.2017.87 – ident: e_1_2_7_55_1 doi: 10.1038/ismej.2014.235 – ident: e_1_2_7_35_1 doi: 10.1046/j.0269-8463.2001.00551.x – ident: e_1_2_7_24_1 doi: 10.1073/pnas.1217382110 – ident: e_1_2_7_63_1 doi: 10.1126/science.1094678 – ident: e_1_2_7_64_1 doi: 10.1093/nar/gku1201 – ident: e_1_2_7_3_1 doi: 10.1086/682901 – ident: e_1_2_7_62_1 doi: 10.1249/00005768-199010000-00021 – ident: e_1_2_7_76_1 doi: 10.1111/ele.13212 – volume-title: R: A Language and Environment for Statistical Computing year: 2015 ident: e_1_2_7_54_1 – ident: e_1_2_7_74_1 doi: 10.1016/S1001-0742(11)60900-5 – ident: e_1_2_7_9_1 doi: 10.1126/science.1187512 – ident: e_1_2_7_22_1 doi: 10.1007/BF02568729 – ident: e_1_2_7_33_1 doi: 10.1073/pnas.1310880110 – ident: e_1_2_7_21_1 doi: 10.1038/nmeth.2604 – ident: e_1_2_7_28_1 doi: 10.1038/ismej.2011.159 – ident: e_1_2_7_5_1 doi: 10.1038/ncomms12285 – ident: e_1_2_7_8_1 doi: 10.1016/0169-5347(94)90088-4 – ident: e_1_2_7_6_1 doi: 10.1111/j.2041-210X.2009.00007.x – ident: e_1_2_7_12_1 doi: 10.1111/j.1462-2920.2010.02189.x – ident: e_1_2_7_30_1 doi: 10.18637/jss.v022.i07 – ident: e_1_2_7_38_1 doi: 10.1038/ncomms7707 – ident: e_1_2_7_66_1 doi: 10.1016/j.soilbio.2018.02.003 – ident: e_1_2_7_72_1 doi: 10.3389/fmicb.2016.01955 – ident: e_1_2_7_43_1 doi: 10.1007/s00248-016-0730-z – ident: e_1_2_7_50_1 – ident: e_1_2_7_51_1 doi: 10.1111/ele.12381 – ident: e_1_2_7_36_1 doi: 10.1023/A:1020565523615 – ident: e_1_2_7_11_1 doi: 10.1111/j.1469-8137.1976.tb01532.x – ident: e_1_2_7_67_1 doi: 10.1128/AEM.00062-07 |
| SSID | ssj0000148 |
| Score | 2.6586478 |
| SecondaryResourceType | review_article |
| Snippet | Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition... |
| SourceID | proquest pubmed crossref wiley jstor |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | acidification Bacteria bacterial community composition bacterial diversity Biogeochemical cycles China Community composition Community structure Composition Ecological function Ecosystem eutrophication genes life history meta-analysis Nitrogen Nitrogen - analysis Nitrogen enrichment Nonlinear response pH effects Plant communities Plant diversity RNA, Ribosomal, 16S - genetics rRNA 16S Soil Soil bacteria Soil chemistry Soil erosion Soil Microbiology Soil microorganisms Soil pH Soil structure Soils species diversity Steppes Terrestrial ecosystems threshold |
| Title | Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment |
| URI | https://www.jstor.org/stable/26936976 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fecy.3053 https://www.ncbi.nlm.nih.gov/pubmed/32242918 https://www.proquest.com/docview/2429766620 https://www.proquest.com/docview/2386281756 https://www.proquest.com/docview/2524325367 |
| Volume | 101 |
| WOSCitedRecordID | wos000548386700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1939-9170 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000148 issn: 0012-9658 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLUhceC8slMpICE6hiZ3YzhG1u-JQVQhRaTmFxI-yUpWgzRZp_z0ziZNSqVSVeoojj2PHnlfi8TcA7yupCKVLRmhd8yh1PolykanICvx6ljxPhOtAXI_VyYleLvOvIaqSzsL0-BDjDzeSjE5fk4CXVXtwCRrqzPYTMqvYgV2ObJtNYPfo2-L0-B_wqDToYR4RxMkAPRvzg6HtFWPUxyNe52ledVw7y7N4fJcxP4FHwd9kn3sGeQr3XP0MHvQZKLdYmptQms4vj7xhgyDz7XP4OWRDYBuya12IF2s8a5vVOat6sGestEOABytryyhSPYSDYbPV2RmlBGXVlqEGWTfItAz5dmV-UW8v4HQx_374JQp5GSJDwKYRN75KTFJaJ4TNRawrbWKf-Iw2LW1akf7M0PaqTGqd4n1JwHDouCjrFBelmMKkbmr3CpjynjzKJPZOp9Z7bWOLLpyNjbeOp3oGH4cFKkwALafcGedFD7fMC5zSgqZ0Bu9Gyt89UMc1NNNujUcCLimfoZIz2BsWvQgy3BbovGCVlDzGZ4_VKH20pVLWrrlAGoFfhBpdMHkDTcZTwTMh1Qxe9gw1DgDVKfaS4Ht-6Pjmv0Mv5oc_6Pr6toRv4CGnXwNdrOIeTDbrC_cW7ps_m1W73ocdtdT7QWL-Av0yFv0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qq-iL36enVVcQfYpNdpPdDT5JvaPieYi0UJ_SZD_qQUnk7ircf-9MskktVBF8SsLOJpvsbz6ymfwG4FUlFbF0yQi9ax6lzidRLjIVWYFvz5LniXAtietMzef6-Dj_sgXv-n9hOn6IYcGNNKO116TgtCC9d8Ea6szmLaJVXIOdFFGE8N758HV6NPuNPSoNhphHxHHSc8_GfK_ve8kbdQmJV4WalyPX1vVM7_zXoO_C7RBxsvcdRO7Blqvvw42uBuUG9yYm7I0mFz-9YYeg9asHcNLXQ2Br8mxtkhdrPFs1izNWdXTP2Gj7FA9W1pZRrnpICMNui9NTKgrKqg1DG7JsELYMkbsw3-lqD-FoOjncP4hCZYbIELVpxI2vEpOU1glhcxHrSpvYJz6jz5Y2rciCZuh9VSa1TvG4JGo4DF2UdYqLUoxgu25q9xiY8p5iyiT2TqfWe21ji0GcjY23jqd6DG_6GSpMoC2n6hlnRUe4zAt8pAU90jG8HCR_dFQdV8iM2kkeBLikioZKjmG3n_UiaPGqwPAFm6TkMZ57aEb9o48qZe2ac5RB5HGNQZj8i0zGU8EzIdUYHnWIGgaABhWvkuB9vm6B88ehF5P9b7R98q-CL-DmweHnWTH7OP_0FG5xWihoMxd3YXu9PHfP4Lr5uV6sls-D4vwCFCAaBQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDtBe-C4rG2AkBE_ZEjuxHe1p2lqBqKoJMWk8hcQfo9KUTG2H1P-eu3xtkwZC4imOfI4d-74Sn38H8L6QilC6ZIDWNQ1i56MgFYkKrMCvZ8nTSLgaxHWqZjN9dpaebMBBdxamwYfof7iRZNT6mgTcXVq_f40a6sx6D7lV3IPNmHLIDGDz-OvkdHoDPSpuFTEPCOOkw54N-X7X9pY1agIS73I1b3uutemZPP6vQT-BR63HyQ4bFnkKG658Bg-aHJRrLI1NWxqOrw-9YYNW6pfP4UeXD4GtyLLVQV6s8mxZzS9Y0cA9Y6XtQjxYXlpGseptQBg2m5-fU1JQVqwZ6pBFhWzLkHPn5if19gJOJ-NvR5-CNjNDYAjaNODGF5GJcuuEsKkIdaFN6COf0LaljQvSoAlaX5VIrWO8zwkaDl0XZZ3iIhdDGJRV6baBKe_Jp4xC73Rsvdc2tOjE2dB463isR_CxW6HMtLDllD3jImsAl3mGU5rRlI7gXU952UB13EEzrBe5J-CSMhoqOYLdbtWzVoqXGbovWCUlD_HZfTXKH22q5KWrrpBG4DehRidM_oUm4bHgiZBqBC8bjuoHgAoVe4nwPT_UjPPHoWfjo-90ffWvhG_h4cnxJJt-nn3ZgS1O_wnqwMVdGKwWV-413De_VvPl4k0rN78BeRgZgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+transition+of+soil+bacterial+diversity+and+composition+triggered+by+nitrogen+enrichment&rft.jtitle=Ecology+%28Durham%29&rft.au=Liu%2C+Weixing&rft.au=Jiang%2C+Lin&rft.au=Sen%2C+Yang&rft.au=Wang%2C+Zhou&rft.date=2020-08-01&rft.pub=Ecological+Society+of+America&rft.issn=0012-9658&rft.eissn=1939-9170&rft.volume=101&rft.issue=8&rft_id=info:doi/10.1002%2Fecy.3053&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-9658&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-9658&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-9658&client=summon |