Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 199...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of geophysical research. Space physics Ročník 118; číslo 10; s. 6197 - 6211
Hlavní autori: Tu, Weichao, Cunningham, G. S., Chen, Y., Henderson, M. G., Camporeale, E., Reeves, G. D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, NJ Blackwell Publishing Ltd 01.10.2013
Wiley
Predmet:
ISSN:2169-9380, 2169-9402
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle‐momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower‐band, and upper‐band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data‐driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data‐driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. Key Points The model captures both electron enhancements and fast dropouts. RD+hiss is sufficient for quiet times; chorus is required for active times. Sensitivity studies prove the importance of realistic DLL and wave models.
AbstractList As a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax=5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax=5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. Key Points The model captures both electron enhancements and fast dropouts. RD+hiss is sufficient for quiet times; chorus is required for active times. Sensitivity studies prove the importance of realistic DLL and wave models.
As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle‐momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower‐band, and upper‐band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data‐driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data‐driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. Key Points The model captures both electron enhancements and fast dropouts. RD+hiss is sufficient for quiet times; chorus is required for active times. Sensitivity studies prove the importance of realistic DLL and wave models.
As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle‐momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower‐band, and upper‐band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data‐driven boundary condition at L max  = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at L max  = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data‐driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. The model captures both electron enhancements and fast dropouts. RD+hiss is sufficient for quiet times; chorus is required for active times. Sensitivity studies prove the importance of realistic DLL and wave models.
As a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at L sub(max)=5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at L sub(max)=5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. Key Points * The model captures both electron enhancements and fast dropouts. * RD+hiss is sufficient for quiet times; chorus is required for active times. * Sensitivity studies prove the importance of realistic DLL and wave models.
Author Camporeale, E.
Tu, Weichao
Reeves, G. D.
Henderson, M. G.
Cunningham, G. S.
Chen, Y.
Author_xml – sequence: 1
  givenname: Weichao
  surname: Tu
  fullname: Tu, Weichao
  email: wtu@lanl.gov
  organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA
– sequence: 2
  givenname: G. S.
  surname: Cunningham
  fullname: Cunningham, G. S.
  organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA
– sequence: 3
  givenname: Y.
  surname: Chen
  fullname: Chen, Y.
  organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA
– sequence: 4
  givenname: M. G.
  surname: Henderson
  fullname: Henderson, M. G.
  organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA
– sequence: 5
  givenname: E.
  surname: Camporeale
  fullname: Camporeale, E.
  organization: Applied Mathematics and Plasma Physics Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA
– sequence: 6
  givenname: G. D.
  surname: Reeves
  fullname: Reeves, G. D.
  organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27977755$$DView record in Pascal Francis
BookMark eNp90V1vFCEUBmBiamKtvfEXkBgTYzKVjwGGy0133apdNU2Nl4RhmF0qy1RgbPffy3TbXjTGKyB53sOB8xIchCFYAF5jdIIRIh-u1lGfMMQ4egYOCeaykjUiBw972qAX4Dgl1yLCa0wwk4fArYbOehfWMOrO6eyGAFvrM7TemhzLqdsFvXUmwW6Mk1suVtBstPc2rC10Idv4R_sEb1zewLyxcH6xmK3oHHau78c0FdxOd7wCz_vi7PH9egR-fFxcnp5V59-Wn05n55WpS4eVpgS13HDLJee0oxwRZpquoaatrWZYSmR70nPWc8G1IFjUrezLO1Hd4EZ29Ai829e9jsPv0aasti4Z670OdhiTwhxjThmrZaFvntCrYYyhdFcUbYigDDdFvb1XOhnt-6iDcUldR7fVcaeIkEIIxop7v3cmDilF2z8SjNQ0IDUNSN0NqGD0BBuX774_R-38vyN4H7lx3u7-U1x9Xl7MHjLVPuNStrePGR1_KS6oYOrn16X6wsmlQN_nStK_NtCx6Q
CitedBy_id crossref_primary_10_1029_2021SW002808
crossref_primary_10_1029_2024JA032544
crossref_primary_10_1002_2016GL069749
crossref_primary_10_1002_2017JA024452
crossref_primary_10_1029_2018SW002061
crossref_primary_10_1002_2016GL069982
crossref_primary_10_1029_2024GL110362
crossref_primary_10_1002_2014JA020781
crossref_primary_10_1029_2019JA026786
crossref_primary_10_1029_2022SW003079
crossref_primary_10_1002_2014JA020422
crossref_primary_10_1002_2015JA022064
crossref_primary_10_1007_s11214_020_0642_6
crossref_primary_10_1029_2025JA034116
crossref_primary_10_1002_2016JA023634
crossref_primary_10_1029_2023GL106359
crossref_primary_10_1029_2022JA030603
crossref_primary_10_1002_2014JA020419
crossref_primary_10_1029_2018JA026414
crossref_primary_10_1029_2022JA030331
crossref_primary_10_1029_2023JA032249
crossref_primary_10_1002_2015GL065230
crossref_primary_10_1029_2021JA029569
crossref_primary_10_1029_2023JA031955
crossref_primary_10_1029_2024GL113502
crossref_primary_10_1051_swsc_2024021
crossref_primary_10_1002_2015JA021003
crossref_primary_10_1029_2018GL081146
crossref_primary_10_1029_2022SW003124
crossref_primary_10_5194_angeo_31_1929_2013
crossref_primary_10_1029_2018JA026392
crossref_primary_10_1002_2017JA024519
crossref_primary_10_1002_2016JA023846
crossref_primary_10_1029_2020JA028850
crossref_primary_10_1029_2020JA028972
crossref_primary_10_1002_2015GL067481
crossref_primary_10_1002_2014JA019864
crossref_primary_10_1029_2024JA032919
crossref_primary_10_1002_2014JA020449
crossref_primary_10_1002_2015JA022207
crossref_primary_10_3389_fspas_2023_1168636
crossref_primary_10_1029_2024JH000566
crossref_primary_10_1134_S0038094624700357
crossref_primary_10_1029_2019JA027618
crossref_primary_10_1029_2021SW002823
crossref_primary_10_1007_s10509_020_03819_0
crossref_primary_10_1029_2023GL103342
crossref_primary_10_1029_2024JA033584
crossref_primary_10_1029_2022JA030827
crossref_primary_10_1002_2017SW001669
crossref_primary_10_11728_cjss2021_05_715
crossref_primary_10_3389_fphy_2024_1334531
crossref_primary_10_3389_fspas_2023_1200485
crossref_primary_10_1029_2018GL078564
crossref_primary_10_1029_2021JA030214
crossref_primary_10_1002_2014JA020158
crossref_primary_10_1002_2015JA021981
crossref_primary_10_1002_2015JA021460
crossref_primary_10_1002_2016JA023149
crossref_primary_10_1029_2020JA028879
crossref_primary_10_1002_2016JA022618
crossref_primary_10_1029_2023JA032286
crossref_primary_10_1002_2017JA024139
crossref_primary_10_1002_2017JA024931
crossref_primary_10_1002_2013GL058712
crossref_primary_10_1029_2022GL101402
crossref_primary_10_1002_2014JA020900
crossref_primary_10_1002_2016SW001494
crossref_primary_10_1029_2019GL083032
crossref_primary_10_1029_2025JA033965
crossref_primary_10_3389_fspas_2024_1332931
crossref_primary_10_1002_2017GL076382
crossref_primary_10_1007_s11430_024_1484_4
crossref_primary_10_1016_j_asr_2024_05_017
crossref_primary_10_1029_2022EA002216
crossref_primary_10_1029_2022SW003051
crossref_primary_10_1002_2017JA024143
crossref_primary_10_1002_2017JA025114
crossref_primary_10_1029_2020JA028987
crossref_primary_10_1002_2017JA024389
crossref_primary_10_1002_2016JA022507
crossref_primary_10_1051_swsc_2017027
crossref_primary_10_1002_2016SW001426
crossref_primary_10_1002_2014JA020217
crossref_primary_10_1029_2024JA032905
crossref_primary_10_1029_2022GL102106
crossref_primary_10_1029_2022JA030377
crossref_primary_10_1029_2022GL101096
crossref_primary_10_1002_2016JA022470
crossref_primary_10_3389_fspas_2024_1385472
crossref_primary_10_1002_2016JA023002
crossref_primary_10_1002_2017JA023868
crossref_primary_10_1029_2025JA033991
crossref_primary_10_1002_2014JA020808
crossref_primary_10_1002_2014JA019935
crossref_primary_10_1002_2017JA024159
crossref_primary_10_1016_j_jastp_2017_08_008
crossref_primary_10_1002_2017JA024163
crossref_primary_10_1002_2016JA023093
crossref_primary_10_1002_2013GL058819
crossref_primary_10_1002_2013JA019320
crossref_primary_10_1002_2016JA023372
crossref_primary_10_1002_2014JA020127
crossref_primary_10_1029_2019GL082681
crossref_primary_10_1002_2017JA024328
crossref_primary_10_3389_fspas_2023_1096595
crossref_primary_10_1029_2018SW001981
crossref_primary_10_1002_2016GL068869
crossref_primary_10_3389_fspas_2022_1004634
crossref_primary_10_1029_2024EA004138
crossref_primary_10_1029_2018JA026401
crossref_primary_10_1002_2015GL063874
crossref_primary_10_1002_2017JA024843
crossref_primary_10_1002_2014JA020637
crossref_primary_10_1029_2022JA030751
crossref_primary_10_1029_2018JA025786
crossref_primary_10_1029_2020SW002532
crossref_primary_10_1002_2016GL071987
crossref_primary_10_1002_2016SW001484
crossref_primary_10_1002_2015GL063906
crossref_primary_10_1029_2019JA026735
crossref_primary_10_1029_2019GL082395
Cites_doi 10.1029/91JA01548
10.1007/978-3-642-49300-3
10.1029/2008JA013480
10.1029/RG002i003p00415
10.1029/2011GL046787
10.1029/98GL01002
10.1029/2012JA017718
10.1029/2005GL024256
10.1029/98JA01740
10.1029/2012JA017901
10.1029/2007JA012936
10.1007/978-3-642-65675-0
10.1029/2003GL018621
10.1007/s11214‐012‐9953‐6
10.1029/2009JA014980
10.1029/2007JA012558
10.1029/97JA01305
10.1063/1.1761629
10.1029/2011JA016684
10.1029/2012JA017931
10.1063/1.1692186
10.1029/2011JA016672
10.1029/2002JA009489
10.1007/978-94-010-0983-6_11
10.1029/2004JA010811
10.1029/97JA01101
10.1029/2011JA017035
10.1029/JA077i019p03455
10.1029/2004JA010387
10.1029/2005JA011351
10.1029/2011SW000729
10.1029/2007GL030267
10.1002/jgra.50293
10.1029/2001JA900146
10.1029/2011GL046873
10.1029/2011JA016862
10.1029/2011JA017019
10.2514/3.25504
10.1029/2005JA011017
10.1029/2012JA017591
10.1029/2011JA017463
10.1029/2000JA000286
10.1029/1999JA900445
10.1063/1.1705940
10.1029/2003GL017698
10.1029/2010JA016372
10.1029/1999JA900344
10.1029/2009JA014807
10.1017/S002237780002537X
10.1029/2009JA014949
10.1029/2003SW000017
10.5194/angeo-23-1467-2005
10.1029/2009JA014336
10.1063/1.3638137
10.1029/2011JA017460
10.1029/97JA02919
10.1029/2002JA009792
10.1016/j.jastp.2013.04.007
10.1029/2005JA011452
10.1029/2001JA009202
10.1029/JA078i013p02142
10.1016/S0273-1177(99)00518-9
10.1029/2007JA012551
10.1016/j.jastp.2007.08.031
10.1029/2005JA011159
10.1029/2004JA010882
10.1016/0032-0633(89)90066-4
10.1029/2007JA012413
10.1017/S0022377800024910
10.1029/2006GL029050
10.1029/2009GL037595
10.1029/2002GL016513
10.1029/2007JA012368
10.1029/2009JA014409
ContentType Journal Article
Copyright 2013. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright_xml – notice: 2013. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7TG
8FD
H8D
KL.
L7M
DOI 10.1002/jgra.50560
DatabaseName Istex
CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2169-9402
EndPage 6211
ExternalDocumentID 3531818851
27977755
10_1002_jgra_50560
JGRA50560
ark_67375_WNG_K62T70PD_9
Genre article
GroupedDBID 05W
0R~
1OC
31~
33P
50Y
52M
702
8-1
88I
8FE
8FG
8FH
AAESR
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEUYN
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARAPS
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
D0L
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
~OA
1OB
24P
3V.
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
WYJ
AAYXX
CITATION
IQODW
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c4380-a320b6c6e69663d36025c8d83cb4ea51990ef2f65f676a72174b9f402048189d3
IEDL.DBID DRFUL
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330180600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-9380
IngestDate Thu Oct 02 16:54:52 EDT 2025
Sat Jul 26 00:57:40 EDT 2025
Wed Apr 02 07:25:23 EDT 2025
Sat Nov 29 05:37:33 EST 2025
Tue Nov 18 22:38:36 EST 2025
Wed Jan 22 16:51:23 EST 2025
Tue Nov 11 03:33:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Particle motion
Radiation belt
Pitch angle
CRRES satellite
Plasmasphere
Electron loss
Phase space density
Modeling
Statistical data
dynamics
three-dimensional models
Radial diffusion
electron density
Diffusion coefficient
Diffusion
boundary conditions
performances
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4380-a320b6c6e69663d36025c8d83cb4ea51990ef2f65f676a72174b9f402048189d3
Notes ark:/67375/WNG-K62T70PD-9
istex:2060491C5E34E7CF4C78A1F1193CA64023CE476A
ArticleID:JGRA50560
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://ir.cwi.nl/pub/26519
PQID 1638273518
PQPubID 54732
PageCount 15
ParticipantIDs proquest_miscellaneous_1611635549
proquest_journals_1638273518
pascalfrancis_primary_27977755
crossref_primary_10_1002_jgra_50560
crossref_citationtrail_10_1002_jgra_50560
wiley_primary_10_1002_jgra_50560_JGRA50560
istex_primary_ark_67375_WNG_K62T70PD_9
PublicationCentury 2000
PublicationDate October 2013
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: October 2013
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: Washington
PublicationTitle Journal of geophysical research. Space physics
PublicationTitleAlternate J. Geophys. Res. Space Physics
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Selesnick, R. S., and J. B. Blake (2000), On the source location of radiation belt relativistic electrons, J. Geophys. Res., 105(A2), 2607-2624, doi:10.1029/1999JA900445.
Meredith, N. P., R. B. Horne, R. M. Thorne, and R. R. Anderson (2003), Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt, Geophys. Res. Lett., 30(16), 1871, doi:10.1029/2003GL017698.
Subbotin, D. A., Y. Y. Shprits, and B. Ni (2011), Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations, J. Geophys. Res., 116, A12210, doi:10.1029/2011JA017019.
Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res., 105, 291-309, doi:10.1029/1999JA900344.
Lyons, L. R. (1974a), General relations for resonant particle diffusion in pitch angle and energy, J. Plasma Phys., 12, 45-49.
Bortnik, J., L. Chen, W. Li, R. M. Thorne, N. P. Meredith, and R. B. Horne (2011), Modeling the wave power distribution and characteristics of plasmaspheric hiss, J. Geophys. Res., 116, A12209, doi:10.1029/2011JA016862.
Horne, R. B., and R. M. Thorne (1998), Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms, Geophys. Res. Lett., 25(15), 3011-3014, doi:10.1029/98GL01002.
Orlova, K. G., Y. Y. Shprits, and B. Ni (2012), Bounce-averaged diffusion coefficients due to resonant interaction of the outer radiation belt electrons with oblique chorus waves computed in a realistic magnetic field model, J. Geophys. Res., 117, A07209, doi:10.1029/2012JA017591.
Shprits, Y. Y., R. M. Thorne, G. D. Reeves, and R. Friedel (2005), Radial diffusion modeling with empirical lifetimes: Comparison with CRRES observations, Ann. Geophys., 23, 1467-1471.
Reeves, G. D., Y. Chen, G. S. Cunningham, R. W. H. Friedel, M. G. Henderson, V. K. Jordanova, J. Koller, S. K. Morley, M. F. Thomsen, and S. Zaharia (2012), Dynamic Radiation Environment Assimilation Model: DREAM, Space Weather, 10, S03006, doi:10.1029/2011SW000729.
Lerche, I. (1968), Quasilinear theory of resonant diffusion in a magneto-active relativistic plasma, Phys. Fluids, 11, 1720.
Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson (2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, doi:10.1029/2004JA010811.
Fraser, B. J., and T. S. Nguyen (2001), Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere?, J. Atmos. Sol. Terr. Phys., 63(1225), 2001.
Shprits, Y. Y., R. M. Thorne, R. B. Horne, S. A. Glauert, M. Cartwright, C. T. Russell, D. N. Baker, and S. G. Kanekal (2006), Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm, Geophys. Res. Lett., 33, L05104, doi:10.1029/2005GL024256.
Roederer, J. G. (1970), Dynamics of Geomagnetically Trapped Radiation, Springer, New York.
Summers, D. (2005), Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere, J. Geophys. Res., 110, A08213, doi:10.1029/2005JA011159.
Summers, D., R. M. Thorne, and F. L. Xiao (1998), Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103(A9), 20,487-20, 500.
Vampola, A., J. Osborn, and B. Johnson (1992), CRRES magnetic electron spectrometer AFGL-701-5A (MEA), J. Spacecr. Rockets, 29(4), 592-595, doi:10.2514/3.25504.
Chu, F., M. K. Hudson, P. Haines, and Y. Shprits (2010), Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection, J. Geophys. Res., 115, A03210, doi:10.1029/2009JA014409.
Lyons, L. R., R. M. Thorne, and C. F. Kennel (1972), Pitch-angle diffusion of radiation belt electrons within the plasmasphere, J. Geophys. Res., 77(19), 3455-3474, doi:10.1029/JA077i019p03455.
Sheeley, B., M. Moldwin, H. Rassoul, and R. Anderson (2001), An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25,631-25,641, doi:10.1029/2000JA000286.
Li, W., Y. Y. Shprits, and R. M. Thorne (2007), Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms, J. Geophys. Res., 112, A10220, doi:10.1029/2007JA012368.
Tu, W., S. R. Elkington, X. Li, W. Liu, and J. Bonnell (2012), Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements, J. Geophys. Res., 117, A10210, doi:10.1029/2012JA017901.
Abel, B., and R. M. Thorne (1998), Electron scattering loss in Earth's inner magnetosphere 1. Dominant physical processes, J. Geophys. Res., 103(A2), 2385-2396.
Elkington, S. R., M. K. Hudson, and A. A. Chan (2003), Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108(A3), 1116, doi:10.1029/2001JA009202.
Li, X., D. Baker, M. Temerin, T. Cayton, E. Reeves, R. Christensen, J. Blake, M. Looper, R. Nakamura, and S. Kanekal (1997), Multisatellite observations of the outer zone electron variation during the November 3-4, 1993, magnetic storm, J. Geophys. Res., 102(A7), 14,123-14,140.
Lyons, L. R., and R. M. Thorne (1973), Equilibrium structure of radiation belt electrons, J. Geophys. Res., 78(13), 2142-2149, doi:10.1029/JA078i013p02142.
Tu, W., R. Selesnick, X. Li, and M. Looper (2010), Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX, J. Geophys. Res., 115, A07210, doi:10.1029/2009JA014949.
Baker, D. N., and S. Kanekal (2008), Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere, J. Atmos. Sol. Terr. Phys., 70(2-4), 195-206, doi:10.1016/j.jastp.2007.08.031.
Fok, M.-C., R. B. Horne, N. P. Meredith, and S. A. Glauert (2008), Radiation Belt Environment model: Application to space weather nowcasting, J. Geophys. Res., 113, A03S08, doi:10.1029/2007JA012558.
Kessel, R. L., N. J. Fox, and M. Weiss (2012), The Radiation Belt Storm Probes (RBSP) and Space Weather, Space Sci. Rev., doi:10.1007/s11214-012-9953-6.
Su, Z., H. Zheng, and S. Wang (2010), Three-dimensional simulation of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection, J. Geophys. Res., 115, A06203, doi:10.1029/2009JA014980.
Fu, H. S., J. B. Cao, B. Yang, and H. Y. Lu (2011), Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes, J. Geophys. Res., 116, A10210, doi:10.1029/2011JA016672.
O'Brien, T. P., M. D. Looper, and J. B. Blake (2004), Quantification of relativistic electron microburst losses during the GEM storms, Geophys. Res. Lett., 31, L04802, doi:10.1029/2003GL018621.
Tao, X., J. Bortnik, J. M. Albert, and R. M. Thorne (2012), Comparison of bounce-averaged quasi-linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations, J. Geophys. Res., 117, A10205, doi:10.1029/2012JA017931.
Liu, K., D. S. Lemons, D. Winske, and S. P. Gary (2010), Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations, J. Geophys. Res., 115, A04204, doi:10.1029/2009JA014807.
Carpenter, D. L., and R. R. Anderson (1992), An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097-1108, doi:10.1029/91JA01548.
Summers, D., and R. M. Thorne (2003), Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 108(A4), 1143, doi:10.1029/2002JA009489.
Tsyganenko, N. A. (1989), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5-20.
Tu, W., X. Li, Y. Chen, G. D. Reeves, and M. Temerin (2009), Storm-dependent radiation belt electron dynamics, J. Geophys. Res., 114, A02217, doi:10.1029/2008JA013480.
Miyoshi, Y. S., V. K. Jordanova, A. Morioka, M. F. Thomsen, G. D. Reeves, D. S. Evans, and J. C. Green (2006), Observations and modeling of energetic electron dynamics during the October 2001 storm, J. Geophys. Res., 111, A11S02, doi:10.1029/2005JA011351.
Schulz, M., and L. Lanzerotti (1974), Particle Diffusion in the Radiation Belts, Springer, New York.
Ukhorskiy, A. Y., K. Takahashi, B. J. Anderson, and H. Korth (2005), Impact of toroidal ULF waves on the outer radiation belt electrons, J. Geophys. Res., 110, A10202, doi:10.1029/2005JA011017.
Reeves, G. D., K. L. McAdams, R. H. W. Friedel, and T. P. O'Brien (2003), Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 30(10), 1529, doi:10.1029/2002GL016513.
Tao, X., J. Bortnik, J. M. Albert, K. Liu, and R. M. Thorne (2011), Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations, Geophys. Res. Lett., 38, L06105, doi:10.1029/2011GL046787.
Wentworth, R. C., W. M. MacDonald, and S. F. Singer (1959), Lifetimes of trapped radiation belt particles determined by Coulomb scattering, Phys. Fluids, 2, 499.
Bourdarie, S., D. Boscher, T. Beutier, J. A. Sauvaud, and M. Blanc (1997), Electron and proton radiation belt dynamic simulations during storm periods: A new asymmetric convection-diffusion model, J. Geophys. Res., 102(A8), 17,541-17,552.
Meredith, N. P., R. B. Horne, R. H. A. Iles, R. M. Thorne, D. Heynderikx, and R. R. Anderson (2002), Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus, J. Geophys. Res., 107(A7), 1144, doi:10.1029/2001JA900146.
Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2
2011; 116
1964; 2
1974a; 12
2013; 100–101
2005; 110
2000; 25
2012
1966; 9
1973; 78
2006; 33
1974b; 12
1974
1994
2004; 2
1970
1992; 97
2004; 109
2011; 38
2008; 70
1959; 2
2007; 34
2003; 30
2011; 18
2009; 114
2012; 10
2001; 63
2006; 111
2005; 23
1998; 25
2001; 106
1997; 102
2007; 112
2009; 36
2004; 31
2003; 108
2001
2000; 105
2010; 115
2013; 118
2002; 107
1992; 29
1998; 103
2008; 113
1989; 37
2012; 117
1972; 77
1968; 11
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
Fraser B. J. (e_1_2_8_20_1) 2001; 63
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – reference: Sheeley, B., M. Moldwin, H. Rassoul, and R. Anderson (2001), An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25,631-25,641, doi:10.1029/2000JA000286.
– reference: Li, W., Y. Y. Shprits, and R. M. Thorne (2007), Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms, J. Geophys. Res., 112, A10220, doi:10.1029/2007JA012368.
– reference: Li, X. (2004), Variations of 0.7-6.0 MeV electrons at geosynchronous orbit as a function of solar wind, Space Weather, 2, S03006, doi:10.1029/2003SW000017.
– reference: Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res., 105, 291-309, doi:10.1029/1999JA900344.
– reference: Tsyganenko, N. A. (1989), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5-20.
– reference: Tu, W., X. Li, Y. Chen, G. D. Reeves, and M. Temerin (2009), Storm-dependent radiation belt electron dynamics, J. Geophys. Res., 114, A02217, doi:10.1029/2008JA013480.
– reference: Fok, M.-C., R. B. Horne, N. P. Meredith, and S. A. Glauert (2008), Radiation Belt Environment model: Application to space weather nowcasting, J. Geophys. Res., 113, A03S08, doi:10.1029/2007JA012558.
– reference: Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.
– reference: Kennel, C. F., and F. Engelmann (1966), Velocity space diffusion from weak plasma turbulence in a magnetic field, Phys, Fluids, 9, 2377-2388.
– reference: Albert, J. M., N. P. Meredith, and R. B. Horne (2009), Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res., 114, A09214, doi:10.1029/2009JA014336.
– reference: Lyons, L. R. (1974a), General relations for resonant particle diffusion in pitch angle and energy, J. Plasma Phys., 12, 45-49.
– reference: Kim, K.-C., Y. Shprits, D. Subbotin, and B. Ni (2012), Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations, J. Geophys. Res., 117, A08221, doi:10.1029/2011JA017460.
– reference: Li, W., J. Bortnik, R. M. Thorne, and V. Angelopoulos (2011), Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations, J. Geophys. Res., 116, A12205, doi:10.1029/2011JA017035.
– reference: Bortnik, J., L. Chen, W. Li, R. M. Thorne, N. P. Meredith, and R. B. Horne (2011), Modeling the wave power distribution and characteristics of plasmaspheric hiss, J. Geophys. Res., 116, A12209, doi:10.1029/2011JA016862.
– reference: Summers, D. (2005), Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere, J. Geophys. Res., 110, A08213, doi:10.1029/2005JA011159.
– reference: Chu, F., M. K. Hudson, P. Haines, and Y. Shprits (2010), Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection, J. Geophys. Res., 115, A03210, doi:10.1029/2009JA014409.
– reference: Kim, K.-C., and Y. Shprit (2013), Long-term relativistic radiation belt electron responses to GEM magnetic storms, J. Atmos. Sol. Terr. Phys., 100-101, 59-67, doi:10.1016/j.jastp.2013.04.007.
– reference: Orlova, K. G., and Y. Y. Shprits (2011), On the bounce-averaged of scattering rates and the calculations of bounce period, Phys. Plasmas, 18, 092,904, doi:10.1063/1.3638137.
– reference: O'Brien, T. P., M. D. Looper, and J. B. Blake (2004), Quantification of relativistic electron microburst losses during the GEM storms, Geophys. Res. Lett., 31, L04802, doi:10.1029/2003GL018621.
– reference: Bourdarie, S., D. Boscher, T. Beutier, J. A. Sauvaud, and M. Blanc (1997), Electron and proton radiation belt dynamic simulations during storm periods: A new asymmetric convection-diffusion model, J. Geophys. Res., 102(A8), 17,541-17,552.
– reference: Lyons, L. R., and R. M. Thorne (1973), Equilibrium structure of radiation belt electrons, J. Geophys. Res., 78(13), 2142-2149, doi:10.1029/JA078i013p02142.
– reference: Meredith, N. P., R. B. Horne, S. A. Glauert, and R. R. Anderson (2007), Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers, J. Geophys. Res., 112, A08214, doi:10.1029/2007JA012413.
– reference: Baker, D. N., and S. Kanekal (2008), Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere, J. Atmos. Sol. Terr. Phys., 70(2-4), 195-206, doi:10.1016/j.jastp.2007.08.031.
– reference: Vampola, A., J. Osborn, and B. Johnson (1992), CRRES magnetic electron spectrometer AFGL-701-5A (MEA), J. Spacecr. Rockets, 29(4), 592-595, doi:10.2514/3.25504.
– reference: Elkington, S. R., M. K. Hudson, and A. A. Chan (2003), Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108(A3), 1116, doi:10.1029/2001JA009202.
– reference: Loto'aniu, T. M., R. M. Thorne, B. J. Fraser, and D. Summers (2006), Estimating relativistic electron pitch angle scattering rates using properties of the electromagnetic ion cyclotron wave spectrum, J. Geophys. Res., 111, A04220, doi:10.1029/2005JA011452.
– reference: Lyons, L. R., R. M. Thorne, and C. F. Kennel (1972), Pitch-angle diffusion of radiation belt electrons within the plasmasphere, J. Geophys. Res., 77(19), 3455-3474, doi:10.1029/JA077i019p03455.
– reference: Albert, J. M. (2008), Efficient approximations of quasi-linear diffusion coefficients in the radiation belts, J. Geophys. Res., 113, A06208, doi:10.1029/2007JA012936.
– reference: Albert, J. M. (2012), Dependence of quasi-linear diffusion coefficients on wave parameters, J. Geophys. Res., 117, A09224, doi:10.1029/2012JA017718.
– reference: Su, Z., H. Zheng, and S. Wang (2010), Three-dimensional simulation of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection, J. Geophys. Res., 115, A06203, doi:10.1029/2009JA014980.
– reference: Tu, W., S. R. Elkington, X. Li, W. Liu, and J. Bonnell (2012), Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements, J. Geophys. Res., 117, A10210, doi:10.1029/2012JA017901.
– reference: Horne, R. B., R. M. Thorne, S. A. Glauert, N. P. Meredith, D. Pokhotelov, and O. Santolík (2007), Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves, Geophys. Res. Lett., 34, L17107, doi:10.1029/2007GL030267.
– reference: Schulz, M., and L. Lanzerotti (1974), Particle Diffusion in the Radiation Belts, Springer, New York.
– reference: Fraser, B. J., and T. S. Nguyen (2001), Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere?, J. Atmos. Sol. Terr. Phys., 63(1225), 2001.
– reference: Liu, K., S. P. Gary, and D. Winske (2011), Excitation of magnetosonic waves in the terrestrial magnetosphere: Particle-in-cell simulations, J. Geophys. Res., 116, A07212, doi:10.1029/2010JA016372.
– reference: Liu, K., D. S. Lemons, D. Winske, and S. P. Gary (2010), Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations, J. Geophys. Res., 115, A04204, doi:10.1029/2009JA014807.
– reference: Horne, R. B., and R. M. Thorne (1998), Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms, Geophys. Res. Lett., 25(15), 3011-3014, doi:10.1029/98GL01002.
– reference: Hudson, M. K., S. R. Elkington, J. G. Lyons, and C. C. Goodrich (2000), Increase in relativistic electron flux in the inner magnetosphere: ULF wave mode structure, Adv. Space Res., 25, 2327-2337.
– reference: Selesnick, R. S., and J. B. Blake (2000), On the source location of radiation belt relativistic electrons, J. Geophys. Res., 105(A2), 2607-2624, doi:10.1029/1999JA900445.
– reference: Subbotin, D. A., Y. Y. Shprits, and B. Ni (2011), Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations, J. Geophys. Res., 116, A12210, doi:10.1029/2011JA017019.
– reference: Camporeale, E., G. L. Delzanno, S. Zaharia, and J. Koller (2013), On the numerical simulation of particle dynamics in the radiation belt. Part I: implicit and semi-implicit schemes, J. Geophys. Res. Space Physics, 118, 3463-3475, doi:10.1002/jgra.50293.
– reference: Roederer, J. G. (1970), Dynamics of Geomagnetically Trapped Radiation, Springer, New York.
– reference: Orlova, K. G., Y. Y. Shprits, and B. Ni (2012), Bounce-averaged diffusion coefficients due to resonant interaction of the outer radiation belt electrons with oblique chorus waves computed in a realistic magnetic field model, J. Geophys. Res., 117, A07209, doi:10.1029/2012JA017591.
– reference: Carpenter, D. L., and R. L. Smith (1964), Whistler measurements of electron density in the magnetosphere, Rev. Geophys., 2, 415-441.
– reference: Miyoshi, Y. S., V. K. Jordanova, A. Morioka, M. F. Thomsen, G. D. Reeves, D. S. Evans, and J. C. Green (2006), Observations and modeling of energetic electron dynamics during the October 2001 storm, J. Geophys. Res., 111, A11S02, doi:10.1029/2005JA011351.
– reference: Tao, X., J. Bortnik, J. M. Albert, K. Liu, and R. M. Thorne (2011), Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations, Geophys. Res. Lett., 38, L06105, doi:10.1029/2011GL046787.
– reference: Wentworth, R. C., W. M. MacDonald, and S. F. Singer (1959), Lifetimes of trapped radiation belt particles determined by Coulomb scattering, Phys. Fluids, 2, 499.
– reference: Li, W., R. M. Thorne, V. Angelopoulos, J. Bortnik, C. M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, and W. Magnes (2009), Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft, Geophys. Res. Lett., 36, L09104, doi:10.1029/2009GL037595.
– reference: Reeves, G. D., Y. Chen, G. S. Cunningham, R. W. H. Friedel, M. G. Henderson, V. K. Jordanova, J. Koller, S. K. Morley, M. F. Thomsen, and S. Zaharia (2012), Dynamic Radiation Environment Assimilation Model: DREAM, Space Weather, 10, S03006, doi:10.1029/2011SW000729.
– reference: Abel, B., and R. M. Thorne (1998), Electron scattering loss in Earth's inner magnetosphere 1. Dominant physical processes, J. Geophys. Res., 103(A2), 2385-2396.
– reference: Meredith, N. P., R. B. Horne, R. M. Thorne, D. Summers, and R. R. Anderson (2004), Substorm dependence of plasmaspheric hiss, J. Geophys. Res., 109, A06209, doi:10.1029/2004JA010387.
– reference: Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson (2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, doi:10.1029/2004JA010811.
– reference: Kim, K.-C., Y. Shprits, D. Subbotin, and B. Ni (2011), Understanding the dynamic evolution of the relativistic electron slot region including radial and pitch angle diffusion, J. Geophys. Res., 116, A10214, doi:10.1029/2011JA016684.
– reference: Summers, D., and R. M. Thorne (2003), Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 108(A4), 1143, doi:10.1029/2002JA009489.
– reference: Lyons, L. R. (1974b), Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves, J. Plasma Phys., 12, 417-432.
– reference: Shprits, Y. Y., R. M. Thorne, G. D. Reeves, and R. Friedel (2005), Radial diffusion modeling with empirical lifetimes: Comparison with CRRES observations, Ann. Geophys., 23, 1467-1471.
– reference: Meredith, N. P., R. B. Horne, R. H. A. Iles, R. M. Thorne, D. Heynderikx, and R. R. Anderson (2002), Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus, J. Geophys. Res., 107(A7), 1144, doi:10.1029/2001JA900146.
– reference: Meredith, N. P., R. B. Horne, R. M. Thorne, and R. R. Anderson (2003), Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt, Geophys. Res. Lett., 30(16), 1871, doi:10.1029/2003GL017698.
– reference: Reeves, G. D., K. L. McAdams, R. H. W. Friedel, and T. P. O'Brien (2003), Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 30(10), 1529, doi:10.1029/2002GL016513.
– reference: Ukhorskiy, A. Y., K. Takahashi, B. J. Anderson, and H. Korth (2005), Impact of toroidal ULF waves on the outer radiation belt electrons, J. Geophys. Res., 110, A10202, doi:10.1029/2005JA011017.
– reference: Lerche, I. (1968), Quasilinear theory of resonant diffusion in a magneto-active relativistic plasma, Phys. Fluids, 11, 1720.
– reference: Tao, X., J. Bortnik, J. M. Albert, and R. M. Thorne (2012), Comparison of bounce-averaged quasi-linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations, J. Geophys. Res., 117, A10205, doi:10.1029/2012JA017931.
– reference: Shprits, Y. Y., N. P. Meredith, and R. M. Thorne (2007), Parameterization of radiation belt electron loss timescales due to interactions with chorus waves, Geophys. Res. Lett., 34, L11110, doi:10.1029/2006GL029050.
– reference: Summers, D., R. M. Thorne, and F. L. Xiao (1998), Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103(A9), 20,487-20, 500.
– reference: Thorne, R. M., T. P. O'Brien, Y. Y. Shprits, D. Summers, and R. B. Horne (2005), Timescale for MeV electron microburst loss during geomagnetic storms, J. Geophys. Res., 110, A09202, doi:10.1029/2004JA010882.
– reference: Fu, H. S., J. B. Cao, B. Yang, and H. Y. Lu (2011), Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes, J. Geophys. Res., 116, A10210, doi:10.1029/2011JA016672.
– reference: Su, Z., F. Xiao, H. Zheng, and S. Wang (2011), CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event, Geophys. Res. Lett., 38, L06106, doi:10.1029/2011GL046873.
– reference: Albert, J. M. (2003), Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma, J. Geophys. Res., 108(A6), 1249, doi:10.1029/2002JA009792.
– reference: Albert, J. M. (2007), Simple approximations of quasi-linear diffusion coefficients, J. Geophys. Res., 112, A12202, doi:10.1029/2007JA012551.
– reference: Li, X., D. Baker, M. Temerin, T. Cayton, E. Reeves, R. Christensen, J. Blake, M. Looper, R. Nakamura, and S. Kanekal (1997), Multisatellite observations of the outer zone electron variation during the November 3-4, 1993, magnetic storm, J. Geophys. Res., 102(A7), 14,123-14,140.
– reference: Shprits, Y. Y., R. M. Thorne, R. B. Horne, S. A. Glauert, M. Cartwright, C. T. Russell, D. N. Baker, and S. G. Kanekal (2006), Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm, Geophys. Res. Lett., 33, L05104, doi:10.1029/2005GL024256.
– reference: Kessel, R. L., N. J. Fox, and M. Weiss (2012), The Radiation Belt Storm Probes (RBSP) and Space Weather, Space Sci. Rev., doi:10.1007/s11214-012-9953-6.
– reference: Carpenter, D. L., and R. R. Anderson (1992), An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097-1108, doi:10.1029/91JA01548.
– reference: Tu, W., R. Selesnick, X. Li, and M. Looper (2010), Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX, J. Geophys. Res., 115, A07210, doi:10.1029/2009JA014949.
– volume: 116
  year: 2011
  article-title: Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 17,541
  issue: A8
  year: 1997
  end-page: 17,552
  article-title: Electron and proton radiation belt dynamic simulations during storm periods: A new asymmetric convection‐diffusion model
  publication-title: J. Geophys. Res.
– year: 2012
  article-title: The Radiation Belt Storm Probes (RBSP) and Space Weather
  publication-title: Space Sci. Rev.
– volume: 25
  start-page: 3011
  issue: 15
  year: 1998
  end-page: 3014
  article-title: Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms
  publication-title: Geophys. Res. Lett.
– volume: 107
  issue: A7
  year: 2002
  article-title: Outer zone relativistic electron acceleration associated with substorm‐enhanced whistler mode chorus
  publication-title: J. Geophys. Res.
– year: 2001
– volume: 63
  start-page: 2001
  issue: 1225
  year: 2001
  article-title: Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere?
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 31
  year: 2004
  article-title: Quantification of relativistic electron microburst losses during the GEM storms
  publication-title: Geophys. Res. Lett.
– volume: 115
  year: 2010
  article-title: Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX
  publication-title: J. Geophys. Res.
– volume: 9
  start-page: 2377
  year: 1966
  end-page: 2388
  article-title: Velocity space diffusion from weak plasma turbulence in a magnetic field,
  publication-title: Fluids
– volume: 108
  issue: A3
  year: 2003
  article-title: Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 415
  year: 1964
  end-page: 441
  article-title: Whistler measurements of electron density in the magnetosphere
  publication-title: Rev. Geophys.
– volume: 116
  year: 2011
  article-title: Modeling the wave power distribution and characteristics of plasmaspheric hiss
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Three‐dimensional simulation of energetic outer zone electron dynamics due to wave‐particle interaction and azimuthal advection
  publication-title: J. Geophys. Res.
– volume: 110
  year: 2005
  article-title: Timescale for MeV electron microburst loss during geomagnetic storms
  publication-title: J. Geophys. Res.
– volume: 110
  year: 2005
  article-title: Timescale for radiation belt electron acceleration by whistler mode chorus waves
  publication-title: J. Geophys. Res.
– volume: 117
  year: 2012
  article-title: Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 25,631
  year: 2001
  end-page: 25,641
  article-title: An empirical plasmasphere and trough density model: CRRES observations
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 1467
  year: 2005
  end-page: 1471
  article-title: Radial diffusion modeling with empirical lifetimes: Comparison with CRRES observations
  publication-title: Ann. Geophys.
– year: 1994
– volume: 37
  start-page: 5
  year: 1989
  end-page: 20
  article-title: A magnetospheric magnetic field model with a warped tail current sheet
  publication-title: Planet. Space Sci.
– volume: 111
  year: 2006
  article-title: Estimating relativistic electron pitch angle scattering rates using properties of the electromagnetic ion cyclotron wave spectrum
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Simple approximations of quasi‐linear diffusion coefficients
  publication-title: J. Geophys. Res.
– volume: 114
  year: 2009
  article-title: Three‐dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm
  publication-title: J. Geophys. Res.
– volume: 36
  year: 2009
  article-title: Global distribution of whistler‐mode chorus waves observed on the THEMIS spacecraft
  publication-title: Geophys. Res. Lett.
– volume: 112
  year: 2007
  article-title: Slot region electron loss timescales due to plasmaspheric hiss and lightning‐generated whistlers
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection
  publication-title: J. Geophys. Res.
– volume: 114
  year: 2009
  article-title: Storm‐dependent radiation belt electron dynamics
  publication-title: J. Geophys. Res.
– volume: 30
  issue: 16
  year: 2003
  article-title: Favored regions for chorus‐driven electron acceleration to relativistic energies in the Earth's outer radiation belt
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 1720
  year: 1968
  article-title: Quasilinear theory of resonant diffusion in a magneto‐active relativistic plasma
  publication-title: Phys. Fluids
– volume: 108
  issue: A4
  year: 2003
  article-title: Relativistic electron pitch‐angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms
  publication-title: J. Geophys. Res.
– volume: 118
  start-page: 3463
  year: 2013
  end-page: 3475
  article-title: On the numerical simulation of particle dynamics in the radiation belt. Part I: implicit and semi‐implicit schemes
  publication-title: J. Geophys. Res. Space Physics
– volume: 117
  year: 2012
  article-title: Bounce‐averaged diffusion coefficients due to resonant interaction of the outer radiation belt electrons with oblique chorus waves computed in a realistic magnetic field model
  publication-title: J. Geophys. Res.
– volume: 117
  year: 2012
  article-title: Dependence of quasi‐linear diffusion coefficients on wave parameters
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 499
  year: 1959
  article-title: Lifetimes of trapped radiation belt particles determined by Coulomb scattering
  publication-title: Phys. Fluids
– start-page: 285
  year: 2001
  end-page: 311
– volume: 117
  year: 2012
  article-title: Comparison of bounce‐averaged quasi‐linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations
  publication-title: J. Geophys. Res.
– volume: 111
  year: 2006
  article-title: Observations and modeling of energetic electron dynamics during the October 2001 storm
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Electron loss and acceleration during storm time: The contribution of wave‐particle interaction, radial diffusion, and transport processes
  publication-title: J. Geophys. Res.
– volume: 109
  year: 2004
  article-title: Substorm dependence of plasmaspheric hiss
  publication-title: J. Geophys. Res.
– volume: 12
  start-page: 417
  year: 1974b
  end-page: 432
  article-title: Pitch angle and energy diffusion coefficients from resonant interactions with ion‐cyclotron and whistler waves
  publication-title: J. Plasma Phys.
– volume: 18
  start-page: 092,904
  year: 2011
  article-title: On the bounce‐averaged of scattering rates and the calculations of bounce period
  publication-title: Phys. Plasmas
– volume: 117
  year: 2012
  article-title: ULF wave derived radiation belt radial diffusion coefficients
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: Radiation Belt Environment model: Application to space weather nowcasting
  publication-title: J. Geophys. Res.
– volume: 2
  year: 2004
  article-title: Variations of 0.7–6.0 MeV electrons at geosynchronous orbit as a function of solar wind
  publication-title: Space Weather
– volume: 29
  start-page: 592
  issue: 4
  year: 1992
  end-page: 595
  article-title: CRRES magnetic electron spectrometer AFGL‐701‐5A (MEA)
  publication-title: J. Spacecr. Rockets
– volume: 38
  year: 2011
  article-title: CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event
  publication-title: Geophys. Res. Lett.
– volume: 78
  start-page: 2142
  issue: 13
  year: 1973
  end-page: 2149
  article-title: Equilibrium structure of radiation belt electrons
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 2327
  year: 2000
  end-page: 2337
  article-title: Increase in relativistic electron flux in the inner magnetosphere: ULF wave mode structure
  publication-title: Adv. Space Res.
– volume: 108
  issue: A6
  year: 2003
  article-title: Evaluation of quasi‐linear diffusion coefficients for EMIC waves in a multispecies plasma
  publication-title: J. Geophys. Res.
– volume: 30
  issue: 10
  year: 2003
  article-title: Acceleration and loss of relativistic electrons during geomagnetic storms
  publication-title: Geophys. Res. Lett.
– volume: 103
  start-page: 20,487
  issue: A9
  year: 1998
  end-page: 20, 500
  article-title: Relativistic theory of wave‐particle resonant diffusion with application to electron acceleration in the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 100–101
  start-page: 59
  year: 2013
  end-page: 67
  article-title: Long‐term relativistic radiation belt electron responses to GEM magnetic storms
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 12
  start-page: 45
  year: 1974a
  end-page: 49
  article-title: General relations for resonant particle diffusion in pitch angle and energy
  publication-title: J. Plasma Phys.
– volume: 110
  year: 2005
  article-title: Quasi‐linear diffusion coefficients for field‐aligned electromagnetic waves with applications to the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 117
  year: 2012
  article-title: Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3‐D VERB simulations
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Understanding the dynamic evolution of the relativistic electron slot region including radial and pitch angle diffusion
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 1097
  year: 1992
  end-page: 1108
  article-title: An ISEE/whistler model of equatorial electron density in the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Dynamic evolution of energetic outer zone electrons due to wave‐particle interactions during storms
  publication-title: J. Geophys. Res.
– volume: 38
  year: 2011
  article-title: Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations
  publication-title: Geophys. Res. Lett.
– volume: 105
  start-page: 291
  year: 2000
  end-page: 309
  article-title: Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm
  publication-title: J. Geophys. Res.
– volume: 34
  year: 2007
  article-title: Parameterization of radiation belt electron loss timescales due to interactions with chorus waves
  publication-title: Geophys. Res. Lett.
– volume: 116
  year: 2011
  article-title: Long‐term radiation belt simulation with the VERB 3‐D code: Comparison with CRRES observations
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 14,123
  issue: A7
  year: 1997
  end-page: 14,140
  article-title: Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Excitation of magnetosonic waves in the terrestrial magnetosphere: Particle‐in‐cell simulations
  publication-title: J. Geophys. Res.
– volume: 77
  start-page: 3455
  issue: 19
  year: 1972
  end-page: 3474
  article-title: Pitch‐angle diffusion of radiation belt electrons within the plasmasphere
  publication-title: J. Geophys. Res.
– volume: 110
  year: 2005
  article-title: Impact of toroidal ULF waves on the outer radiation belt electrons
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations
  publication-title: J. Geophys. Res.
– year: 1974
– volume: 33
  year: 2006
  article-title: Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm
  publication-title: Geophys. Res. Lett.
– year: 1970
– volume: 34
  year: 2007
  article-title: Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves
  publication-title: Geophys. Res. Lett.
– volume: 70
  start-page: 195
  issue: 2‐4
  year: 2008
  end-page: 206
  article-title: Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 113
  year: 2008
  article-title: Efficient approximations of quasi‐linear diffusion coefficients in the radiation belts
  publication-title: J. Geophys. Res.
– volume: 10
  year: 2012
  article-title: Dynamic Radiation Environment Assimilation Model: DREAM
  publication-title: Space Weather
– volume: 105
  start-page: 2607
  issue: A2
  year: 2000
  end-page: 2624
  article-title: On the source location of radiation belt relativistic electrons
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 2385
  issue: A2
  year: 1998
  end-page: 2396
  article-title: Electron scattering loss in Earth's inner magnetosphere 1. Dominant physical processes
  publication-title: J. Geophys. Res.
– ident: e_1_2_8_70_1
– ident: e_1_2_8_14_1
  doi: 10.1029/91JA01548
– ident: e_1_2_8_55_1
  doi: 10.1007/978-3-642-49300-3
– ident: e_1_2_8_73_1
  doi: 10.1029/2008JA013480
– ident: e_1_2_8_15_1
  doi: 10.1029/RG002i003p00415
– ident: e_1_2_8_68_1
  doi: 10.1029/2011GL046787
– ident: e_1_2_8_22_1
  doi: 10.1029/98GL01002
– ident: e_1_2_8_6_1
  doi: 10.1029/2012JA017718
– ident: e_1_2_8_60_1
  doi: 10.1029/2005GL024256
– ident: e_1_2_8_67_1
  doi: 10.1029/98JA01740
– ident: e_1_2_8_75_1
  doi: 10.1029/2012JA017901
– ident: e_1_2_8_5_1
  doi: 10.1029/2007JA012936
– ident: e_1_2_8_56_1
  doi: 10.1007/978-3-642-65675-0
– ident: e_1_2_8_49_1
  doi: 10.1029/2003GL018621
– ident: e_1_2_8_27_1
  doi: 10.1007/s11214‐012‐9953‐6
– ident: e_1_2_8_62_1
  doi: 10.1029/2009JA014980
– ident: e_1_2_8_19_1
  doi: 10.1029/2007JA012558
– ident: e_1_2_8_11_1
  doi: 10.1029/97JA01305
– ident: e_1_2_8_26_1
  doi: 10.1063/1.1761629
– ident: e_1_2_8_29_1
  doi: 10.1029/2011JA016684
– ident: e_1_2_8_69_1
  doi: 10.1029/2012JA017931
– ident: e_1_2_8_31_1
  doi: 10.1063/1.1692186
– ident: e_1_2_8_21_1
  doi: 10.1029/2011JA016672
– ident: e_1_2_8_66_1
  doi: 10.1029/2002JA009489
– ident: e_1_2_8_8_1
  doi: 10.1007/978-94-010-0983-6_11
– ident: e_1_2_8_23_1
  doi: 10.1029/2004JA010811
– ident: e_1_2_8_33_1
  doi: 10.1029/97JA01101
– ident: e_1_2_8_36_1
  doi: 10.1029/2011JA017035
– ident: e_1_2_8_43_1
  doi: 10.1029/JA077i019p03455
– ident: e_1_2_8_46_1
  doi: 10.1029/2004JA010387
– ident: e_1_2_8_48_1
  doi: 10.1029/2005JA011351
– ident: e_1_2_8_54_1
  doi: 10.1029/2011SW000729
– ident: e_1_2_8_24_1
  doi: 10.1029/2007GL030267
– ident: e_1_2_8_18_1
– ident: e_1_2_8_13_1
  doi: 10.1002/jgra.50293
– ident: e_1_2_8_44_1
  doi: 10.1029/2001JA900146
– ident: e_1_2_8_63_1
  doi: 10.1029/2011GL046873
– ident: e_1_2_8_10_1
  doi: 10.1029/2011JA016862
– ident: e_1_2_8_64_1
  doi: 10.1029/2011JA017019
– ident: e_1_2_8_77_1
  doi: 10.2514/3.25504
– ident: e_1_2_8_76_1
  doi: 10.1029/2005JA011017
– ident: e_1_2_8_51_1
  doi: 10.1029/2012JA017591
– ident: e_1_2_8_52_1
  doi: 10.1029/2011JA017463
– ident: e_1_2_8_58_1
  doi: 10.1029/2000JA000286
– ident: e_1_2_8_57_1
  doi: 10.1029/1999JA900445
– ident: e_1_2_8_78_1
  doi: 10.1063/1.1705940
– ident: e_1_2_8_45_1
  doi: 10.1029/2003GL017698
– ident: e_1_2_8_38_1
  doi: 10.1029/2010JA016372
– ident: e_1_2_8_12_1
  doi: 10.1029/1999JA900344
– ident: e_1_2_8_37_1
  doi: 10.1029/2009JA014807
– ident: e_1_2_8_41_1
  doi: 10.1017/S002237780002537X
– ident: e_1_2_8_74_1
  doi: 10.1029/2009JA014949
– volume: 63
  start-page: 2001
  issue: 1225
  year: 2001
  ident: e_1_2_8_20_1
  article-title: Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere?
  publication-title: J. Atmos. Sol. Terr. Phys.
– ident: e_1_2_8_32_1
  doi: 10.1029/2003SW000017
– ident: e_1_2_8_59_1
  doi: 10.5194/angeo-23-1467-2005
– ident: e_1_2_8_7_1
  doi: 10.1029/2009JA014336
– ident: e_1_2_8_50_1
  doi: 10.1063/1.3638137
– ident: e_1_2_8_30_1
  doi: 10.1029/2011JA017460
– ident: e_1_2_8_2_1
  doi: 10.1029/97JA02919
– ident: e_1_2_8_3_1
  doi: 10.1029/2002JA009792
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jastp.2013.04.007
– ident: e_1_2_8_39_1
  doi: 10.1029/2005JA011452
– ident: e_1_2_8_17_1
  doi: 10.1029/2001JA009202
– ident: e_1_2_8_42_1
  doi: 10.1029/JA078i013p02142
– ident: e_1_2_8_25_1
  doi: 10.1016/S0273-1177(99)00518-9
– ident: e_1_2_8_4_1
  doi: 10.1029/2007JA012551
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jastp.2007.08.031
– ident: e_1_2_8_65_1
  doi: 10.1029/2005JA011159
– ident: e_1_2_8_71_1
  doi: 10.1029/2004JA010882
– ident: e_1_2_8_72_1
  doi: 10.1016/0032-0633(89)90066-4
– ident: e_1_2_8_47_1
  doi: 10.1029/2007JA012413
– ident: e_1_2_8_40_1
  doi: 10.1017/S0022377800024910
– ident: e_1_2_8_61_1
  doi: 10.1029/2006GL029050
– ident: e_1_2_8_35_1
  doi: 10.1029/2009GL037595
– ident: e_1_2_8_53_1
  doi: 10.1029/2002GL016513
– ident: e_1_2_8_34_1
  doi: 10.1029/2007JA012368
– ident: e_1_2_8_16_1
  doi: 10.1029/2009JA014409
SSID ssib026412159
ssib023166628
ssj0000816915
ssib039538630
ssib041905647
Score 2.481985
Snippet As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation...
As a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6197
SubjectTerms 3D diffusion model
Astronomy
Boundary conditions
Diffusion
Diffusion coefficient
DREAM3D
Earth, ocean, space
Exact sciences and technology
External geophysics
GEM challenge
Interplanetary space
Kinetics
Physics of the ionosphere
Physics of the magnetosphere
Radiation
Radiation belt electrons
Solar system
Title Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model
URI https://api.istex.fr/ark:/67375/WNG-K62T70PD-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgra.50560
https://www.proquest.com/docview/1638273518
https://www.proquest.com/docview/1611635549
Volume 118
WOSCitedRecordID wos000330180600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 2169-9402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816915
  issn: 2169-9380
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2169-9402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816915
  issn: 2169-9380
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-Nlgde-EYLjMoINAmksNRO7ETipaIffK2aqk3bW-Q4zlQYLUpaBP89d87HqISQEG-WfImT813u54t9P4AXaERcGPRvdCbhh2g0fhKpzA-ycIjxP5dFpB3ZhJrP44uL5GQP3rRnYer6EF3CjTzDfa_JwXVWHV0XDf18WerXFL9xwd7nOGbUg_54MT371OVYiFQicSQGHBt-IuKgq1DKj65vsBOT-qTeH7RHUleopqLmt9gBoL_DWBeHpnf-7w3uwu0Gf7JRbTD3YM-u7sP-qKKM-PrrT3bIXLtOeFQPYElkaXRknZVUxYCmkWX2asNa_hyW15z2FatPPLLZ5JiZlqKFLd2eSrRxRhlfhnCTjReT0bEYM-Jm2VKyjjk6nodwNp2cvn3nN_QMvqEy9b4WPMikkVbikknkQiJ8MnEeC5OFViMyTAJb8EJGhVRSK1r7ZElB69UQUUKSi0fQW61Xdh-YiQ2XGrussiHnVscqF7GOuMkKBBjSg5ftBKWmqV1OFBpXaV11maeky9Tp0oPnney3umLHH6UO3Tx3Irr8QnvcVJSez2fpR8lPVXAyThMPBjuG0F3AFUJnFUUeHLSWkTb-X6WEchEYRsPYg2ddN3ou_Y7RK7veksxw6OAejvHK2clfnjf9MFuMXOvxvwg_gVuc-Dvc7sMD6G3KrX0KN833zbIqB42_DODG-fv5L_f0F20
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hDQle-I1WGMMINAmkbKmd2MljRbtubI2mqWh7sxzHQYXRoqRF8N9z56QZlRAS4s1Szkpyvst9vpzvA3iDRsSFRf9GZxJBhEYTpLHKgzCP-hj_C1nGxpNNqCxLrq7S87Y2h87CNP0huoQbeYb_XpODU0L68KZr6OdPlTmgAI479u0IkQYxN1yeZF2KhTglUs9hwHEQpCIJuwal_PBm-kZI2ibt_qASSVOjlsqG3mIDf_6OYn0YOrr_ny_wAO61-JMNGoN5CLfc_BHsDGrKiC--_mT7zI-bhEf9GGZElkZH1llFXQxoGVnurpdszZ_DiobTvmbNiUc2Hk2YXVO0sJmvqUQbZ5TxZQg32fBiNJiIISNulhUl65in43kCH49G0_fHQUvPEFhqUx8YwcNcWukkbplEISTCJ5sUibB55AwiwzR0JS9lXEoljaK9T56WtF-NECWkhXgKW_PF3O0As4nl0uAlp1zEuTOJKkRiYm7zEgGG7MHb9Qpp2_YuJwqNa910XeaadKm9LnvwupP91nTs-KPUvl_oTsRUX6jGTcX6MhvrU8mnKjwf6rQHexuW0E3gCqGziuMe7K5NQ7f-X2tCuQgM437Sg1fdZfRc-h1j5m6xIpl-38M9vMc7byh_eV79YXwx8KNn_yL8Eu4cTydn-uwkO30OdzlxefhKxF3YWlYr9wJu2-_LWV3tedf5BZ2kGSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hFiFe-EYLjGEEmgRSWOokdvJYkbbAtqqqNrE3y3EcVBjtlLQI_nvunDSjEkJCvFny5cu-s393Od8P4BUqEQ8N2jcaU-hHqDR-GsvcD_JogPt_IcpYO7IJOZ0mFxfprM3NobMwTX2ILuBGluHWazJwe1WUR9dVQ798rvRb2sDRY-9HxCLTg342H5-fdEEWYpVIHYsBx4afhknQlSjlR9c32NmU-jS-PyhJUtc4TmVDcLGDQH_HsW4jGt_9z0-4B3daBMqGjcrchxt2-QD2hjXFxFfffrJD5tpNyKN-CAuiS6ND66yiOgY0kSy3l2u2ZdBhRcNqX7PmzCObjE6Z2ZK0sIXLqkQtZxTzZQg4WTYfDU_DjBE7y4bCdcwR8jyC8_Ho7N17vyVo8A0Vqvd1yINcGGEFOk1hEQoEUCYpktDkkdWIDdPAlrwUcSmk0JK8nzwtyWONECekRfgYesvV0u4BM4nhQmOXlTbi3OpEFmGiY27yEiGG8OD1doaUaauXE4nGpWrqLnNFY6ncWHrwspO9amp2_FHq0E10J6Krr5TlJmP1aTpRx4KfyWCWqdSDgx1N6C7gEsGzjGMP9reqodoVoFaEcxEaxoPEgxddN9ou_ZDRS7vakMxg4AAfPuONU5S_vK_6OJkPXevJvwg_h1uzbKxOPkyPn8JtTmQeLhVxH3rramOfwU3zfb2oq4PWdn4BdtgZyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+radiation+belt+electron+dynamics+during+GEM+challenge+intervals+with+the+DREAM3D+diffusion+model&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Tu%2C+Weichao&rft.au=Cunningham%2C+G.+S.&rft.au=Chen%2C+Y.&rft.au=Henderson%2C+M.+G.&rft.date=2013-10-01&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=118&rft.issue=10&rft.spage=6197&rft.epage=6211&rft_id=info:doi/10.1002%2Fjgra.50560&rft.externalDBID=10.1002%252Fjgra.50560&rft.externalDocID=JGRA50560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9380&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9380&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9380&client=summon