AppFusion: Interactive Appearance Acquisition Using a Kinect Sensor

We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 34; no. 6; pp. 289 - 298
Main Authors: Wu, Hongzhi, Zhou, Kun
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.09.2015
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously. Next, the diffuse albedo and specular intensity of the spatially varying materials are rapidly computed in an inverse rendering framework, using data from the Kinect RGB camera. We demonstrate captured results of a range of materials, and physically validate our system. We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously.
Bibliography:ark:/67375/WNG-S8ZSM555-C
Video S1
istex:398CE3BE06BDB1B06960BC0F2F8502C4BD1D49DC
ArticleID:CGF12600
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12600