Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment

Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ecology (Durham) Ročník 101; číslo 8; s. 1 - 11
Hlavní autori: Liu, Weixing, Jiang, Lin, Yang, Sen, Wang, Zhou, Tian, Rui, Peng, Ziyang, Chen, Yongliang, Zhang, Xingxu, Kuang, Jialiang, Ling, Ning, Wang, Shaopeng, Liu, Lingli
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States John Wiley and Sons, Inc 01.08.2020
Ecological Society of America
Predmet:
ISSN:0012-9658, 1939-9170, 1939-9170
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m−2·yr−1, but decreased substantially when N input exceeded 32 g N·m−2·yr−1. A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m−2·yr−1. Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.
AbstractList Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m−2·yr−1, but decreased substantially when N input exceeded 32 g N·m−2·yr−1. A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m−2·yr−1. Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.
Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high‐throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long‐term (13 yr), multi‐level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m−2·yr−1, but decreased substantially when N input exceeded 32 g N·m−2·yr−1. A meta‐analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m−2·yr−1. Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low‐diversity state.
Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high‐throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long‐term (13 yr), multi‐level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m⁻²·yr⁻¹, but decreased substantially when N input exceeded 32 g N·m⁻²·yr⁻¹. A meta‐analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m⁻²·yr⁻¹. Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low‐diversity state.
Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m-2 ·yr-1 , but decreased substantially when N input exceeded 32 g N·m-2 ·yr-1 . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m-2 ·yr-1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m-2 ·yr-1 , but decreased substantially when N input exceeded 32 g N·m-2 ·yr-1 . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m-2 ·yr-1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.
Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high‐throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long‐term (13 yr), multi‐level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m −2 ·yr −1 , but decreased substantially when N input exceeded 32 g N·m −2 ·yr −1 . A meta‐analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m −2 ·yr −1 . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low‐diversity state.
Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition has impacted various aspects of terrestrial ecosystems, but we still have a rudimentary understanding of whether there is a threshold for N input level beyond which soil bacterial communities will experience critical transitions. Using high-throughput sequencing of the 16S rRNA gene, we examined soil bacterial responses to a long-term (13 yr), multi-level, N addition experiment in a temperate steppe of northern China. We found that plant diversity decreased in a linear fashion with increasing N addition. However, bacterial diversity responded nonlinearly to N addition, such that it was unaffected by N input below 16 g N·m ·yr , but decreased substantially when N input exceeded 32 g N·m ·yr . A meta-analysis across four N addition experiments in the same study region further confirmed this nonlinear response of bacterial diversity to N inputs. Substantial changes in soil bacterial community structure also occurred between N input levels of 16 to 32 g N·m ·yr . Further analysis revealed that the loss of soil bacterial diversity was primarily attributed to the reduction in soil pH, whereas changes in soil bacterial community were driven by the combination of increased N availability, reduced soil pH, and changes in plant community structure. In addition, we found that N addition shifted bacterial communities toward more putatively copiotrophic taxa. Overall, our study identified a threshold of N input level for bacterial diversity and community composition. The nonlinear response of bacterial diversity to N input observed in our study indicates that although bacterial communities are resistant to low levels of N input, further increase in N input could trigger a critical transition, shifting bacterial communities to a low-diversity state.
Author Kuang, Jialiang
Ling, Ning
Liu, Weixing
Wang, Zhou
Wang, Shaopeng
Peng, Ziyang
Chen, Yongliang
Jiang, Lin
Zhang, Xingxu
Tian, Rui
Yang, Sen
Liu, Lingli
Author_xml – sequence: 1
  givenname: Weixing
  surname: Liu
  fullname: Liu, Weixing
– sequence: 2
  givenname: Lin
  surname: Jiang
  fullname: Jiang, Lin
– sequence: 3
  givenname: Sen
  surname: Yang
  fullname: Yang, Sen
– sequence: 4
  givenname: Zhou
  surname: Wang
  fullname: Wang, Zhou
– sequence: 5
  givenname: Rui
  surname: Tian
  fullname: Tian, Rui
– sequence: 6
  givenname: Ziyang
  surname: Peng
  fullname: Peng, Ziyang
– sequence: 7
  givenname: Yongliang
  surname: Chen
  fullname: Chen, Yongliang
– sequence: 8
  givenname: Xingxu
  surname: Zhang
  fullname: Zhang, Xingxu
– sequence: 9
  givenname: Jialiang
  surname: Kuang
  fullname: Kuang, Jialiang
– sequence: 10
  givenname: Ning
  surname: Ling
  fullname: Ling, Ning
– sequence: 11
  givenname: Shaopeng
  surname: Wang
  fullname: Wang, Shaopeng
– sequence: 12
  givenname: Lingli
  surname: Liu
  fullname: Liu, Lingli
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32242918$$D View this record in MEDLINE/PubMed
BookMark eNqF0UuPFCEQAGBi1rizq4l_QNOJFy898mhoOJrJ-kg28aIHT0hD9cikG0Zg1vS_l8nMronRyAVIfRRQdYUuQgyA0HOC1wRj-gbssmaYs0doRRRTrSI9vkArjAltleDyEl3lvMN1kE4-QZeM0o4qIlfo2yb54q2ZmpJMyHUdQxPHJkc_NYOxBZKvQefvINXo0pjgGhvnfTzbkvx2CwlcMyxN8CXFLYQGQvL2-wyhPEWPRzNleHaer9GXdzefNx_a20_vP27e3ra2Y5K11I4DscQ4YMwphuUgLR7JyKlU2HWDIoRwANdzIWVX9wYTJgjnvYOeMsOu0etT3n2KPw6Qi559tjBNJkA8ZE057RjlTPT_p0wKKkm9qtJXf9BdPKRQP6KPFeyFEBRX9fKsDsMMTu-Tn01a9H2ZK1ifgE0x5wSjtr6YY_1q1f2kCdbHPuraR33s4-8nPhy4z_kX2p7oTz_B8k-nbzZfz_7Fye9yienBU6GYqB9ivwDUD7Ra
CitedBy_id crossref_primary_10_3389_fmicb_2021_665975
crossref_primary_10_3390_microorganisms12081548
crossref_primary_10_1016_j_scitotenv_2021_148943
crossref_primary_10_1016_j_envres_2025_120956
crossref_primary_10_1002_ecy_4534
crossref_primary_10_1038_s41467_024_47323_3
crossref_primary_10_1007_s10533_023_01062_7
crossref_primary_10_1016_j_scitotenv_2022_157660
crossref_primary_10_3389_fpls_2023_1109860
crossref_primary_10_1002_ldr_4304
crossref_primary_10_1016_j_jia_2024_07_033
crossref_primary_10_3389_fmars_2023_1131713
crossref_primary_10_3390_microorganisms11102471
crossref_primary_10_1111_gcb_17475
crossref_primary_10_1007_s11356_022_20770_5
crossref_primary_10_3389_fpls_2024_1411073
crossref_primary_10_3390_plants12223801
crossref_primary_10_1016_j_geoderma_2024_116886
crossref_primary_10_1186_s13213_022_01666_8
crossref_primary_10_1016_j_scitotenv_2024_173477
crossref_primary_10_1186_s12870_024_05351_7
crossref_primary_10_3389_fpls_2022_917645
crossref_primary_10_3390_agronomy13051356
crossref_primary_10_1038_s41467_025_59157_8
crossref_primary_10_1002_ece3_9016
crossref_primary_10_1016_j_apsoil_2022_104723
crossref_primary_10_1007_s11104_023_06043_1
crossref_primary_10_1016_j_apsoil_2022_104725
crossref_primary_10_1016_j_still_2025_106751
crossref_primary_10_1016_j_foreco_2022_120658
crossref_primary_10_1007_s11368_021_02892_4
crossref_primary_10_1016_j_catena_2023_107385
crossref_primary_10_1002_ldr_4772
crossref_primary_10_1111_gcbb_70050
crossref_primary_10_1111_1365_2745_14386
crossref_primary_10_1016_j_apsoil_2021_104311
crossref_primary_10_1038_s40494_025_01997_0
crossref_primary_10_1073_pnas_2419917122
crossref_primary_10_1007_s00253_023_12644_8
crossref_primary_10_3389_fmicb_2022_906818
crossref_primary_10_1016_j_scitotenv_2021_152406
crossref_primary_10_1111_gcb_15681
crossref_primary_10_1016_j_biteb_2024_101885
crossref_primary_10_1016_j_apsoil_2024_105341
crossref_primary_10_1038_s41598_021_84422_3
crossref_primary_10_3390_plants12071481
crossref_primary_10_1111_ejss_13553
crossref_primary_10_3390_microorganisms13010056
crossref_primary_10_3389_fmicb_2024_1514646
crossref_primary_10_3390_f16071096
crossref_primary_10_1016_j_geoderma_2021_114999
crossref_primary_10_1111_1365_2745_14179
crossref_primary_10_1007_s00248_021_01954_x
crossref_primary_10_1007_s11368_022_03312_x
crossref_primary_10_3389_fmicb_2024_1430682
crossref_primary_10_1186_s40793_022_00441_1
crossref_primary_10_3389_fevo_2023_1220111
crossref_primary_10_1016_j_catena_2023_107116
crossref_primary_10_1016_j_biortech_2022_128060
crossref_primary_10_1111_rec_70065
crossref_primary_10_1007_s00203_021_02535_9
crossref_primary_10_1007_s43615_024_00456_5
crossref_primary_10_1111_brv_13167
crossref_primary_10_1007_s11104_024_06694_8
crossref_primary_10_1002_ldr_4239
crossref_primary_10_1128_spectrum_03003_22
crossref_primary_10_3389_fmicb_2024_1369196
crossref_primary_10_1111_1462_2920_16095
crossref_primary_10_3390_f15010077
crossref_primary_10_1016_j_scitotenv_2020_142449
crossref_primary_10_1016_j_agwat_2021_107188
crossref_primary_10_1016_j_soilbio_2022_108864
crossref_primary_10_3389_fmicb_2021_714967
crossref_primary_10_3389_fmicb_2022_888121
crossref_primary_10_1016_j_pedsph_2022_06_055
crossref_primary_10_1016_j_soilbio_2023_109295
crossref_primary_10_3389_fmicb_2023_1302775
crossref_primary_10_1016_j_apsoil_2025_105963
crossref_primary_10_1016_j_jenvman_2024_120486
crossref_primary_10_1016_j_apsoil_2023_105049
crossref_primary_10_1111_1365_2745_70105
crossref_primary_10_1002_ldr_3935
crossref_primary_10_3390_microorganisms12122419
crossref_primary_10_3389_fmicb_2021_783925
crossref_primary_10_1016_j_ejsobi_2022_103393
crossref_primary_10_1002_ecs2_4033
crossref_primary_10_1016_j_soilbio_2024_109541
crossref_primary_10_1111_nph_18516
crossref_primary_10_1134_S1064229322080178
crossref_primary_10_1111_jipb_13179
crossref_primary_10_1186_s40793_025_00760_z
crossref_primary_10_3390_w14111748
crossref_primary_10_1016_j_scitotenv_2022_154732
crossref_primary_10_1016_j_jenvman_2023_120012
crossref_primary_10_1016_j_scitotenv_2024_172100
crossref_primary_10_1111_1365_2745_70112
crossref_primary_10_1002_ldr_4977
crossref_primary_10_1016_j_geoderma_2021_115210
crossref_primary_10_1007_s12237_025_01580_7
crossref_primary_10_1016_j_scitotenv_2022_154295
crossref_primary_10_3390_f14101977
crossref_primary_10_3390_microorganisms13061393
crossref_primary_10_1007_s11104_023_06291_1
crossref_primary_10_1007_s10021_021_00633_9
crossref_primary_10_1002_ldr_5267
crossref_primary_10_3390_microorganisms12071273
crossref_primary_10_1016_j_cosust_2020_09_005
crossref_primary_10_1016_j_scitotenv_2022_157752
crossref_primary_10_1016_j_soilbio_2024_109499
crossref_primary_10_1128_spectrum_00933_22
crossref_primary_10_3389_fpls_2022_1016949
crossref_primary_10_3390_f16020276
crossref_primary_10_3390_microorganisms12071434
crossref_primary_10_3389_fmicb_2025_1534028
crossref_primary_10_1186_s40168_023_01539_5
crossref_primary_10_1016_j_scitotenv_2024_172671
crossref_primary_10_1002_imt2_194
crossref_primary_10_1111_gcb_17217
crossref_primary_10_3389_fmicb_2023_1013570
crossref_primary_10_3389_fmicb_2024_1375300
crossref_primary_10_1016_j_soilbio_2023_109009
crossref_primary_10_1134_S1064229324602373
crossref_primary_10_1016_j_physa_2023_128925
crossref_primary_10_1038_s41598_023_42981_7
crossref_primary_10_1016_j_agee_2024_109407
crossref_primary_10_3389_fmicb_2021_797306
crossref_primary_10_1093_jpe_rtaf071
crossref_primary_10_1093_plphys_kiab555
crossref_primary_10_1186_s13717_025_00597_x
crossref_primary_10_3390_agronomy15051029
crossref_primary_10_1007_s00253_021_11666_4
crossref_primary_10_1128_msystems_01221_20
crossref_primary_10_1016_j_jenvman_2024_120379
crossref_primary_10_1111_1462_2920_16459
crossref_primary_10_1016_j_jenvman_2022_116376
crossref_primary_10_1016_j_apsoil_2025_106265
crossref_primary_10_1016_j_rhisph_2022_100656
crossref_primary_10_3390_microorganisms11061552
crossref_primary_10_1016_j_apsoil_2024_105678
crossref_primary_10_1007_s11104_024_06881_7
crossref_primary_10_3390_agronomy14030480
crossref_primary_10_3390_f14061154
crossref_primary_10_1007_s00248_023_02297_5
crossref_primary_10_1111_2041_210X_13946
crossref_primary_10_1007_s42729_023_01557_0
crossref_primary_10_1038_s41598_021_04623_8
crossref_primary_10_3389_fmicb_2022_999385
crossref_primary_10_3389_fmicb_2024_1455891
Cites_doi 10.1038/nrmicro2832
10.1126/science.1225244
10.3389/fmicb.2012.00417
10.1111/1574-6941.12231
10.1111/j.1461-0248.2006.00926.x
10.1899/09-148.1
10.1126/science.1094875
10.1093/bioinformatics/btr507
10.1111/j.1365-294X.2010.04933.x
10.1002/ecy.1670
10.1038/ismej.2011.139
10.1073/pnas.0507535103
10.2307/3236000
10.1038/ncomms12083
10.1016/j.soilbio.2010.02.003
10.1111/j.1365-2486.2012.02639.x
10.1890/10-0426.1
10.1002/bies.1091
10.1073/pnas.1508382112
10.1111/ele.12826
10.1126/science.aad2602
10.1038/ismej.2010.58
10.1038/nature22898
10.1016/j.soilbio.2015.09.018
10.1038/ismej.2013.54
10.1016/j.geoderma.2017.01.013
10.1093/bioinformatics/btq461
10.1038/ismej.2009.16
10.1073/pnas.0408648102
10.1038/ismej.2017.135
10.1128/AEM.00335-09
10.1007/s10533-004-0370-0
10.1016/j.geoderma.2018.07.008
10.1038/nmicrobiol.2016.160
10.1038/nmeth.f.303
10.1111/j.1365-2486.2009.01950.x
10.1016/j.soilbio.2014.09.009
10.1073/pnas.0808254105
10.7554/eLife.25051
10.1016/j.scitotenv.2017.12.142
10.1038/ismej.2012.8
10.1111/j.1461-0248.2011.01599.x
10.1371/journal.pbio.1002540
10.1111/mec.14275
10.1073/pnas.95.12.6578
10.1038/nrmicro.2017.87
10.1038/ismej.2014.235
10.1046/j.0269-8463.2001.00551.x
10.1073/pnas.1217382110
10.1126/science.1094678
10.1093/nar/gku1201
10.1086/682901
10.1249/00005768-199010000-00021
10.1111/ele.13212
10.1016/S1001-0742(11)60900-5
10.1126/science.1187512
10.1007/BF02568729
10.1073/pnas.1310880110
10.1038/nmeth.2604
10.1038/ismej.2011.159
10.1038/ncomms12285
10.1016/0169-5347(94)90088-4
10.1111/j.2041-210X.2009.00007.x
10.1111/j.1462-2920.2010.02189.x
10.18637/jss.v022.i07
10.1038/ncomms7707
10.1016/j.soilbio.2018.02.003
10.3389/fmicb.2016.01955
10.1007/s00248-016-0730-z
10.1111/ele.12381
10.1023/A:1020565523615
10.1111/j.1469-8137.1976.tb01532.x
10.1128/AEM.00062-07
ContentType Journal Article
Copyright 2020 by the Ecological Society of America
2020 Ecological Society of America
2020 Ecological Society of America.
Copyright_xml – notice: 2020 by the Ecological Society of America
– notice: 2020 Ecological Society of America
– notice: 2020 Ecological Society of America.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7T7
8FD
C1K
FR3
K9.
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1002/ecy.3053
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Entomology Abstracts
AGRICOLA
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1939-9170
EndPage 11
ExternalDocumentID 32242918
10_1002_ecy_3053
ECY3053
26936976
Genre article
Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: State Key Laboratory of Grassland Agro‐Ecosystems, Lanzhou University
– fundername: National Science Foundation of USA
  funderid: DEB-1856318; CBET-1833988
– fundername: CAS Interdisciplinary Innovation Team
  funderid: JCTD-2018-06
– fundername: the National Natural Science Foundation of China
  funderid: 31370488; 31770530; 31988102
– fundername: Chinese National Key Development Program for Basic Research
  funderid: 2017YFC0503900
– fundername: Chinese National Key Development Program for Basic Research
  grantid: 2017YFC0503900
– fundername: State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University
– fundername: National Science Foundation of USA
  grantid: DEB-1856318
– fundername: National Science Foundation of USA
  grantid: CBET-1833988
– fundername: the National Natural Science Foundation of China
  grantid: 31988102
– fundername: the National Natural Science Foundation of China
  grantid: 31370488
– fundername: the National Natural Science Foundation of China
  grantid: 31770530
– fundername: CAS Interdisciplinary Innovation Team
  grantid: JCTD-2018-06
GroupedDBID ---
-~X
0R~
1OB
1OC
2AX
33P
4.4
5GY
85S
AAESR
AAHBH
AAHKG
AAHQN
AAIHA
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCUV
ABDQB
ABEFU
ABGFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFO
ACGFS
ACGOD
ACHIC
ACHJO
ACKOT
ACNCT
ACPOU
ACPRK
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADKYN
ADMHG
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFFPM
AFRAH
AFWVQ
AFXHP
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIAGR
AIDAL
AIDQK
AIDYY
AILXY
AITYG
AIURR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AQVQM
AZFZN
AZVAB
BENPR
BFHJK
BKOMP
BMXJE
BRXPI
CBGCD
CS3
CUYZI
D0L
DCZOG
DEVKO
DRFUL
DRSTM
DU5
EBS
ECGQY
F5P
HF~
HGLYW
IAO
IEA
IGH
IGS
IOF
IPO
IPSME
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
LATKE
LEEKS
LITHE
LOXES
LU7
LUTES
LYRES
MEWTI
MV1
MW2
N9A
NHB
NXSMM
O9-
OK1
P2P
P2W
PALCI
ROL
RSZ
RWL
RXW
SA0
SJN
SUPJJ
TAE
TN5
U5U
UHB
UKR
V62
WBKPD
WH7
WOHZO
WXSBR
XSW
YR2
YV5
YYM
YZZ
Z0I
ZCA
ZO4
ZZTAW
~02
~KM
.-4
0VX
29G
2KS
3V.
42X
53G
692
6TJ
7X2
7X7
7XC
88A
88E
88I
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
A.K
A6W
AAFWJ
AAHHS
ABRJW
ABUWG
ABYAD
ACCFJ
ACKIV
ACTWD
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AEUYN
AFKRA
AFQQW
AGNAY
AIWBW
AJBDE
AS~
ATCPS
AZQEC
BBNVY
BCR
BCU
BEC
BES
BHPHI
BKSAR
BLC
BPHCQ
BVXVI
C1A
CCPQU
D1J
DDYGU
DOOOF
DWQXO
E.L
EJD
FVMVE
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HGD
HMCUK
HQ2
HTVGU
HVGLF
IAG
IEP
ITC
JSODD
KQ8
LK8
M0K
M0L
M1P
M2O
M2P
M7P
MVM
OMK
PATMY
PCBAR
PQQKQ
PRG
PROAC
PSQYO
PYCSY
Q2X
QZG
R05
RJQFR
SAMSI
SJFOW
UBC
UKHRP
VOH
VQA
WHG
WYJ
XIH
Y6R
YXE
YYP
ZCG
AAYXX
ABUFD
ADXHL
AFFHD
AIQQE
CITATION
LH4
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIN
Z5M
7QG
7SN
7SS
7ST
7T7
8FD
C1K
FR3
K9.
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4383-2cfb1c1ade33d9308b8c0f1f52890d4b91115eed7568844b9a01361557de723a3
IEDL.DBID DRFUL
ISICitedReferencesCount 158
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548386700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-9658
1939-9170
IngestDate Fri Sep 05 17:19:39 EDT 2025
Sun Nov 09 12:35:11 EST 2025
Mon Oct 06 18:05:37 EDT 2025
Wed Feb 19 02:29:59 EST 2025
Sat Nov 29 03:24:16 EST 2025
Tue Nov 18 22:00:25 EST 2025
Wed Jan 22 16:34:37 EST 2025
Thu Jul 03 22:05:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords bacterial diversity
plant diversity
threshold
acidification
bacterial community composition
life history
Language English
License 2020 Ecological Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4383-2cfb1c1ade33d9308b8c0f1f52890d4b91115eed7568844b9a01361557de723a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9430-8879
0000-0002-7114-0794
0000-0002-3432-536X
0000-0002-5696-3151
0000-0003-1250-4073
OpenAccessLink http://ir.lzu.edu.cn/handle/262010/421900
PMID 32242918
PQID 2429766620
PQPubID 34868
PageCount 11
ParticipantIDs proquest_miscellaneous_2524325367
proquest_miscellaneous_2386281756
proquest_journals_2429766620
pubmed_primary_32242918
crossref_citationtrail_10_1002_ecy_3053
crossref_primary_10_1002_ecy_3053
wiley_primary_10_1002_ecy_3053_ECY3053
jstor_primary_26936976
PublicationCentury 2000
PublicationDate 20200801
August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 8
  year: 2020
  text: 20200801
  day: 1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Brooklyn
PublicationTitle Ecology (Durham)
PublicationTitleAlternate Ecology
PublicationYear 2020
Publisher John Wiley and Sons, Inc
Ecological Society of America
Publisher_xml – name: John Wiley and Sons, Inc
– name: Ecological Society of America
References 2010; 12
2018; 120
2017; 6
2010; 16
2015; 186
2008; 105
2012; 18
2016; 71
2007; 73
2011; 14
2013; 7
2012; 10
2010; 26
2010; 1
2004; 70
2013; 10
2010; 29
2019; 22
2005; 102
2018; 332
2015; 43
2011; 20
2001; 15
2013; 110
1995; 164
2011; 27
1998; 95
2012; 24
2007; 22
2010; 4
2010; 7
2012; 338
1992; 3
2017; 20
2015; 6
2004; 303
2015; 18
2017; 26
2013; 87
2010; 328
2018; 624
2006; 9
2017; 292
2006
2002; 81
2016; 92
2002; 417
2001; 23
2015; 9
2004; 304
2016; 14
1994; 9
2015; 350
2016; 7
2010; 42
1990; 22
2016; 1
2012; 3
2009; 75
2017; 15
2017; 11
2017; 98
2015; 112
2014; 79
2015
2013
2012; 6
2009; 3
2010; 91
2006; 103
2017; 546
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
R Development Core Team (e_1_2_7_54_1) 2015
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
Byrne B. M. (e_1_2_7_10_1) 2006
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 11
  start-page: 1
  year: 2017
  end-page: 5
  article-title: Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters
  publication-title: ISME Journal
– volume: 75
  start-page: 5111
  year: 2009
  end-page: 5120
  article-title: Pyrosequencing‐based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale
  publication-title: Applied and Environmental Microbiology
– volume: 14
  year: 2016
  article-title: Resource availability modulates the cooperative and competitive nature of a microbial cross‐feeding mutualism
  publication-title: PLoS Biology
– volume: 43
  start-page: d593
  year: 2015
  end-page: d598
  article-title: rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development
  publication-title: Nucleic Acids Research
– volume: 350
  start-page: 663
  year: 2015
  end-page: 666
  article-title: The ecology of the microbiome: Networks, competition, and stability
  publication-title: Science
– volume: 18
  start-page: 1918
  year: 2012
  end-page: 1927
  article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes
  publication-title: Global Change Biology
– volume: 91
  start-page: 3463
  year: 2010
  end-page: 3470
  article-title: Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems
  publication-title: Ecology
– volume: 1
  start-page: 16160
  year: 2016
  end-page: 16160
  article-title: Exploiting rRNA operon copy number to investigate bacterial reproductive strategies
  publication-title: Nature Microbiology
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
– volume: 22
  start-page: 684
  year: 1990
  end-page: 689
  article-title: Using smoothing splines for detecting ventilatory thresholds
  publication-title: Medicine & Science in Sports & Exercise
– volume: 79
  start-page: 81
  year: 2014
  end-page: 90
  article-title: Rate‐specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe
  publication-title: Soil Biology and Biochemistry
– volume: 110
  start-page: 6889
  year: 2013
  end-page: 6894
  article-title: Plant diversity effects on soil food webs are stronger than those of elevated CO and N deposition in a long‐term grassland experiment
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 103
  start-page: 626
  year: 2006
  end-page: 631
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 29
  start-page: 988
  year: 2010
  end-page: 997
  article-title: Thresholds, breakpoints, and nonlinearity in freshwaters as related to management
  publication-title: Journal of the North American Benthological Society
– volume: 9
  start-page: 191
  year: 1994
  end-page: 193
  article-title: Positive interactions in communities
  publication-title: Trends in Ecology & Evolution
– volume: 12
  start-page: 1842
  year: 2010
  end-page: 1854
  article-title: The effect of nutrient deposition on bacterial communities in Arctic tundra soil
  publication-title: Environmental Microbiology
– volume: 6
  start-page: 610
  year: 2012
  end-page: 618
  article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea
  publication-title: ISME Journal
– volume: 7
  start-page: 12083
  year: 2016
  article-title: Temperature mediates continental‐scale diversity of microbes in forest soils
  publication-title: Nature Communications
– volume: 164
  start-page: 16
  year: 1995
  end-page: 23
  article-title: A new obligately chemolithoautotrophic, nitrite‐oxidizing bacterium, sp. nov. and its phylogenetic relationship
  publication-title: Archives of Microbiology
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 4
  start-page: 1340
  year: 2010
  end-page: 1351
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: ISME Journal
– volume: 3
  start-page: 738
  year: 2009
  end-page: 744
  article-title: Despite strong seasonal responses, soil microbial consortia are more resilient to long‐term changes in rainfall than overlying grassland
  publication-title: ISME Journal
– volume: 70
  start-page: 153
  year: 2004
  end-page: 226
  article-title: Nitrogen cycles: past, present, and future
  publication-title: Biogeochemistry
– volume: 23
  start-page: 657
  year: 2001
  end-page: 661
  article-title: Oligotrophs versus copiotrophs
  publication-title: BioEssays
– volume: 303
  start-page: 1876
  year: 2004
  end-page: 1879
  article-title: Impact of nitrogen deposition on the species richness of grasslands
  publication-title: Science
– volume: 332
  start-page: 37
  year: 2018
  end-page: 44
  article-title: Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition
  publication-title: Geoderma
– volume: 15
  start-page: 506
  year: 2001
  end-page: 514
  article-title: Linking above‐ and below‐ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land
  publication-title: Functional Ecology
– volume: 120
  start-page: 126
  year: 2018
  end-page: 133
  article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition
  publication-title: Soil Biology & Biochemistry
– volume: 338
  start-page: 344
  year: 2012
  end-page: 348
  article-title: Anticipating critical transitions
  publication-title: Science
– volume: 7
  start-page: 12285
  year: 2016
  article-title: High‐order species interactions shape ecosystem diversity
  publication-title: Nature Communications
– volume: 624
  start-page: 407
  year: 2018
  end-page: 415
  article-title: Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment
  publication-title: Science of the Total Environment
– volume: 14
  start-page: 380
  year: 2011
  end-page: 388
  article-title: Fertilization decreases plant biodiversity even when light is not limiting
  publication-title: Ecology Letters
– volume: 110
  start-page: 11911
  year: 2013
  end-page: 11916
  article-title: Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 6
  year: 2015
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nature Communications
– volume: 15
  start-page: 579
  year: 2017
  end-page: 590
  article-title: Embracing the unknown: disentangling the complexities of the soil microbiome
  publication-title: Nature Reviews Microbiology
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Applied and Environmental Microbiology
– volume: 18
  start-page: 85
  year: 2015
  end-page: 95
  article-title: Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide
  publication-title: Ecology Letters
– year: 2015
– volume: 20
  start-page: 429
  year: 2011
  end-page: 438
  article-title: Nitrogen deposition mediates the effects and importance of chance in changing biodiversity
  publication-title: Molecular Ecology
– volume: 22
  start-page: 563
  year: 2019
  end-page: 571
  article-title: Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities
  publication-title: Ecology Letters
– volume: 42
  start-page: 896
  year: 2010
  end-page: 903
  article-title: Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil
  publication-title: Soil Biology & Biochemistry
– volume: 22
  start-page: 1
  year: 2007
  end-page: 19
  article-title: The ecodist package for dissimilarity‐based analysis of ecological data
  publication-title: Journal of Statistical Software
– volume: 6
  year: 2017
  article-title: Lotka‐Volterra pairwise modeling fails to capture diverse pairwise microbial interactions
  publication-title: eLife
– volume: 95
  start-page: 6578
  year: 1998
  end-page: 6583
  article-title: Prokaryotes: the unseen majority
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 186
  start-page: 452
  year: 2015
  end-page: 459
  article-title: Diversity increases indirect interactions, attenuates the intensity of competition, and promotes coexistence
  publication-title: American Naturalist
– volume: 417
  start-page: 844
  year: 2002
  end-page: 848
  article-title: Positive interactions among alpine plants increase with stress
  publication-title: Nature
– volume: 6
  start-page: 1621
  year: 2012
  end-page: 1624
  article-title: Ultra‐high‐throughput microbial community analysis on the Illumina HiSeq and MiSeq platformsOpen
  publication-title: ISME Journal
– volume: 292
  start-page: 25
  year: 2017
  end-page: 33
  article-title: Differential responses of soil bacterial communities to long‐term N and P inputs in a semi‐arid steppe
  publication-title: Geoderma
– volume: 7
  year: 2016
  article-title: The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification
  publication-title: Frontiers in Microbiology
– volume: 112
  start-page: 10967
  year: 2015
  end-page: 10972
  article-title: Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 546
  start-page: 56
  year: 2017
  end-page: 64
  article-title: Beyond pairwise mechanisms of species coexistence in complex communities
  publication-title: Nature
– volume: 105
  start-page: 17842
  year: 2008
  end-page: 17847
  article-title: Environmental and anthropogenic controls over bacterial communities in wetland soils
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 3
  start-page: 69
  year: 1992
  end-page: 78
  article-title: Study of spatial components of forest cover using partial Mantel tests and path analysis
  publication-title: Journal of Vegetation Science
– volume: 10
  start-page: 538
  year: 2012
  end-page: 550
  article-title: Microbial interactions: from networks to models
  publication-title: Nature Reviews Microbiology
– volume: 102
  start-page: 4387
  year: 2005
  end-page: 4392
  article-title: Functional‐ and abundance‐based mechanisms explain diversity loss due to N fertilization
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 24
  start-page: 1483
  year: 2012
  end-page: 1491
  article-title: Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland
  publication-title: Journal of Environmental Sciences
– volume: 26
  start-page: 5500
  year: 2017
  end-page: 5514
  article-title: Response to nitrogen addition reveals metabolic and ecological strategies of soil bacteria
  publication-title: Molecular Ecology
– volume: 92
  start-page: 41
  year: 2016
  end-page: 49
  article-title: Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition
  publication-title: Soil Biology and Biochemistry
– volume: 98
  start-page: 555
  year: 2017
  end-page: 564
  article-title: Low abundant soil bacteria can be metabolically versatile and fast growing
  publication-title: Ecology
– volume: 16
  start-page: 358
  year: 2010
  end-page: 372
  article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands
  publication-title: Global Change Biology
– volume: 9
  start-page: 1481
  year: 2015
  end-page: 1487
  article-title: The physiology and ecological implications of efficient growth
  publication-title: ISME Journal
– volume: 304
  start-page: 1629
  year: 2004
  end-page: 1633
  article-title: Ecological linkages between aboveground and belowground biota
  publication-title: Science
– volume: 1
  start-page: 25
  year: 2010
  end-page: 37
  article-title: A new method for detecting and interpreting biodiversity and ecological community thresholds
  publication-title: Methods in Ecology and Evolution
– volume: 7
  start-page: 1493
  year: 2013
  end-page: 1506
  article-title: A meta‐analysis of changes in bacterial and archaeal communities with time
  publication-title: ISME Journal
– volume: 328
  start-page: 1164
  year: 2010
  end-page: 1168
  article-title: Global biodiversity: indicators of recent declines
  publication-title: Science
– volume: 87
  start-page: 403
  year: 2013
  end-page: 415
  article-title: Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm
  publication-title: FEMS Microbiology Ecology
– year: 2006
– volume: 20
  start-page: 1295
  year: 2017
  end-page: 1305
  article-title: Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe
  publication-title: Ecology Letters
– volume: 6
  start-page: 1007
  year: 2012
  end-page: 1017
  article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients
  publication-title: ISME Journal
– volume: 9
  start-page: 683
  year: 2006
  end-page: 693
  article-title: Multivariate dispersion as a measure of beta diversity
  publication-title: Ecology Letters
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  article-title: QIIME allows analysis of high‐throughput community sequencing data
  publication-title: Nature Methods
– volume: 71
  start-page: 974
  year: 2016
  end-page: 989
  article-title: Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community Variation
  publication-title: Microbial Ecology
– volume: 3
  start-page: 417
  year: 2012
  article-title: Fundamentals of microbial community resistance and resilience
  publication-title: Frontiers in Microbiology
– volume: 81
  start-page: 1
  year: 2002
  end-page: 4
  article-title: Effects of above‐ground plant species composition and diversity on the diversity of soil‐borne micro‐organisms
  publication-title: Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nature Methods
– year: 2013
– ident: e_1_2_7_25_1
  doi: 10.1038/nrmicro2832
– ident: e_1_2_7_59_1
  doi: 10.1126/science.1225244
– ident: e_1_2_7_60_1
  doi: 10.3389/fmicb.2012.00417
– ident: e_1_2_7_7_1
  doi: 10.1111/1574-6941.12231
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1461-0248.2006.00926.x
– ident: e_1_2_7_19_1
  doi: 10.1899/09-148.1
– ident: e_1_2_7_68_1
  doi: 10.1126/science.1094875
– ident: e_1_2_7_46_1
  doi: 10.1093/bioinformatics/btr507
– ident: e_1_2_7_75_1
  doi: 10.1111/j.1365-294X.2010.04933.x
– ident: e_1_2_7_37_1
  doi: 10.1002/ecy.1670
– ident: e_1_2_7_47_1
  doi: 10.1038/ismej.2011.139
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.0507535103
– ident: e_1_2_7_40_1
  doi: 10.2307/3236000
– ident: e_1_2_7_77_1
  doi: 10.1038/ncomms12083
– ident: e_1_2_7_23_1
  doi: 10.1016/j.soilbio.2010.02.003
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365-2486.2012.02639.x
– ident: e_1_2_7_53_1
  doi: 10.1890/10-0426.1
– ident: e_1_2_7_34_1
  doi: 10.1002/bies.1091
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.1508382112
– ident: e_1_2_7_17_1
  doi: 10.1111/ele.12826
– ident: e_1_2_7_15_1
  doi: 10.1126/science.aad2602
– ident: e_1_2_7_57_1
  doi: 10.1038/ismej.2010.58
– ident: e_1_2_7_42_1
  doi: 10.1038/nature22898
– ident: e_1_2_7_73_1
  doi: 10.1016/j.soilbio.2015.09.018
– ident: e_1_2_7_61_1
  doi: 10.1038/ismej.2013.54
– ident: e_1_2_7_44_1
  doi: 10.1016/j.geoderma.2017.01.013
– ident: e_1_2_7_20_1
  doi: 10.1093/bioinformatics/btq461
– volume-title: Structural equation modeling with EQS: Basic concepts, applications, and programming
  year: 2006
  ident: e_1_2_7_10_1
– ident: e_1_2_7_16_1
  doi: 10.1038/ismej.2009.16
– ident: e_1_2_7_65_1
  doi: 10.1073/pnas.0408648102
– ident: e_1_2_7_70_1
  doi: 10.1038/ismej.2017.135
– ident: e_1_2_7_39_1
  doi: 10.1128/AEM.00335-09
– ident: e_1_2_7_29_1
  doi: 10.1007/s10533-004-0370-0
– ident: e_1_2_7_45_1
  doi: 10.1016/j.geoderma.2018.07.008
– ident: e_1_2_7_56_1
  doi: 10.1038/nmicrobiol.2016.160
– ident: e_1_2_7_13_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-2486.2009.01950.x
– ident: e_1_2_7_71_1
  doi: 10.1016/j.soilbio.2014.09.009
– ident: e_1_2_7_31_1
  doi: 10.1073/pnas.0808254105
– ident: e_1_2_7_48_1
  doi: 10.7554/eLife.25051
– ident: e_1_2_7_49_1
  doi: 10.1016/j.scitotenv.2017.12.142
– ident: e_1_2_7_14_1
  doi: 10.1038/ismej.2012.8
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1461-0248.2011.01599.x
– ident: e_1_2_7_32_1
  doi: 10.1371/journal.pbio.1002540
– ident: e_1_2_7_58_1
  doi: 10.1111/mec.14275
– ident: e_1_2_7_69_1
  doi: 10.1073/pnas.95.12.6578
– ident: e_1_2_7_26_1
  doi: 10.1038/nrmicro.2017.87
– ident: e_1_2_7_55_1
  doi: 10.1038/ismej.2014.235
– ident: e_1_2_7_35_1
  doi: 10.1046/j.0269-8463.2001.00551.x
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.1217382110
– ident: e_1_2_7_63_1
  doi: 10.1126/science.1094678
– ident: e_1_2_7_64_1
  doi: 10.1093/nar/gku1201
– ident: e_1_2_7_3_1
  doi: 10.1086/682901
– ident: e_1_2_7_62_1
  doi: 10.1249/00005768-199010000-00021
– ident: e_1_2_7_76_1
  doi: 10.1111/ele.13212
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2015
  ident: e_1_2_7_54_1
– ident: e_1_2_7_74_1
  doi: 10.1016/S1001-0742(11)60900-5
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1187512
– ident: e_1_2_7_22_1
  doi: 10.1007/BF02568729
– ident: e_1_2_7_33_1
  doi: 10.1073/pnas.1310880110
– ident: e_1_2_7_21_1
  doi: 10.1038/nmeth.2604
– ident: e_1_2_7_28_1
  doi: 10.1038/ismej.2011.159
– ident: e_1_2_7_5_1
  doi: 10.1038/ncomms12285
– ident: e_1_2_7_8_1
  doi: 10.1016/0169-5347(94)90088-4
– ident: e_1_2_7_6_1
  doi: 10.1111/j.2041-210X.2009.00007.x
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1462-2920.2010.02189.x
– ident: e_1_2_7_30_1
  doi: 10.18637/jss.v022.i07
– ident: e_1_2_7_38_1
  doi: 10.1038/ncomms7707
– ident: e_1_2_7_66_1
  doi: 10.1016/j.soilbio.2018.02.003
– ident: e_1_2_7_72_1
  doi: 10.3389/fmicb.2016.01955
– ident: e_1_2_7_43_1
  doi: 10.1007/s00248-016-0730-z
– ident: e_1_2_7_50_1
– ident: e_1_2_7_51_1
  doi: 10.1111/ele.12381
– ident: e_1_2_7_36_1
  doi: 10.1023/A:1020565523615
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1469-8137.1976.tb01532.x
– ident: e_1_2_7_67_1
  doi: 10.1128/AEM.00062-07
SSID ssj0000148
Score 2.6586478
SecondaryResourceType review_article
Snippet Soil bacterial communities are pivotal in regulating terrestrial biogeochemical cycles and ecosystem functions. The increase in global nitrogen (N) deposition...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms acidification
Bacteria
bacterial community composition
bacterial diversity
Biogeochemical cycles
China
Community composition
Community structure
Composition
Ecological function
Ecosystem
eutrophication
genes
life history
meta-analysis
Nitrogen
Nitrogen - analysis
Nitrogen enrichment
Nonlinear response
pH effects
Plant communities
Plant diversity
RNA, Ribosomal, 16S - genetics
rRNA 16S
Soil
Soil bacteria
Soil chemistry
Soil erosion
Soil Microbiology
Soil microorganisms
Soil pH
Soil structure
Soils
species diversity
Steppes
Terrestrial ecosystems
threshold
Title Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment
URI https://www.jstor.org/stable/26936976
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fecy.3053
https://www.ncbi.nlm.nih.gov/pubmed/32242918
https://www.proquest.com/docview/2429766620
https://www.proquest.com/docview/2386281756
https://www.proquest.com/docview/2524325367
Volume 101
WOSCitedRecordID wos000548386700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-9170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000148
  issn: 0012-9658
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLUhceC8slMpICE6hiZ3YzhG1u-JQVQhRaTmFxI-yUpWgzRZp_z0ziZNSqVSVeoojj2PHnlfi8TcA7yupCKVLRmhd8yh1PolykanICvx6ljxPhOtAXI_VyYleLvOvIaqSzsL0-BDjDzeSjE5fk4CXVXtwCRrqzPYTMqvYgV2ObJtNYPfo2-L0-B_wqDToYR4RxMkAPRvzg6HtFWPUxyNe52ledVw7y7N4fJcxP4FHwd9kn3sGeQr3XP0MHvQZKLdYmptQms4vj7xhgyDz7XP4OWRDYBuya12IF2s8a5vVOat6sGestEOABytryyhSPYSDYbPV2RmlBGXVlqEGWTfItAz5dmV-UW8v4HQx_374JQp5GSJDwKYRN75KTFJaJ4TNRawrbWKf-Iw2LW1akf7M0PaqTGqd4n1JwHDouCjrFBelmMKkbmr3CpjynjzKJPZOp9Z7bWOLLpyNjbeOp3oGH4cFKkwALafcGedFD7fMC5zSgqZ0Bu9Gyt89UMc1NNNujUcCLimfoZIz2BsWvQgy3BbovGCVlDzGZ4_VKH20pVLWrrlAGoFfhBpdMHkDTcZTwTMh1Qxe9gw1DgDVKfaS4Ht-6Pjmv0Mv5oc_6Pr6toRv4CGnXwNdrOIeTDbrC_cW7ps_m1W73ocdtdT7QWL-Av0yFv0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qq-iL36enVVcQfYpNdpPdDT5JvaPieYi0UJ_SZD_qQUnk7ircf-9MskktVBF8SsLOJpvsbz6ymfwG4FUlFbF0yQi9ax6lzidRLjIVWYFvz5LniXAtietMzef6-Dj_sgXv-n9hOn6IYcGNNKO116TgtCC9d8Ea6szmLaJVXIOdFFGE8N758HV6NPuNPSoNhphHxHHSc8_GfK_ve8kbdQmJV4WalyPX1vVM7_zXoO_C7RBxsvcdRO7Blqvvw42uBuUG9yYm7I0mFz-9YYeg9asHcNLXQ2Br8mxtkhdrPFs1izNWdXTP2Gj7FA9W1pZRrnpICMNui9NTKgrKqg1DG7JsELYMkbsw3-lqD-FoOjncP4hCZYbIELVpxI2vEpOU1glhcxHrSpvYJz6jz5Y2rciCZuh9VSa1TvG4JGo4DF2UdYqLUoxgu25q9xiY8p5iyiT2TqfWe21ji0GcjY23jqd6DG_6GSpMoC2n6hlnRUe4zAt8pAU90jG8HCR_dFQdV8iM2kkeBLikioZKjmG3n_UiaPGqwPAFm6TkMZ57aEb9o48qZe2ac5RB5HGNQZj8i0zGU8EzIdUYHnWIGgaABhWvkuB9vm6B88ehF5P9b7R98q-CL-DmweHnWTH7OP_0FG5xWihoMxd3YXu9PHfP4Lr5uV6sls-D4vwCFCAaBQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDtBe-C4rG2AkBE_ZEjuxHe1p2lqBqKoJMWk8hcQfo9KUTG2H1P-eu3xtkwZC4imOfI4d-74Sn38H8L6QilC6ZIDWNQ1i56MgFYkKrMCvZ8nTSLgaxHWqZjN9dpaebMBBdxamwYfof7iRZNT6mgTcXVq_f40a6sx6D7lV3IPNmHLIDGDz-OvkdHoDPSpuFTEPCOOkw54N-X7X9pY1agIS73I1b3uutemZPP6vQT-BR63HyQ4bFnkKG658Bg-aHJRrLI1NWxqOrw-9YYNW6pfP4UeXD4GtyLLVQV6s8mxZzS9Y0cA9Y6XtQjxYXlpGseptQBg2m5-fU1JQVqwZ6pBFhWzLkHPn5if19gJOJ-NvR5-CNjNDYAjaNODGF5GJcuuEsKkIdaFN6COf0LaljQvSoAlaX5VIrWO8zwkaDl0XZZ3iIhdDGJRV6baBKe_Jp4xC73Rsvdc2tOjE2dB463isR_CxW6HMtLDllD3jImsAl3mGU5rRlI7gXU952UB13EEzrBe5J-CSMhoqOYLdbtWzVoqXGbovWCUlD_HZfTXKH22q5KWrrpBG4DehRidM_oUm4bHgiZBqBC8bjuoHgAoVe4nwPT_UjPPHoWfjo-90ffWvhG_h4cnxJJt-nn3ZgS1O_wnqwMVdGKwWV-413De_VvPl4k0rN78BeRgZgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+transition+of+soil+bacterial+diversity+and+composition+triggered+by+nitrogen+enrichment&rft.jtitle=Ecology+%28Durham%29&rft.au=Liu%2C+Weixing&rft.au=Jiang%2C+Lin&rft.au=Sen%2C+Yang&rft.au=Wang%2C+Zhou&rft.date=2020-08-01&rft.pub=Ecological+Society+of+America&rft.issn=0012-9658&rft.eissn=1939-9170&rft.volume=101&rft.issue=8&rft_id=info:doi/10.1002%2Fecy.3053&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-9658&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-9658&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-9658&client=summon