Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model
As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 199...
Uložené v:
| Vydané v: | Journal of geophysical research. Space physics Ročník 118; číslo 10; s. 6197 - 6211 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, NJ
Blackwell Publishing Ltd
01.10.2013
Wiley |
| Predmet: | |
| ISSN: | 2169-9380, 2169-9402 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle‐momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower‐band, and upper‐band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data‐driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data‐driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.
Key Points
The model captures both electron enhancements and fast dropouts.
RD+hiss is sufficient for quiet times; chorus is required for active times.
Sensitivity studies prove the importance of realistic DLL and wave models. |
|---|---|
| AbstractList | As a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax=5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax=5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. Key Points The model captures both electron enhancements and fast dropouts. RD+hiss is sufficient for quiet times; chorus is required for active times. Sensitivity studies prove the importance of realistic DLL and wave models. As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle‐momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower‐band, and upper‐band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data‐driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data‐driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. Key Points The model captures both electron enhancements and fast dropouts. RD+hiss is sufficient for quiet times; chorus is required for active times. Sensitivity studies prove the importance of realistic DLL and wave models. As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle‐momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower‐band, and upper‐band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data‐driven boundary condition at L max = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at L max = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data‐driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. The model captures both electron enhancements and fast dropouts. RD+hiss is sufficient for quiet times; chorus is required for active times. Sensitivity studies prove the importance of realistic DLL and wave models. As a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at L sub(max)=5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at L sub(max)=5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. Key Points * The model captures both electron enhancements and fast dropouts. * RD+hiss is sufficient for quiet times; chorus is required for active times. * Sensitivity studies prove the importance of realistic DLL and wave models. |
| Author | Camporeale, E. Tu, Weichao Reeves, G. D. Henderson, M. G. Cunningham, G. S. Chen, Y. |
| Author_xml | – sequence: 1 givenname: Weichao surname: Tu fullname: Tu, Weichao email: wtu@lanl.gov organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA – sequence: 2 givenname: G. S. surname: Cunningham fullname: Cunningham, G. S. organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA – sequence: 3 givenname: Y. surname: Chen fullname: Chen, Y. organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA – sequence: 4 givenname: M. G. surname: Henderson fullname: Henderson, M. G. organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA – sequence: 5 givenname: E. surname: Camporeale fullname: Camporeale, E. organization: Applied Mathematics and Plasma Physics Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA – sequence: 6 givenname: G. D. surname: Reeves fullname: Reeves, G. D. organization: Science and Applications Group, Los Alamos National Laboratory, New Mexico, Los Alamos, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27977755$$DView record in Pascal Francis |
| BookMark | eNp90V1vFCEUBmBiamKtvfEXkBgTYzKVjwGGy0133apdNU2Nl4RhmF0qy1RgbPffy3TbXjTGKyB53sOB8xIchCFYAF5jdIIRIh-u1lGfMMQ4egYOCeaykjUiBw972qAX4Dgl1yLCa0wwk4fArYbOehfWMOrO6eyGAFvrM7TemhzLqdsFvXUmwW6Mk1suVtBstPc2rC10Idv4R_sEb1zewLyxcH6xmK3oHHau78c0FdxOd7wCz_vi7PH9egR-fFxcnp5V59-Wn05n55WpS4eVpgS13HDLJee0oxwRZpquoaatrWZYSmR70nPWc8G1IFjUrezLO1Hd4EZ29Ai829e9jsPv0aasti4Z670OdhiTwhxjThmrZaFvntCrYYyhdFcUbYigDDdFvb1XOhnt-6iDcUldR7fVcaeIkEIIxop7v3cmDilF2z8SjNQ0IDUNSN0NqGD0BBuX774_R-38vyN4H7lx3u7-U1x9Xl7MHjLVPuNStrePGR1_KS6oYOrn16X6wsmlQN_nStK_NtCx6Q |
| CitedBy_id | crossref_primary_10_1029_2021SW002808 crossref_primary_10_1029_2024JA032544 crossref_primary_10_1002_2016GL069749 crossref_primary_10_1002_2017JA024452 crossref_primary_10_1029_2018SW002061 crossref_primary_10_1002_2016GL069982 crossref_primary_10_1029_2024GL110362 crossref_primary_10_1002_2014JA020781 crossref_primary_10_1029_2019JA026786 crossref_primary_10_1029_2022SW003079 crossref_primary_10_1002_2014JA020422 crossref_primary_10_1002_2015JA022064 crossref_primary_10_1007_s11214_020_0642_6 crossref_primary_10_1029_2025JA034116 crossref_primary_10_1002_2016JA023634 crossref_primary_10_1029_2023GL106359 crossref_primary_10_1029_2022JA030603 crossref_primary_10_1002_2014JA020419 crossref_primary_10_1029_2018JA026414 crossref_primary_10_1029_2022JA030331 crossref_primary_10_1029_2023JA032249 crossref_primary_10_1002_2015GL065230 crossref_primary_10_1029_2021JA029569 crossref_primary_10_1029_2023JA031955 crossref_primary_10_1029_2024GL113502 crossref_primary_10_1051_swsc_2024021 crossref_primary_10_1002_2015JA021003 crossref_primary_10_1029_2018GL081146 crossref_primary_10_1029_2022SW003124 crossref_primary_10_5194_angeo_31_1929_2013 crossref_primary_10_1029_2018JA026392 crossref_primary_10_1002_2017JA024519 crossref_primary_10_1002_2016JA023846 crossref_primary_10_1029_2020JA028850 crossref_primary_10_1029_2020JA028972 crossref_primary_10_1002_2015GL067481 crossref_primary_10_1002_2014JA019864 crossref_primary_10_1029_2024JA032919 crossref_primary_10_1002_2014JA020449 crossref_primary_10_1002_2015JA022207 crossref_primary_10_3389_fspas_2023_1168636 crossref_primary_10_1029_2024JH000566 crossref_primary_10_1134_S0038094624700357 crossref_primary_10_1029_2019JA027618 crossref_primary_10_1029_2021SW002823 crossref_primary_10_1007_s10509_020_03819_0 crossref_primary_10_1029_2023GL103342 crossref_primary_10_1029_2024JA033584 crossref_primary_10_1029_2022JA030827 crossref_primary_10_1002_2017SW001669 crossref_primary_10_11728_cjss2021_05_715 crossref_primary_10_3389_fphy_2024_1334531 crossref_primary_10_3389_fspas_2023_1200485 crossref_primary_10_1029_2018GL078564 crossref_primary_10_1029_2021JA030214 crossref_primary_10_1002_2014JA020158 crossref_primary_10_1002_2015JA021981 crossref_primary_10_1002_2015JA021460 crossref_primary_10_1002_2016JA023149 crossref_primary_10_1029_2020JA028879 crossref_primary_10_1002_2016JA022618 crossref_primary_10_1029_2023JA032286 crossref_primary_10_1002_2017JA024139 crossref_primary_10_1002_2017JA024931 crossref_primary_10_1002_2013GL058712 crossref_primary_10_1029_2022GL101402 crossref_primary_10_1002_2014JA020900 crossref_primary_10_1002_2016SW001494 crossref_primary_10_1029_2019GL083032 crossref_primary_10_1029_2025JA033965 crossref_primary_10_3389_fspas_2024_1332931 crossref_primary_10_1002_2017GL076382 crossref_primary_10_1007_s11430_024_1484_4 crossref_primary_10_1016_j_asr_2024_05_017 crossref_primary_10_1029_2022EA002216 crossref_primary_10_1029_2022SW003051 crossref_primary_10_1002_2017JA024143 crossref_primary_10_1002_2017JA025114 crossref_primary_10_1029_2020JA028987 crossref_primary_10_1002_2017JA024389 crossref_primary_10_1002_2016JA022507 crossref_primary_10_1051_swsc_2017027 crossref_primary_10_1002_2016SW001426 crossref_primary_10_1002_2014JA020217 crossref_primary_10_1029_2024JA032905 crossref_primary_10_1029_2022GL102106 crossref_primary_10_1029_2022JA030377 crossref_primary_10_1029_2022GL101096 crossref_primary_10_1002_2016JA022470 crossref_primary_10_3389_fspas_2024_1385472 crossref_primary_10_1002_2016JA023002 crossref_primary_10_1002_2017JA023868 crossref_primary_10_1029_2025JA033991 crossref_primary_10_1002_2014JA020808 crossref_primary_10_1002_2014JA019935 crossref_primary_10_1002_2017JA024159 crossref_primary_10_1016_j_jastp_2017_08_008 crossref_primary_10_1002_2017JA024163 crossref_primary_10_1002_2016JA023093 crossref_primary_10_1002_2013GL058819 crossref_primary_10_1002_2013JA019320 crossref_primary_10_1002_2016JA023372 crossref_primary_10_1002_2014JA020127 crossref_primary_10_1029_2019GL082681 crossref_primary_10_1002_2017JA024328 crossref_primary_10_3389_fspas_2023_1096595 crossref_primary_10_1029_2018SW001981 crossref_primary_10_1002_2016GL068869 crossref_primary_10_3389_fspas_2022_1004634 crossref_primary_10_1029_2024EA004138 crossref_primary_10_1029_2018JA026401 crossref_primary_10_1002_2015GL063874 crossref_primary_10_1002_2017JA024843 crossref_primary_10_1002_2014JA020637 crossref_primary_10_1029_2022JA030751 crossref_primary_10_1029_2018JA025786 crossref_primary_10_1029_2020SW002532 crossref_primary_10_1002_2016GL071987 crossref_primary_10_1002_2016SW001484 crossref_primary_10_1002_2015GL063906 crossref_primary_10_1029_2019JA026735 crossref_primary_10_1029_2019GL082395 |
| Cites_doi | 10.1029/91JA01548 10.1007/978-3-642-49300-3 10.1029/2008JA013480 10.1029/RG002i003p00415 10.1029/2011GL046787 10.1029/98GL01002 10.1029/2012JA017718 10.1029/2005GL024256 10.1029/98JA01740 10.1029/2012JA017901 10.1029/2007JA012936 10.1007/978-3-642-65675-0 10.1029/2003GL018621 10.1007/s11214‐012‐9953‐6 10.1029/2009JA014980 10.1029/2007JA012558 10.1029/97JA01305 10.1063/1.1761629 10.1029/2011JA016684 10.1029/2012JA017931 10.1063/1.1692186 10.1029/2011JA016672 10.1029/2002JA009489 10.1007/978-94-010-0983-6_11 10.1029/2004JA010811 10.1029/97JA01101 10.1029/2011JA017035 10.1029/JA077i019p03455 10.1029/2004JA010387 10.1029/2005JA011351 10.1029/2011SW000729 10.1029/2007GL030267 10.1002/jgra.50293 10.1029/2001JA900146 10.1029/2011GL046873 10.1029/2011JA016862 10.1029/2011JA017019 10.2514/3.25504 10.1029/2005JA011017 10.1029/2012JA017591 10.1029/2011JA017463 10.1029/2000JA000286 10.1029/1999JA900445 10.1063/1.1705940 10.1029/2003GL017698 10.1029/2010JA016372 10.1029/1999JA900344 10.1029/2009JA014807 10.1017/S002237780002537X 10.1029/2009JA014949 10.1029/2003SW000017 10.5194/angeo-23-1467-2005 10.1029/2009JA014336 10.1063/1.3638137 10.1029/2011JA017460 10.1029/97JA02919 10.1029/2002JA009792 10.1016/j.jastp.2013.04.007 10.1029/2005JA011452 10.1029/2001JA009202 10.1029/JA078i013p02142 10.1016/S0273-1177(99)00518-9 10.1029/2007JA012551 10.1016/j.jastp.2007.08.031 10.1029/2005JA011159 10.1029/2004JA010882 10.1016/0032-0633(89)90066-4 10.1029/2007JA012413 10.1017/S0022377800024910 10.1029/2006GL029050 10.1029/2009GL037595 10.1029/2002GL016513 10.1029/2007JA012368 10.1029/2009JA014409 |
| ContentType | Journal Article |
| Copyright | 2013. American Geophysical Union. All Rights Reserved. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013. American Geophysical Union. All Rights Reserved. – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7TG 8FD H8D KL. L7M |
| DOI | 10.1002/jgra.50560 |
| DatabaseName | Istex CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef Meteorological & Geoastrophysical Abstracts - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| EISSN | 2169-9402 |
| EndPage | 6211 |
| ExternalDocumentID | 3531818851 27977755 10_1002_jgra_50560 JGRA50560 ark_67375_WNG_K62T70PD_9 |
| Genre | article |
| GroupedDBID | 05W 0R~ 1OC 31~ 33P 50Y 52M 702 8-1 88I 8FE 8FG 8FH AAESR AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABUWG ACAHQ ACBWZ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEUYN AEUYR AEYWJ AFBPY AFFHD AFFPM AFGKR AFKRA AFWVQ AGHNM AGYGG AHBTC AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARAPS AZFZN AZQEC AZVAB BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU D0L D1K DPXWK DRFUL DRSTM DWQXO EBS EJD G-S GNUQQ GODZA HCIFZ HGLYW HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- P-X P2W P62 PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC R.K RNS ROL SUPJJ WBKPD WIN WXSBR ~OA 1OB 24P 3V. A00 AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE WYJ AAYXX CITATION IQODW 7TG 8FD H8D KL. L7M |
| ID | FETCH-LOGICAL-c4380-a320b6c6e69663d36025c8d83cb4ea51990ef2f65f676a72174b9f402048189d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330180600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-9380 |
| IngestDate | Thu Oct 02 16:54:52 EDT 2025 Sat Jul 26 00:57:40 EDT 2025 Wed Apr 02 07:25:23 EDT 2025 Sat Nov 29 05:37:33 EST 2025 Tue Nov 18 22:38:36 EST 2025 Wed Jan 22 16:51:23 EST 2025 Tue Nov 11 03:33:04 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Particle motion Radiation belt Pitch angle CRRES satellite Plasmasphere Electron loss Phase space density Modeling Statistical data dynamics three-dimensional models Radial diffusion electron density Diffusion coefficient Diffusion boundary conditions performances |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4380-a320b6c6e69663d36025c8d83cb4ea51990ef2f65f676a72174b9f402048189d3 |
| Notes | ark:/67375/WNG-K62T70PD-9 istex:2060491C5E34E7CF4C78A1F1193CA64023CE476A ArticleID:JGRA50560 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://ir.cwi.nl/pub/26519 |
| PQID | 1638273518 |
| PQPubID | 54732 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1611635549 proquest_journals_1638273518 pascalfrancis_primary_27977755 crossref_primary_10_1002_jgra_50560 crossref_citationtrail_10_1002_jgra_50560 wiley_primary_10_1002_jgra_50560_JGRA50560 istex_primary_ark_67375_WNG_K62T70PD_9 |
| PublicationCentury | 2000 |
| PublicationDate | October 2013 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: October 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, NJ |
| PublicationPlace_xml | – name: Hoboken, NJ – name: Washington |
| PublicationTitle | Journal of geophysical research. Space physics |
| PublicationTitleAlternate | J. Geophys. Res. Space Physics |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
| References | Selesnick, R. S., and J. B. Blake (2000), On the source location of radiation belt relativistic electrons, J. Geophys. Res., 105(A2), 2607-2624, doi:10.1029/1999JA900445. Meredith, N. P., R. B. Horne, R. M. Thorne, and R. R. Anderson (2003), Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt, Geophys. Res. Lett., 30(16), 1871, doi:10.1029/2003GL017698. Subbotin, D. A., Y. Y. Shprits, and B. Ni (2011), Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations, J. Geophys. Res., 116, A12210, doi:10.1029/2011JA017019. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res., 105, 291-309, doi:10.1029/1999JA900344. Lyons, L. R. (1974a), General relations for resonant particle diffusion in pitch angle and energy, J. Plasma Phys., 12, 45-49. Bortnik, J., L. Chen, W. Li, R. M. Thorne, N. P. Meredith, and R. B. Horne (2011), Modeling the wave power distribution and characteristics of plasmaspheric hiss, J. Geophys. Res., 116, A12209, doi:10.1029/2011JA016862. Horne, R. B., and R. M. Thorne (1998), Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms, Geophys. Res. Lett., 25(15), 3011-3014, doi:10.1029/98GL01002. Orlova, K. G., Y. Y. Shprits, and B. Ni (2012), Bounce-averaged diffusion coefficients due to resonant interaction of the outer radiation belt electrons with oblique chorus waves computed in a realistic magnetic field model, J. Geophys. Res., 117, A07209, doi:10.1029/2012JA017591. Shprits, Y. Y., R. M. Thorne, G. D. Reeves, and R. Friedel (2005), Radial diffusion modeling with empirical lifetimes: Comparison with CRRES observations, Ann. Geophys., 23, 1467-1471. Reeves, G. D., Y. Chen, G. S. Cunningham, R. W. H. Friedel, M. G. Henderson, V. K. Jordanova, J. Koller, S. K. Morley, M. F. Thomsen, and S. Zaharia (2012), Dynamic Radiation Environment Assimilation Model: DREAM, Space Weather, 10, S03006, doi:10.1029/2011SW000729. Lerche, I. (1968), Quasilinear theory of resonant diffusion in a magneto-active relativistic plasma, Phys. Fluids, 11, 1720. Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson (2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, doi:10.1029/2004JA010811. Fraser, B. J., and T. S. Nguyen (2001), Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere?, J. Atmos. Sol. Terr. Phys., 63(1225), 2001. Shprits, Y. Y., R. M. Thorne, R. B. Horne, S. A. Glauert, M. Cartwright, C. T. Russell, D. N. Baker, and S. G. Kanekal (2006), Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm, Geophys. Res. Lett., 33, L05104, doi:10.1029/2005GL024256. Roederer, J. G. (1970), Dynamics of Geomagnetically Trapped Radiation, Springer, New York. Summers, D. (2005), Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere, J. Geophys. Res., 110, A08213, doi:10.1029/2005JA011159. Summers, D., R. M. Thorne, and F. L. Xiao (1998), Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103(A9), 20,487-20, 500. Vampola, A., J. Osborn, and B. Johnson (1992), CRRES magnetic electron spectrometer AFGL-701-5A (MEA), J. Spacecr. Rockets, 29(4), 592-595, doi:10.2514/3.25504. Chu, F., M. K. Hudson, P. Haines, and Y. Shprits (2010), Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection, J. Geophys. Res., 115, A03210, doi:10.1029/2009JA014409. Lyons, L. R., R. M. Thorne, and C. F. Kennel (1972), Pitch-angle diffusion of radiation belt electrons within the plasmasphere, J. Geophys. Res., 77(19), 3455-3474, doi:10.1029/JA077i019p03455. Sheeley, B., M. Moldwin, H. Rassoul, and R. Anderson (2001), An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25,631-25,641, doi:10.1029/2000JA000286. Li, W., Y. Y. Shprits, and R. M. Thorne (2007), Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms, J. Geophys. Res., 112, A10220, doi:10.1029/2007JA012368. Tu, W., S. R. Elkington, X. Li, W. Liu, and J. Bonnell (2012), Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements, J. Geophys. Res., 117, A10210, doi:10.1029/2012JA017901. Abel, B., and R. M. Thorne (1998), Electron scattering loss in Earth's inner magnetosphere 1. Dominant physical processes, J. Geophys. Res., 103(A2), 2385-2396. Elkington, S. R., M. K. Hudson, and A. A. Chan (2003), Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108(A3), 1116, doi:10.1029/2001JA009202. Li, X., D. Baker, M. Temerin, T. Cayton, E. Reeves, R. Christensen, J. Blake, M. Looper, R. Nakamura, and S. Kanekal (1997), Multisatellite observations of the outer zone electron variation during the November 3-4, 1993, magnetic storm, J. Geophys. Res., 102(A7), 14,123-14,140. Lyons, L. R., and R. M. Thorne (1973), Equilibrium structure of radiation belt electrons, J. Geophys. Res., 78(13), 2142-2149, doi:10.1029/JA078i013p02142. Tu, W., R. Selesnick, X. Li, and M. Looper (2010), Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX, J. Geophys. Res., 115, A07210, doi:10.1029/2009JA014949. Baker, D. N., and S. Kanekal (2008), Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere, J. Atmos. Sol. Terr. Phys., 70(2-4), 195-206, doi:10.1016/j.jastp.2007.08.031. Fok, M.-C., R. B. Horne, N. P. Meredith, and S. A. Glauert (2008), Radiation Belt Environment model: Application to space weather nowcasting, J. Geophys. Res., 113, A03S08, doi:10.1029/2007JA012558. Kessel, R. L., N. J. Fox, and M. Weiss (2012), The Radiation Belt Storm Probes (RBSP) and Space Weather, Space Sci. Rev., doi:10.1007/s11214-012-9953-6. Su, Z., H. Zheng, and S. Wang (2010), Three-dimensional simulation of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection, J. Geophys. Res., 115, A06203, doi:10.1029/2009JA014980. Fu, H. S., J. B. Cao, B. Yang, and H. Y. Lu (2011), Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes, J. Geophys. Res., 116, A10210, doi:10.1029/2011JA016672. O'Brien, T. P., M. D. Looper, and J. B. Blake (2004), Quantification of relativistic electron microburst losses during the GEM storms, Geophys. Res. Lett., 31, L04802, doi:10.1029/2003GL018621. Tao, X., J. Bortnik, J. M. Albert, and R. M. Thorne (2012), Comparison of bounce-averaged quasi-linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations, J. Geophys. Res., 117, A10205, doi:10.1029/2012JA017931. Liu, K., D. S. Lemons, D. Winske, and S. P. Gary (2010), Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations, J. Geophys. Res., 115, A04204, doi:10.1029/2009JA014807. Carpenter, D. L., and R. R. Anderson (1992), An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097-1108, doi:10.1029/91JA01548. Summers, D., and R. M. Thorne (2003), Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 108(A4), 1143, doi:10.1029/2002JA009489. Tsyganenko, N. A. (1989), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5-20. Tu, W., X. Li, Y. Chen, G. D. Reeves, and M. Temerin (2009), Storm-dependent radiation belt electron dynamics, J. Geophys. Res., 114, A02217, doi:10.1029/2008JA013480. Miyoshi, Y. S., V. K. Jordanova, A. Morioka, M. F. Thomsen, G. D. Reeves, D. S. Evans, and J. C. Green (2006), Observations and modeling of energetic electron dynamics during the October 2001 storm, J. Geophys. Res., 111, A11S02, doi:10.1029/2005JA011351. Schulz, M., and L. Lanzerotti (1974), Particle Diffusion in the Radiation Belts, Springer, New York. Ukhorskiy, A. Y., K. Takahashi, B. J. Anderson, and H. Korth (2005), Impact of toroidal ULF waves on the outer radiation belt electrons, J. Geophys. Res., 110, A10202, doi:10.1029/2005JA011017. Reeves, G. D., K. L. McAdams, R. H. W. Friedel, and T. P. O'Brien (2003), Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 30(10), 1529, doi:10.1029/2002GL016513. Tao, X., J. Bortnik, J. M. Albert, K. Liu, and R. M. Thorne (2011), Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations, Geophys. Res. Lett., 38, L06105, doi:10.1029/2011GL046787. Wentworth, R. C., W. M. MacDonald, and S. F. Singer (1959), Lifetimes of trapped radiation belt particles determined by Coulomb scattering, Phys. Fluids, 2, 499. Bourdarie, S., D. Boscher, T. Beutier, J. A. Sauvaud, and M. Blanc (1997), Electron and proton radiation belt dynamic simulations during storm periods: A new asymmetric convection-diffusion model, J. Geophys. Res., 102(A8), 17,541-17,552. Meredith, N. P., R. B. Horne, R. H. A. Iles, R. M. Thorne, D. Heynderikx, and R. R. Anderson (2002), Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus, J. Geophys. Res., 107(A7), 1144, doi:10.1029/2001JA900146. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2 2011; 116 1964; 2 1974a; 12 2013; 100–101 2005; 110 2000; 25 2012 1966; 9 1973; 78 2006; 33 1974b; 12 1974 1994 2004; 2 1970 1992; 97 2004; 109 2011; 38 2008; 70 1959; 2 2007; 34 2003; 30 2011; 18 2009; 114 2012; 10 2001; 63 2006; 111 2005; 23 1998; 25 2001; 106 1997; 102 2007; 112 2009; 36 2004; 31 2003; 108 2001 2000; 105 2010; 115 2013; 118 2002; 107 1992; 29 1998; 103 2008; 113 1989; 37 2012; 117 1972; 77 1968; 11 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 Fraser B. J. (e_1_2_8_20_1) 2001; 63 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – reference: Sheeley, B., M. Moldwin, H. Rassoul, and R. Anderson (2001), An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25,631-25,641, doi:10.1029/2000JA000286. – reference: Li, W., Y. Y. Shprits, and R. M. Thorne (2007), Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms, J. Geophys. Res., 112, A10220, doi:10.1029/2007JA012368. – reference: Li, X. (2004), Variations of 0.7-6.0 MeV electrons at geosynchronous orbit as a function of solar wind, Space Weather, 2, S03006, doi:10.1029/2003SW000017. – reference: Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res., 105, 291-309, doi:10.1029/1999JA900344. – reference: Tsyganenko, N. A. (1989), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5-20. – reference: Tu, W., X. Li, Y. Chen, G. D. Reeves, and M. Temerin (2009), Storm-dependent radiation belt electron dynamics, J. Geophys. Res., 114, A02217, doi:10.1029/2008JA013480. – reference: Fok, M.-C., R. B. Horne, N. P. Meredith, and S. A. Glauert (2008), Radiation Belt Environment model: Application to space weather nowcasting, J. Geophys. Res., 113, A03S08, doi:10.1029/2007JA012558. – reference: Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463. – reference: Kennel, C. F., and F. Engelmann (1966), Velocity space diffusion from weak plasma turbulence in a magnetic field, Phys, Fluids, 9, 2377-2388. – reference: Albert, J. M., N. P. Meredith, and R. B. Horne (2009), Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res., 114, A09214, doi:10.1029/2009JA014336. – reference: Lyons, L. R. (1974a), General relations for resonant particle diffusion in pitch angle and energy, J. Plasma Phys., 12, 45-49. – reference: Kim, K.-C., Y. Shprits, D. Subbotin, and B. Ni (2012), Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations, J. Geophys. Res., 117, A08221, doi:10.1029/2011JA017460. – reference: Li, W., J. Bortnik, R. M. Thorne, and V. Angelopoulos (2011), Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations, J. Geophys. Res., 116, A12205, doi:10.1029/2011JA017035. – reference: Bortnik, J., L. Chen, W. Li, R. M. Thorne, N. P. Meredith, and R. B. Horne (2011), Modeling the wave power distribution and characteristics of plasmaspheric hiss, J. Geophys. Res., 116, A12209, doi:10.1029/2011JA016862. – reference: Summers, D. (2005), Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere, J. Geophys. Res., 110, A08213, doi:10.1029/2005JA011159. – reference: Chu, F., M. K. Hudson, P. Haines, and Y. Shprits (2010), Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection, J. Geophys. Res., 115, A03210, doi:10.1029/2009JA014409. – reference: Kim, K.-C., and Y. Shprit (2013), Long-term relativistic radiation belt electron responses to GEM magnetic storms, J. Atmos. Sol. Terr. Phys., 100-101, 59-67, doi:10.1016/j.jastp.2013.04.007. – reference: Orlova, K. G., and Y. Y. Shprits (2011), On the bounce-averaged of scattering rates and the calculations of bounce period, Phys. Plasmas, 18, 092,904, doi:10.1063/1.3638137. – reference: O'Brien, T. P., M. D. Looper, and J. B. Blake (2004), Quantification of relativistic electron microburst losses during the GEM storms, Geophys. Res. Lett., 31, L04802, doi:10.1029/2003GL018621. – reference: Bourdarie, S., D. Boscher, T. Beutier, J. A. Sauvaud, and M. Blanc (1997), Electron and proton radiation belt dynamic simulations during storm periods: A new asymmetric convection-diffusion model, J. Geophys. Res., 102(A8), 17,541-17,552. – reference: Lyons, L. R., and R. M. Thorne (1973), Equilibrium structure of radiation belt electrons, J. Geophys. Res., 78(13), 2142-2149, doi:10.1029/JA078i013p02142. – reference: Meredith, N. P., R. B. Horne, S. A. Glauert, and R. R. Anderson (2007), Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers, J. Geophys. Res., 112, A08214, doi:10.1029/2007JA012413. – reference: Baker, D. N., and S. Kanekal (2008), Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere, J. Atmos. Sol. Terr. Phys., 70(2-4), 195-206, doi:10.1016/j.jastp.2007.08.031. – reference: Vampola, A., J. Osborn, and B. Johnson (1992), CRRES magnetic electron spectrometer AFGL-701-5A (MEA), J. Spacecr. Rockets, 29(4), 592-595, doi:10.2514/3.25504. – reference: Elkington, S. R., M. K. Hudson, and A. A. Chan (2003), Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108(A3), 1116, doi:10.1029/2001JA009202. – reference: Loto'aniu, T. M., R. M. Thorne, B. J. Fraser, and D. Summers (2006), Estimating relativistic electron pitch angle scattering rates using properties of the electromagnetic ion cyclotron wave spectrum, J. Geophys. Res., 111, A04220, doi:10.1029/2005JA011452. – reference: Lyons, L. R., R. M. Thorne, and C. F. Kennel (1972), Pitch-angle diffusion of radiation belt electrons within the plasmasphere, J. Geophys. Res., 77(19), 3455-3474, doi:10.1029/JA077i019p03455. – reference: Albert, J. M. (2008), Efficient approximations of quasi-linear diffusion coefficients in the radiation belts, J. Geophys. Res., 113, A06208, doi:10.1029/2007JA012936. – reference: Albert, J. M. (2012), Dependence of quasi-linear diffusion coefficients on wave parameters, J. Geophys. Res., 117, A09224, doi:10.1029/2012JA017718. – reference: Su, Z., H. Zheng, and S. Wang (2010), Three-dimensional simulation of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection, J. Geophys. Res., 115, A06203, doi:10.1029/2009JA014980. – reference: Tu, W., S. R. Elkington, X. Li, W. Liu, and J. Bonnell (2012), Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements, J. Geophys. Res., 117, A10210, doi:10.1029/2012JA017901. – reference: Horne, R. B., R. M. Thorne, S. A. Glauert, N. P. Meredith, D. Pokhotelov, and O. Santolík (2007), Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves, Geophys. Res. Lett., 34, L17107, doi:10.1029/2007GL030267. – reference: Schulz, M., and L. Lanzerotti (1974), Particle Diffusion in the Radiation Belts, Springer, New York. – reference: Fraser, B. J., and T. S. Nguyen (2001), Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere?, J. Atmos. Sol. Terr. Phys., 63(1225), 2001. – reference: Liu, K., S. P. Gary, and D. Winske (2011), Excitation of magnetosonic waves in the terrestrial magnetosphere: Particle-in-cell simulations, J. Geophys. Res., 116, A07212, doi:10.1029/2010JA016372. – reference: Liu, K., D. S. Lemons, D. Winske, and S. P. Gary (2010), Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations, J. Geophys. Res., 115, A04204, doi:10.1029/2009JA014807. – reference: Horne, R. B., and R. M. Thorne (1998), Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms, Geophys. Res. Lett., 25(15), 3011-3014, doi:10.1029/98GL01002. – reference: Hudson, M. K., S. R. Elkington, J. G. Lyons, and C. C. Goodrich (2000), Increase in relativistic electron flux in the inner magnetosphere: ULF wave mode structure, Adv. Space Res., 25, 2327-2337. – reference: Selesnick, R. S., and J. B. Blake (2000), On the source location of radiation belt relativistic electrons, J. Geophys. Res., 105(A2), 2607-2624, doi:10.1029/1999JA900445. – reference: Subbotin, D. A., Y. Y. Shprits, and B. Ni (2011), Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations, J. Geophys. Res., 116, A12210, doi:10.1029/2011JA017019. – reference: Camporeale, E., G. L. Delzanno, S. Zaharia, and J. Koller (2013), On the numerical simulation of particle dynamics in the radiation belt. Part I: implicit and semi-implicit schemes, J. Geophys. Res. Space Physics, 118, 3463-3475, doi:10.1002/jgra.50293. – reference: Roederer, J. G. (1970), Dynamics of Geomagnetically Trapped Radiation, Springer, New York. – reference: Orlova, K. G., Y. Y. Shprits, and B. Ni (2012), Bounce-averaged diffusion coefficients due to resonant interaction of the outer radiation belt electrons with oblique chorus waves computed in a realistic magnetic field model, J. Geophys. Res., 117, A07209, doi:10.1029/2012JA017591. – reference: Carpenter, D. L., and R. L. Smith (1964), Whistler measurements of electron density in the magnetosphere, Rev. Geophys., 2, 415-441. – reference: Miyoshi, Y. S., V. K. Jordanova, A. Morioka, M. F. Thomsen, G. D. Reeves, D. S. Evans, and J. C. Green (2006), Observations and modeling of energetic electron dynamics during the October 2001 storm, J. Geophys. Res., 111, A11S02, doi:10.1029/2005JA011351. – reference: Tao, X., J. Bortnik, J. M. Albert, K. Liu, and R. M. Thorne (2011), Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations, Geophys. Res. Lett., 38, L06105, doi:10.1029/2011GL046787. – reference: Wentworth, R. C., W. M. MacDonald, and S. F. Singer (1959), Lifetimes of trapped radiation belt particles determined by Coulomb scattering, Phys. Fluids, 2, 499. – reference: Li, W., R. M. Thorne, V. Angelopoulos, J. Bortnik, C. M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, and W. Magnes (2009), Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft, Geophys. Res. Lett., 36, L09104, doi:10.1029/2009GL037595. – reference: Reeves, G. D., Y. Chen, G. S. Cunningham, R. W. H. Friedel, M. G. Henderson, V. K. Jordanova, J. Koller, S. K. Morley, M. F. Thomsen, and S. Zaharia (2012), Dynamic Radiation Environment Assimilation Model: DREAM, Space Weather, 10, S03006, doi:10.1029/2011SW000729. – reference: Abel, B., and R. M. Thorne (1998), Electron scattering loss in Earth's inner magnetosphere 1. Dominant physical processes, J. Geophys. Res., 103(A2), 2385-2396. – reference: Meredith, N. P., R. B. Horne, R. M. Thorne, D. Summers, and R. R. Anderson (2004), Substorm dependence of plasmaspheric hiss, J. Geophys. Res., 109, A06209, doi:10.1029/2004JA010387. – reference: Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson (2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110, A03225, doi:10.1029/2004JA010811. – reference: Kim, K.-C., Y. Shprits, D. Subbotin, and B. Ni (2011), Understanding the dynamic evolution of the relativistic electron slot region including radial and pitch angle diffusion, J. Geophys. Res., 116, A10214, doi:10.1029/2011JA016684. – reference: Summers, D., and R. M. Thorne (2003), Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res., 108(A4), 1143, doi:10.1029/2002JA009489. – reference: Lyons, L. R. (1974b), Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves, J. Plasma Phys., 12, 417-432. – reference: Shprits, Y. Y., R. M. Thorne, G. D. Reeves, and R. Friedel (2005), Radial diffusion modeling with empirical lifetimes: Comparison with CRRES observations, Ann. Geophys., 23, 1467-1471. – reference: Meredith, N. P., R. B. Horne, R. H. A. Iles, R. M. Thorne, D. Heynderikx, and R. R. Anderson (2002), Outer zone relativistic electron acceleration associated with substorm-enhanced whistler mode chorus, J. Geophys. Res., 107(A7), 1144, doi:10.1029/2001JA900146. – reference: Meredith, N. P., R. B. Horne, R. M. Thorne, and R. R. Anderson (2003), Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt, Geophys. Res. Lett., 30(16), 1871, doi:10.1029/2003GL017698. – reference: Reeves, G. D., K. L. McAdams, R. H. W. Friedel, and T. P. O'Brien (2003), Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 30(10), 1529, doi:10.1029/2002GL016513. – reference: Ukhorskiy, A. Y., K. Takahashi, B. J. Anderson, and H. Korth (2005), Impact of toroidal ULF waves on the outer radiation belt electrons, J. Geophys. Res., 110, A10202, doi:10.1029/2005JA011017. – reference: Lerche, I. (1968), Quasilinear theory of resonant diffusion in a magneto-active relativistic plasma, Phys. Fluids, 11, 1720. – reference: Tao, X., J. Bortnik, J. M. Albert, and R. M. Thorne (2012), Comparison of bounce-averaged quasi-linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations, J. Geophys. Res., 117, A10205, doi:10.1029/2012JA017931. – reference: Shprits, Y. Y., N. P. Meredith, and R. M. Thorne (2007), Parameterization of radiation belt electron loss timescales due to interactions with chorus waves, Geophys. Res. Lett., 34, L11110, doi:10.1029/2006GL029050. – reference: Summers, D., R. M. Thorne, and F. L. Xiao (1998), Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103(A9), 20,487-20, 500. – reference: Thorne, R. M., T. P. O'Brien, Y. Y. Shprits, D. Summers, and R. B. Horne (2005), Timescale for MeV electron microburst loss during geomagnetic storms, J. Geophys. Res., 110, A09202, doi:10.1029/2004JA010882. – reference: Fu, H. S., J. B. Cao, B. Yang, and H. Y. Lu (2011), Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes, J. Geophys. Res., 116, A10210, doi:10.1029/2011JA016672. – reference: Su, Z., F. Xiao, H. Zheng, and S. Wang (2011), CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event, Geophys. Res. Lett., 38, L06106, doi:10.1029/2011GL046873. – reference: Albert, J. M. (2003), Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma, J. Geophys. Res., 108(A6), 1249, doi:10.1029/2002JA009792. – reference: Albert, J. M. (2007), Simple approximations of quasi-linear diffusion coefficients, J. Geophys. Res., 112, A12202, doi:10.1029/2007JA012551. – reference: Li, X., D. Baker, M. Temerin, T. Cayton, E. Reeves, R. Christensen, J. Blake, M. Looper, R. Nakamura, and S. Kanekal (1997), Multisatellite observations of the outer zone electron variation during the November 3-4, 1993, magnetic storm, J. Geophys. Res., 102(A7), 14,123-14,140. – reference: Shprits, Y. Y., R. M. Thorne, R. B. Horne, S. A. Glauert, M. Cartwright, C. T. Russell, D. N. Baker, and S. G. Kanekal (2006), Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm, Geophys. Res. Lett., 33, L05104, doi:10.1029/2005GL024256. – reference: Kessel, R. L., N. J. Fox, and M. Weiss (2012), The Radiation Belt Storm Probes (RBSP) and Space Weather, Space Sci. Rev., doi:10.1007/s11214-012-9953-6. – reference: Carpenter, D. L., and R. R. Anderson (1992), An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097-1108, doi:10.1029/91JA01548. – reference: Tu, W., R. Selesnick, X. Li, and M. Looper (2010), Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX, J. Geophys. Res., 115, A07210, doi:10.1029/2009JA014949. – volume: 116 year: 2011 article-title: Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations publication-title: J. Geophys. Res. – volume: 102 start-page: 17,541 issue: A8 year: 1997 end-page: 17,552 article-title: Electron and proton radiation belt dynamic simulations during storm periods: A new asymmetric convection‐diffusion model publication-title: J. Geophys. Res. – year: 2012 article-title: The Radiation Belt Storm Probes (RBSP) and Space Weather publication-title: Space Sci. Rev. – volume: 25 start-page: 3011 issue: 15 year: 1998 end-page: 3014 article-title: Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms publication-title: Geophys. Res. Lett. – volume: 107 issue: A7 year: 2002 article-title: Outer zone relativistic electron acceleration associated with substorm‐enhanced whistler mode chorus publication-title: J. Geophys. Res. – year: 2001 – volume: 63 start-page: 2001 issue: 1225 year: 2001 article-title: Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? publication-title: J. Atmos. Sol. Terr. Phys. – volume: 31 year: 2004 article-title: Quantification of relativistic electron microburst losses during the GEM storms publication-title: Geophys. Res. Lett. – volume: 115 year: 2010 article-title: Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX publication-title: J. Geophys. Res. – volume: 9 start-page: 2377 year: 1966 end-page: 2388 article-title: Velocity space diffusion from weak plasma turbulence in a magnetic field, publication-title: Fluids – volume: 108 issue: A3 year: 2003 article-title: Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field publication-title: J. Geophys. Res. – volume: 2 start-page: 415 year: 1964 end-page: 441 article-title: Whistler measurements of electron density in the magnetosphere publication-title: Rev. Geophys. – volume: 116 year: 2011 article-title: Modeling the wave power distribution and characteristics of plasmaspheric hiss publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Three‐dimensional simulation of energetic outer zone electron dynamics due to wave‐particle interaction and azimuthal advection publication-title: J. Geophys. Res. – volume: 110 year: 2005 article-title: Timescale for MeV electron microburst loss during geomagnetic storms publication-title: J. Geophys. Res. – volume: 110 year: 2005 article-title: Timescale for radiation belt electron acceleration by whistler mode chorus waves publication-title: J. Geophys. Res. – volume: 117 year: 2012 article-title: Quantifying radial diffusion coefficients of radiation belt electrons based on global MHD simulation and spacecraft measurements publication-title: J. Geophys. Res. – volume: 106 start-page: 25,631 year: 2001 end-page: 25,641 article-title: An empirical plasmasphere and trough density model: CRRES observations publication-title: J. Geophys. Res. – volume: 23 start-page: 1467 year: 2005 end-page: 1471 article-title: Radial diffusion modeling with empirical lifetimes: Comparison with CRRES observations publication-title: Ann. Geophys. – year: 1994 – volume: 37 start-page: 5 year: 1989 end-page: 20 article-title: A magnetospheric magnetic field model with a warped tail current sheet publication-title: Planet. Space Sci. – volume: 111 year: 2006 article-title: Estimating relativistic electron pitch angle scattering rates using properties of the electromagnetic ion cyclotron wave spectrum publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Simple approximations of quasi‐linear diffusion coefficients publication-title: J. Geophys. Res. – volume: 114 year: 2009 article-title: Three‐dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm publication-title: J. Geophys. Res. – volume: 36 year: 2009 article-title: Global distribution of whistler‐mode chorus waves observed on the THEMIS spacecraft publication-title: Geophys. Res. Lett. – volume: 112 year: 2007 article-title: Slot region electron loss timescales due to plasmaspheric hiss and lightning‐generated whistlers publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection publication-title: J. Geophys. Res. – volume: 114 year: 2009 article-title: Storm‐dependent radiation belt electron dynamics publication-title: J. Geophys. Res. – volume: 30 issue: 16 year: 2003 article-title: Favored regions for chorus‐driven electron acceleration to relativistic energies in the Earth's outer radiation belt publication-title: Geophys. Res. Lett. – volume: 11 start-page: 1720 year: 1968 article-title: Quasilinear theory of resonant diffusion in a magneto‐active relativistic plasma publication-title: Phys. Fluids – volume: 108 issue: A4 year: 2003 article-title: Relativistic electron pitch‐angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms publication-title: J. Geophys. Res. – volume: 118 start-page: 3463 year: 2013 end-page: 3475 article-title: On the numerical simulation of particle dynamics in the radiation belt. Part I: implicit and semi‐implicit schemes publication-title: J. Geophys. Res. Space Physics – volume: 117 year: 2012 article-title: Bounce‐averaged diffusion coefficients due to resonant interaction of the outer radiation belt electrons with oblique chorus waves computed in a realistic magnetic field model publication-title: J. Geophys. Res. – volume: 117 year: 2012 article-title: Dependence of quasi‐linear diffusion coefficients on wave parameters publication-title: J. Geophys. Res. – volume: 2 start-page: 499 year: 1959 article-title: Lifetimes of trapped radiation belt particles determined by Coulomb scattering publication-title: Phys. Fluids – start-page: 285 year: 2001 end-page: 311 – volume: 117 year: 2012 article-title: Comparison of bounce‐averaged quasi‐linear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations publication-title: J. Geophys. Res. – volume: 111 year: 2006 article-title: Observations and modeling of energetic electron dynamics during the October 2001 storm publication-title: J. Geophys. Res. – volume: 116 year: 2011 article-title: Electron loss and acceleration during storm time: The contribution of wave‐particle interaction, radial diffusion, and transport processes publication-title: J. Geophys. Res. – volume: 109 year: 2004 article-title: Substorm dependence of plasmaspheric hiss publication-title: J. Geophys. Res. – volume: 12 start-page: 417 year: 1974b end-page: 432 article-title: Pitch angle and energy diffusion coefficients from resonant interactions with ion‐cyclotron and whistler waves publication-title: J. Plasma Phys. – volume: 18 start-page: 092,904 year: 2011 article-title: On the bounce‐averaged of scattering rates and the calculations of bounce period publication-title: Phys. Plasmas – volume: 117 year: 2012 article-title: ULF wave derived radiation belt radial diffusion coefficients publication-title: J. Geophys. Res. – volume: 113 year: 2008 article-title: Radiation Belt Environment model: Application to space weather nowcasting publication-title: J. Geophys. Res. – volume: 2 year: 2004 article-title: Variations of 0.7–6.0 MeV electrons at geosynchronous orbit as a function of solar wind publication-title: Space Weather – volume: 29 start-page: 592 issue: 4 year: 1992 end-page: 595 article-title: CRRES magnetic electron spectrometer AFGL‐701‐5A (MEA) publication-title: J. Spacecr. Rockets – volume: 38 year: 2011 article-title: CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event publication-title: Geophys. Res. Lett. – volume: 78 start-page: 2142 issue: 13 year: 1973 end-page: 2149 article-title: Equilibrium structure of radiation belt electrons publication-title: J. Geophys. Res. – volume: 25 start-page: 2327 year: 2000 end-page: 2337 article-title: Increase in relativistic electron flux in the inner magnetosphere: ULF wave mode structure publication-title: Adv. Space Res. – volume: 108 issue: A6 year: 2003 article-title: Evaluation of quasi‐linear diffusion coefficients for EMIC waves in a multispecies plasma publication-title: J. Geophys. Res. – volume: 30 issue: 10 year: 2003 article-title: Acceleration and loss of relativistic electrons during geomagnetic storms publication-title: Geophys. Res. Lett. – volume: 103 start-page: 20,487 issue: A9 year: 1998 end-page: 20, 500 article-title: Relativistic theory of wave‐particle resonant diffusion with application to electron acceleration in the magnetosphere publication-title: J. Geophys. Res. – volume: 100–101 start-page: 59 year: 2013 end-page: 67 article-title: Long‐term relativistic radiation belt electron responses to GEM magnetic storms publication-title: J. Atmos. Sol. Terr. Phys. – volume: 12 start-page: 45 year: 1974a end-page: 49 article-title: General relations for resonant particle diffusion in pitch angle and energy publication-title: J. Plasma Phys. – volume: 110 year: 2005 article-title: Quasi‐linear diffusion coefficients for field‐aligned electromagnetic waves with applications to the magnetosphere publication-title: J. Geophys. Res. – volume: 117 year: 2012 article-title: Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3‐D VERB simulations publication-title: J. Geophys. Res. – volume: 116 year: 2011 article-title: Understanding the dynamic evolution of the relativistic electron slot region including radial and pitch angle diffusion publication-title: J. Geophys. Res. – volume: 97 start-page: 1097 year: 1992 end-page: 1108 article-title: An ISEE/whistler model of equatorial electron density in the magnetosphere publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Dynamic evolution of energetic outer zone electrons due to wave‐particle interactions during storms publication-title: J. Geophys. Res. – volume: 38 year: 2011 article-title: Comparison of quasilinear diffusion coefficients for parallel propagating whistler mode waves with test particle simulations publication-title: Geophys. Res. Lett. – volume: 105 start-page: 291 year: 2000 end-page: 309 article-title: Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm publication-title: J. Geophys. Res. – volume: 34 year: 2007 article-title: Parameterization of radiation belt electron loss timescales due to interactions with chorus waves publication-title: Geophys. Res. Lett. – volume: 116 year: 2011 article-title: Long‐term radiation belt simulation with the VERB 3‐D code: Comparison with CRRES observations publication-title: J. Geophys. Res. – volume: 102 start-page: 14,123 issue: A7 year: 1997 end-page: 14,140 article-title: Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm publication-title: J. Geophys. Res. – volume: 116 year: 2011 article-title: Excitation of magnetosonic waves in the terrestrial magnetosphere: Particle‐in‐cell simulations publication-title: J. Geophys. Res. – volume: 77 start-page: 3455 issue: 19 year: 1972 end-page: 3474 article-title: Pitch‐angle diffusion of radiation belt electrons within the plasmasphere publication-title: J. Geophys. Res. – volume: 110 year: 2005 article-title: Impact of toroidal ULF waves on the outer radiation belt electrons publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations publication-title: J. Geophys. Res. – year: 1974 – volume: 33 year: 2006 article-title: Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm publication-title: Geophys. Res. Lett. – year: 1970 – volume: 34 year: 2007 article-title: Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves publication-title: Geophys. Res. Lett. – volume: 70 start-page: 195 issue: 2‐4 year: 2008 end-page: 206 article-title: Solar cycle changes, geomagnetic variations, and energetic particle properties in the inner magnetosphere publication-title: J. Atmos. Sol. Terr. Phys. – volume: 113 year: 2008 article-title: Efficient approximations of quasi‐linear diffusion coefficients in the radiation belts publication-title: J. Geophys. Res. – volume: 10 year: 2012 article-title: Dynamic Radiation Environment Assimilation Model: DREAM publication-title: Space Weather – volume: 105 start-page: 2607 issue: A2 year: 2000 end-page: 2624 article-title: On the source location of radiation belt relativistic electrons publication-title: J. Geophys. Res. – volume: 103 start-page: 2385 issue: A2 year: 1998 end-page: 2396 article-title: Electron scattering loss in Earth's inner magnetosphere 1. Dominant physical processes publication-title: J. Geophys. Res. – ident: e_1_2_8_70_1 – ident: e_1_2_8_14_1 doi: 10.1029/91JA01548 – ident: e_1_2_8_55_1 doi: 10.1007/978-3-642-49300-3 – ident: e_1_2_8_73_1 doi: 10.1029/2008JA013480 – ident: e_1_2_8_15_1 doi: 10.1029/RG002i003p00415 – ident: e_1_2_8_68_1 doi: 10.1029/2011GL046787 – ident: e_1_2_8_22_1 doi: 10.1029/98GL01002 – ident: e_1_2_8_6_1 doi: 10.1029/2012JA017718 – ident: e_1_2_8_60_1 doi: 10.1029/2005GL024256 – ident: e_1_2_8_67_1 doi: 10.1029/98JA01740 – ident: e_1_2_8_75_1 doi: 10.1029/2012JA017901 – ident: e_1_2_8_5_1 doi: 10.1029/2007JA012936 – ident: e_1_2_8_56_1 doi: 10.1007/978-3-642-65675-0 – ident: e_1_2_8_49_1 doi: 10.1029/2003GL018621 – ident: e_1_2_8_27_1 doi: 10.1007/s11214‐012‐9953‐6 – ident: e_1_2_8_62_1 doi: 10.1029/2009JA014980 – ident: e_1_2_8_19_1 doi: 10.1029/2007JA012558 – ident: e_1_2_8_11_1 doi: 10.1029/97JA01305 – ident: e_1_2_8_26_1 doi: 10.1063/1.1761629 – ident: e_1_2_8_29_1 doi: 10.1029/2011JA016684 – ident: e_1_2_8_69_1 doi: 10.1029/2012JA017931 – ident: e_1_2_8_31_1 doi: 10.1063/1.1692186 – ident: e_1_2_8_21_1 doi: 10.1029/2011JA016672 – ident: e_1_2_8_66_1 doi: 10.1029/2002JA009489 – ident: e_1_2_8_8_1 doi: 10.1007/978-94-010-0983-6_11 – ident: e_1_2_8_23_1 doi: 10.1029/2004JA010811 – ident: e_1_2_8_33_1 doi: 10.1029/97JA01101 – ident: e_1_2_8_36_1 doi: 10.1029/2011JA017035 – ident: e_1_2_8_43_1 doi: 10.1029/JA077i019p03455 – ident: e_1_2_8_46_1 doi: 10.1029/2004JA010387 – ident: e_1_2_8_48_1 doi: 10.1029/2005JA011351 – ident: e_1_2_8_54_1 doi: 10.1029/2011SW000729 – ident: e_1_2_8_24_1 doi: 10.1029/2007GL030267 – ident: e_1_2_8_18_1 – ident: e_1_2_8_13_1 doi: 10.1002/jgra.50293 – ident: e_1_2_8_44_1 doi: 10.1029/2001JA900146 – ident: e_1_2_8_63_1 doi: 10.1029/2011GL046873 – ident: e_1_2_8_10_1 doi: 10.1029/2011JA016862 – ident: e_1_2_8_64_1 doi: 10.1029/2011JA017019 – ident: e_1_2_8_77_1 doi: 10.2514/3.25504 – ident: e_1_2_8_76_1 doi: 10.1029/2005JA011017 – ident: e_1_2_8_51_1 doi: 10.1029/2012JA017591 – ident: e_1_2_8_52_1 doi: 10.1029/2011JA017463 – ident: e_1_2_8_58_1 doi: 10.1029/2000JA000286 – ident: e_1_2_8_57_1 doi: 10.1029/1999JA900445 – ident: e_1_2_8_78_1 doi: 10.1063/1.1705940 – ident: e_1_2_8_45_1 doi: 10.1029/2003GL017698 – ident: e_1_2_8_38_1 doi: 10.1029/2010JA016372 – ident: e_1_2_8_12_1 doi: 10.1029/1999JA900344 – ident: e_1_2_8_37_1 doi: 10.1029/2009JA014807 – ident: e_1_2_8_41_1 doi: 10.1017/S002237780002537X – ident: e_1_2_8_74_1 doi: 10.1029/2009JA014949 – volume: 63 start-page: 2001 issue: 1225 year: 2001 ident: e_1_2_8_20_1 article-title: Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? publication-title: J. Atmos. Sol. Terr. Phys. – ident: e_1_2_8_32_1 doi: 10.1029/2003SW000017 – ident: e_1_2_8_59_1 doi: 10.5194/angeo-23-1467-2005 – ident: e_1_2_8_7_1 doi: 10.1029/2009JA014336 – ident: e_1_2_8_50_1 doi: 10.1063/1.3638137 – ident: e_1_2_8_30_1 doi: 10.1029/2011JA017460 – ident: e_1_2_8_2_1 doi: 10.1029/97JA02919 – ident: e_1_2_8_3_1 doi: 10.1029/2002JA009792 – ident: e_1_2_8_28_1 doi: 10.1016/j.jastp.2013.04.007 – ident: e_1_2_8_39_1 doi: 10.1029/2005JA011452 – ident: e_1_2_8_17_1 doi: 10.1029/2001JA009202 – ident: e_1_2_8_42_1 doi: 10.1029/JA078i013p02142 – ident: e_1_2_8_25_1 doi: 10.1016/S0273-1177(99)00518-9 – ident: e_1_2_8_4_1 doi: 10.1029/2007JA012551 – ident: e_1_2_8_9_1 doi: 10.1016/j.jastp.2007.08.031 – ident: e_1_2_8_65_1 doi: 10.1029/2005JA011159 – ident: e_1_2_8_71_1 doi: 10.1029/2004JA010882 – ident: e_1_2_8_72_1 doi: 10.1016/0032-0633(89)90066-4 – ident: e_1_2_8_47_1 doi: 10.1029/2007JA012413 – ident: e_1_2_8_40_1 doi: 10.1017/S0022377800024910 – ident: e_1_2_8_61_1 doi: 10.1029/2006GL029050 – ident: e_1_2_8_35_1 doi: 10.1029/2009GL037595 – ident: e_1_2_8_53_1 doi: 10.1029/2002GL016513 – ident: e_1_2_8_34_1 doi: 10.1029/2007JA012368 – ident: e_1_2_8_16_1 doi: 10.1029/2009JA014409 |
| SSID | ssib026412159 ssib023166628 ssj0000816915 ssib039538630 ssib041905647 |
| Score | 2.481985 |
| Snippet | As a response to the Geospace Environment Modeling (GEM) “Global Radiation Belt Modeling Challenge,” a 3D diffusion model is used to simulate the radiation... As a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6197 |
| SubjectTerms | 3D diffusion model Astronomy Boundary conditions Diffusion Diffusion coefficient DREAM3D Earth, ocean, space Exact sciences and technology External geophysics GEM challenge Interplanetary space Kinetics Physics of the ionosphere Physics of the magnetosphere Radiation Radiation belt electrons Solar system |
| Title | Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model |
| URI | https://api.istex.fr/ark:/67375/WNG-K62T70PD-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgra.50560 https://www.proquest.com/docview/1638273518 https://www.proquest.com/docview/1611635549 |
| Volume | 118 |
| WOSCitedRecordID | wos000330180600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 2169-9402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816915 issn: 2169-9380 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 2169-9402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816915 issn: 2169-9380 databaseCode: DRFUL dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-Nlgde-EYLjMoINAmksNRO7ETipaIffK2aqk3bW-Q4zlQYLUpaBP89d87HqISQEG-WfImT813u54t9P4AXaERcGPRvdCbhh2g0fhKpzA-ycIjxP5dFpB3ZhJrP44uL5GQP3rRnYer6EF3CjTzDfa_JwXVWHV0XDf18WerXFL9xwd7nOGbUg_54MT371OVYiFQicSQGHBt-IuKgq1DKj65vsBOT-qTeH7RHUleopqLmt9gBoL_DWBeHpnf-7w3uwu0Gf7JRbTD3YM-u7sP-qKKM-PrrT3bIXLtOeFQPYElkaXRknZVUxYCmkWX2asNa_hyW15z2FatPPLLZ5JiZlqKFLd2eSrRxRhlfhnCTjReT0bEYM-Jm2VKyjjk6nodwNp2cvn3nN_QMvqEy9b4WPMikkVbikknkQiJ8MnEeC5OFViMyTAJb8EJGhVRSK1r7ZElB69UQUUKSi0fQW61Xdh-YiQ2XGrussiHnVscqF7GOuMkKBBjSg5ftBKWmqV1OFBpXaV11maeky9Tp0oPnney3umLHH6UO3Tx3Irr8QnvcVJSez2fpR8lPVXAyThMPBjuG0F3AFUJnFUUeHLSWkTb-X6WEchEYRsPYg2ddN3ou_Y7RK7veksxw6OAejvHK2clfnjf9MFuMXOvxvwg_gVuc-Dvc7sMD6G3KrX0KN833zbIqB42_DODG-fv5L_f0F20 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hDQle-I1WGMMINAmkbKmd2MljRbtubI2mqWh7sxzHQYXRoqRF8N9z56QZlRAS4s1Szkpyvst9vpzvA3iDRsSFRf9GZxJBhEYTpLHKgzCP-hj_C1nGxpNNqCxLrq7S87Y2h87CNP0huoQbeYb_XpODU0L68KZr6OdPlTmgAI479u0IkQYxN1yeZF2KhTglUs9hwHEQpCIJuwal_PBm-kZI2ibt_qASSVOjlsqG3mIDf_6OYn0YOrr_ny_wAO61-JMNGoN5CLfc_BHsDGrKiC--_mT7zI-bhEf9GGZElkZH1llFXQxoGVnurpdszZ_DiobTvmbNiUc2Hk2YXVO0sJmvqUQbZ5TxZQg32fBiNJiIISNulhUl65in43kCH49G0_fHQUvPEFhqUx8YwcNcWukkbplEISTCJ5sUibB55AwiwzR0JS9lXEoljaK9T56WtF-NECWkhXgKW_PF3O0As4nl0uAlp1zEuTOJKkRiYm7zEgGG7MHb9Qpp2_YuJwqNa910XeaadKm9LnvwupP91nTs-KPUvl_oTsRUX6jGTcX6MhvrU8mnKjwf6rQHexuW0E3gCqGziuMe7K5NQ7f-X2tCuQgM437Sg1fdZfRc-h1j5m6xIpl-38M9vMc7byh_eV79YXwx8KNn_yL8Eu4cTydn-uwkO30OdzlxefhKxF3YWlYr9wJu2-_LWV3tedf5BZ2kGSA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hFiFe-EYLjGEEmgRSWOokdvJYkbbAtqqqNrE3y3EcVBjtlLQI_nvunDSjEkJCvFny5cu-s393Od8P4BUqEQ8N2jcaU-hHqDR-GsvcD_JogPt_IcpYO7IJOZ0mFxfprM3NobMwTX2ILuBGluHWazJwe1WUR9dVQ798rvRb2sDRY-9HxCLTg342H5-fdEEWYpVIHYsBx4afhknQlSjlR9c32NmU-jS-PyhJUtc4TmVDcLGDQH_HsW4jGt_9z0-4B3daBMqGjcrchxt2-QD2hjXFxFfffrJD5tpNyKN-CAuiS6ND66yiOgY0kSy3l2u2ZdBhRcNqX7PmzCObjE6Z2ZK0sIXLqkQtZxTzZQg4WTYfDU_DjBE7y4bCdcwR8jyC8_Ho7N17vyVo8A0Vqvd1yINcGGEFOk1hEQoEUCYpktDkkdWIDdPAlrwUcSmk0JK8nzwtyWONECekRfgYesvV0u4BM4nhQmOXlTbi3OpEFmGiY27yEiGG8OD1doaUaauXE4nGpWrqLnNFY6ncWHrwspO9amp2_FHq0E10J6Krr5TlJmP1aTpRx4KfyWCWqdSDgx1N6C7gEsGzjGMP9reqodoVoFaEcxEaxoPEgxddN9ou_ZDRS7vakMxg4AAfPuONU5S_vK_6OJkPXevJvwg_h1uzbKxOPkyPn8JtTmQeLhVxH3rramOfwU3zfb2oq4PWdn4BdtgZyQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+radiation+belt+electron+dynamics+during+GEM+challenge+intervals+with+the+DREAM3D+diffusion+model&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Tu%2C+Weichao&rft.au=Cunningham%2C+G.+S.&rft.au=Chen%2C+Y.&rft.au=Henderson%2C+M.+G.&rft.date=2013-10-01&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=118&rft.issue=10&rft.spage=6197&rft.epage=6211&rft_id=info:doi/10.1002%2Fjgra.50560&rft.externalDBID=10.1002%252Fjgra.50560&rft.externalDocID=JGRA50560 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9380&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9380&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9380&client=summon |