The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube

•The buoyancy parameter ϕ2 is proposed to quantified analysis buoyancy effect.•Flow acceleration plays a role in the heat transfer deterioration at q+ > 4.5 × 10−4.•The buoyancy factor Fb and acceleration factor Fac are proposed.•A new correlation is proposed for supercritical CO2 in helically co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Heat and Mass Transfer Ročník 125; s. 274 - 289
Hlavní autoři: Zhang, Shijie, Xu, Xiaoxiao, Liu, Chao, Zhang, Yadong, Dang, Chaobin
Médium: Journal Article
Jazyk:angličtina
japonština
Vydáno: Elsevier Ltd 01.10.2018
Elsevier BV
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The buoyancy parameter ϕ2 is proposed to quantified analysis buoyancy effect.•Flow acceleration plays a role in the heat transfer deterioration at q+ > 4.5 × 10−4.•The buoyancy factor Fb and acceleration factor Fac are proposed.•A new correlation is proposed for supercritical CO2 in helically coiled tube. Numerical simulations are performed to investigate the turbulent heat transfer characteristics of supercritical CO2 in heated vertical helically coiled tube, and primary focus is to analyze the mechanism of buoyancy force and flow acceleration on the heat transfer. The results show similar effect from buoyancy force and centrifugal force, and both forces induce a secondary flow in the cross section that improves the heat transfer efficiency. The buoyancy parameter ϕ2 and flow acceleration parameter q+ are established with reasonably good validation against numerical results. On the basis of the two parameters, the buoyancy factor Fb and the acceleration factor FAc are proposed to quantify buoyancy and flow acceleration effect, respectively. Furthermore, a temperature difference correction factor Ft is introduced to consider variation of thermo-physical properties. A new semi-empirical heat transfer correlation is proposed for supercritical CO2 in function of Fb, FAc and Ft for the vertical helically coiled tube.
AbstractList •The buoyancy parameter ϕ2 is proposed to quantified analysis buoyancy effect.•Flow acceleration plays a role in the heat transfer deterioration at q+ > 4.5 × 10−4.•The buoyancy factor Fb and acceleration factor Fac are proposed.•A new correlation is proposed for supercritical CO2 in helically coiled tube. Numerical simulations are performed to investigate the turbulent heat transfer characteristics of supercritical CO2 in heated vertical helically coiled tube, and primary focus is to analyze the mechanism of buoyancy force and flow acceleration on the heat transfer. The results show similar effect from buoyancy force and centrifugal force, and both forces induce a secondary flow in the cross section that improves the heat transfer efficiency. The buoyancy parameter ϕ2 and flow acceleration parameter q+ are established with reasonably good validation against numerical results. On the basis of the two parameters, the buoyancy factor Fb and the acceleration factor FAc are proposed to quantify buoyancy and flow acceleration effect, respectively. Furthermore, a temperature difference correction factor Ft is introduced to consider variation of thermo-physical properties. A new semi-empirical heat transfer correlation is proposed for supercritical CO2 in function of Fb, FAc and Ft for the vertical helically coiled tube.
Author Zhang, Shijie
Dang, Chaobin
Liu, Chao
Xu, Xiaoxiao
Zhang, Yadong
Author_xml – sequence: 1
  givenname: Shijie
  surname: Zhang
  fullname: Zhang, Shijie
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 2
  givenname: Xiaoxiao
  surname: Xu
  fullname: Xu, Xiaoxiao
  email: xuxiaoxiao@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 3
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 4
  givenname: Yadong
  surname: Zhang
  fullname: Zhang, Yadong
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 5
  givenname: Chaobin
  orcidid: 0000-0001-9717-1444
  surname: Dang
  fullname: Dang, Chaobin
  organization: Department of Human and Engineered Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan
BackLink https://cir.nii.ac.jp/crid/1873679867662660224$$DView record in CiNii
BookMark eNqVkc9u1DAQxi1UJLaFd_CBA5cE_4uT3EArWkCVeinnyJ6MtV65TmU7RfswvCtOFy5wgYtH1nz--ZtvLslFXCIS8o6zljOu3x9bfzygKQ8m55JMzA5TKxgfWqZaJuULsuNDPzaCD-MF2THG-2aUnL0ilzkftytTekd-3B-Q2nU5mQgn6pYESE2cqQvLd2oAMGAyxS-RonMIJdPF0bw-YoLkiwcT6P5O0NovFVTWZNeAsdDNGv3ti8LBJAMFk8_1TaY-Pgtwpk-YzpQDhq2GE4XFh9opq8XX5KUzIeObX_WKfLv-dL__3Nze3XzZf7xtQMm-NNC5cdTMcW05opXM9sM8OiNm2yllmRy5BWNQghZCMIWms8OshwE6qbqOyStyfeZCWnJO6Cbw5XnsOoIPE2fTFvp0nP4OfdpCn5iaaugV9OEP0GPyDyad_gfx9oyI3lcb21kXKXU_DrrXWmjNhFBV9vUsw5rLk6-QDB4j4OxT3dM0L_7f__wJ5eC_BA
CitedBy_id crossref_primary_10_3390_en15228358
crossref_primary_10_1016_j_cja_2020_12_022
crossref_primary_10_1016_j_applthermaleng_2019_113962
crossref_primary_10_1016_j_applthermaleng_2024_123505
crossref_primary_10_1016_j_supflu_2021_105493
crossref_primary_10_1016_j_supflu_2022_105690
crossref_primary_10_1016_j_applthermaleng_2024_122573
crossref_primary_10_1016_j_applthermaleng_2024_123023
crossref_primary_10_1016_j_applthermaleng_2024_124551
crossref_primary_10_1016_j_ijheatfluidflow_2024_109534
crossref_primary_10_1016_j_applthermaleng_2020_115842
crossref_primary_10_1016_j_tsep_2024_102442
crossref_primary_10_1016_j_supflu_2025_106754
crossref_primary_10_1016_j_icheatmasstransfer_2024_107552
crossref_primary_10_1080_10407790_2020_1720440
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121130
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123258
crossref_primary_10_1016_j_renene_2022_09_086
crossref_primary_10_1016_j_ijthermalsci_2019_106050
crossref_primary_10_1016_j_apenergy_2020_114962
crossref_primary_10_1016_j_energy_2020_117002
crossref_primary_10_1016_j_energy_2025_136006
crossref_primary_10_1016_j_applthermaleng_2022_118463
crossref_primary_10_1016_j_energy_2019_03_150
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119084
crossref_primary_10_1016_j_ijthermalsci_2023_108572
crossref_primary_10_1177_1687814019830804
crossref_primary_10_1016_j_ijthermalsci_2019_106137
crossref_primary_10_1016_j_tsep_2024_102833
crossref_primary_10_1016_j_ijrefrig_2025_01_026
crossref_primary_10_1016_j_cryogenics_2019_103023
crossref_primary_10_1016_j_applthermaleng_2019_04_097
crossref_primary_10_1016_j_ijthermalsci_2021_106916
crossref_primary_10_1016_j_ijheatfluidflow_2024_109558
crossref_primary_10_1016_j_applthermaleng_2024_124572
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127265
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119074
crossref_primary_10_1007_s11630_024_2039_4
crossref_primary_10_1016_j_energy_2022_125474
crossref_primary_10_1016_j_tsep_2023_102027
crossref_primary_10_1016_j_ijrefrig_2019_02_008
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119478
crossref_primary_10_1016_j_icheatmasstransfer_2025_109558
crossref_primary_10_1016_j_applthermaleng_2024_124490
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120399
crossref_primary_10_1016_j_enconman_2018_10_017
crossref_primary_10_1007_s11630_023_1889_5
crossref_primary_10_1016_j_applthermaleng_2023_120307
crossref_primary_10_1080_15567036_2023_2205359
crossref_primary_10_1016_j_applthermaleng_2021_116684
crossref_primary_10_1016_j_applthermaleng_2019_113833
crossref_primary_10_1007_s11630_020_1377_0
crossref_primary_10_3390_en17235960
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124060
crossref_primary_10_1063_5_0282670
crossref_primary_10_1016_j_ijthermalsci_2023_108508
crossref_primary_10_1016_j_energy_2018_11_104
crossref_primary_10_1016_j_ijthermalsci_2025_109965
crossref_primary_10_1016_j_ijthermalsci_2024_109425
crossref_primary_10_1016_j_applthermaleng_2023_122202
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122865
crossref_primary_10_1016_j_applthermaleng_2025_126321
crossref_primary_10_1016_j_applthermaleng_2022_118609
Cites_doi 10.1016/j.ijheatmasstransfer.2014.09.066
10.1016/0017-9310(72)90076-2
10.1080/14786440408564513
10.1016/0017-9310(73)90135-X
10.1016/0017-9310(67)90113-5
10.1016/j.ijheatmasstransfer.2015.01.047
10.1016/j.energy.2016.10.005
10.1016/S0017-9310(97)00111-7
10.1016/j.applthermaleng.2017.01.103
10.1016/S0017-9310(97)00228-7
10.1016/j.nucengdes.2010.07.002
10.1007/s11708-010-0116-8
10.1016/j.expthermflusci.2010.06.001
10.1016/j.applthermaleng.2017.03.146
10.1016/j.ijheatmasstransfer.2011.01.008
10.1016/j.rser.2004.09.014
10.1016/S0017-9310(02)00119-9
10.1016/j.enconman.2017.05.038
10.1016/j.ijthermalsci.2004.11.003
10.1016/0017-9310(85)90185-1
10.1115/1.2824120
10.1016/j.ijheatmasstransfer.2012.01.031
10.1007/s00231-015-1580-9
10.1016/j.ijheatmasstransfer.2017.01.004
10.1115/1.4008390
10.1615/IHTC5.3130
10.1016/j.energy.2017.04.047
10.1016/j.applthermaleng.2013.05.034
10.1115/1.1929787
10.1016/j.applthermaleng.2014.10.031
10.1016/j.ijrefrig.2016.03.010
10.1016/j.ijhydene.2017.10.053
10.1016/j.supflu.2015.02.001
10.1016/0017-9310(70)90118-3
10.1016/j.energy.2015.04.043
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID RYH
AAYXX
CITATION
DOI 10.1016/j.ijheatmasstransfer.2018.04.033
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 289
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2018_04_033
S0017931018300723
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
RYH
~HD
9DU
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AFJKZ
AGQPQ
AIGII
CITATION
ID FETCH-LOGICAL-c437t-c5f9960f16b1eeb30b78d9fa2db544b0391bcaae3c622204ea5b8d688c5345503
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440118600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Tue Nov 18 21:10:22 EST 2025
Sat Nov 29 06:59:37 EST 2025
Mon Nov 10 09:19:56 EST 2025
Fri Feb 23 02:47:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flow acceleration
Helically coiled tube
Supercritical CO2
Buoyancy force
Semi-empirical correlation
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-c5f9960f16b1eeb30b78d9fa2db544b0391bcaae3c622204ea5b8d688c5345503
ORCID 0000-0001-9717-1444
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_04_033
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_033
nii_cinii_1873679867662660224
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_04_033
PublicationCentury 2000
PublicationDate October 2018
2018-10-01
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle International Journal of Heat and Mass Transfer
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Liu, Xu, Liu (b0125) 2017; 116
Tian, Chang, Shu (b0005) 2017; 148
Tian, Wu, Shu (b0015) 2017; 42
Yu, Li, Lei (b0080) 2013; 59
Mikielewicz, Shehata, Jackson (b0180) 2002; 45
Mao, Guo, Bai (b0195) 2010; 4
McEligot, Coon, Perkins (b0040) 1970; 13
Li, Zhai, Li (b0110) 2016; 116
Xin, Ebadian (b0175) 1997; 119
Li, Wu, Tang (b0060) 2015; 84
Wang, Xu, Liu (b0120) 2017; 108
Xu, Liu, Dang (b0090) 2016; 67
Jackson (b0030) 2017; 124
Zhang, Wang, Li (b0105) 2015; 88
Naphon, Wongwises (b0020) 2006; 10
Wang, Li, Yu (b0055) 2011; 54
He, Jiang, Yi-Jun (b0185) 2005; 44
Xu, Liu, Fu (b0010) 2015; 86
Jones, Launder (b0045) 1972; 15
Mori, Nakayama (b0165) 1967; 10
Negoescu, Li, Al-Duri (b0050) 2017; 134
Seo, Kim (b0150) 2005; 154
Büyükalaca, Jackson (b0190) 1998; 41
Hiroaki, Ayao, Masaru (b0025) 1973; 16
B. Petukhov, A. Polyakov, V. Kuleshohov, Y.L. Sheckter, Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermo-gravitational forces, in: Fifth Int. Heat Transfer Conference, 1974, pp. 3–7.
Germano (b0130) 2006; 125
Ito (b0140) 1959; 81
Sillekens, Rindt, Steenhoven (b0095) 1998; 41
Bae, Kim, Kang (b0075) 2010; 34
Dean (b0170) 1928; 5
Wang, Xu, Wu (b0115) 2015; 99
Lee, Simon, Chow (b0100) 1985; 28
Tanimizu, Sadr (b0085) 2016; 52
Bazargan, Fraser, Chatoorgan (b0070) 2005; 127
Jackson, Hall (b0145) 1979; 2
Xu, Yang, Zhang (b0135) 2015; 80
Watts, Chou (b0155) 1982; 3
Dong, Kim (b0065) 2010; 240
Kurganov, Zeigarnik, Maslakova (b0035) 2012; 55
Ito (10.1016/j.ijheatmasstransfer.2018.04.033_b0140) 1959; 81
Yu (10.1016/j.ijheatmasstransfer.2018.04.033_b0080) 2013; 59
Watts (10.1016/j.ijheatmasstransfer.2018.04.033_b0155) 1982; 3
Germano (10.1016/j.ijheatmasstransfer.2018.04.033_b0130) 2006; 125
Bazargan (10.1016/j.ijheatmasstransfer.2018.04.033_b0070) 2005; 127
Jackson (10.1016/j.ijheatmasstransfer.2018.04.033_b0030) 2017; 124
Tanimizu (10.1016/j.ijheatmasstransfer.2018.04.033_b0085) 2016; 52
Büyükalaca (10.1016/j.ijheatmasstransfer.2018.04.033_b0190) 1998; 41
Seo (10.1016/j.ijheatmasstransfer.2018.04.033_b0150) 2005; 154
Li (10.1016/j.ijheatmasstransfer.2018.04.033_b0110) 2016; 116
10.1016/j.ijheatmasstransfer.2018.04.033_b0160
Jones (10.1016/j.ijheatmasstransfer.2018.04.033_b0045) 1972; 15
Zhang (10.1016/j.ijheatmasstransfer.2018.04.033_b0105) 2015; 88
Dong (10.1016/j.ijheatmasstransfer.2018.04.033_b0065) 2010; 240
Sillekens (10.1016/j.ijheatmasstransfer.2018.04.033_b0095) 1998; 41
Wang (10.1016/j.ijheatmasstransfer.2018.04.033_b0115) 2015; 99
Wang (10.1016/j.ijheatmasstransfer.2018.04.033_b0120) 2017; 108
Liu (10.1016/j.ijheatmasstransfer.2018.04.033_b0125) 2017; 116
Li (10.1016/j.ijheatmasstransfer.2018.04.033_b0060) 2015; 84
Wang (10.1016/j.ijheatmasstransfer.2018.04.033_b0055) 2011; 54
Bae (10.1016/j.ijheatmasstransfer.2018.04.033_b0075) 2010; 34
Tian (10.1016/j.ijheatmasstransfer.2018.04.033_b0005) 2017; 148
Mori (10.1016/j.ijheatmasstransfer.2018.04.033_b0165) 1967; 10
McEligot (10.1016/j.ijheatmasstransfer.2018.04.033_b0040) 1970; 13
Xu (10.1016/j.ijheatmasstransfer.2018.04.033_b0090) 2016; 67
Xin (10.1016/j.ijheatmasstransfer.2018.04.033_b0175) 1997; 119
Xu (10.1016/j.ijheatmasstransfer.2018.04.033_b0135) 2015; 80
Naphon (10.1016/j.ijheatmasstransfer.2018.04.033_b0020) 2006; 10
Hiroaki (10.1016/j.ijheatmasstransfer.2018.04.033_b0025) 1973; 16
Jackson (10.1016/j.ijheatmasstransfer.2018.04.033_b0145) 1979; 2
He (10.1016/j.ijheatmasstransfer.2018.04.033_b0185) 2005; 44
Tian (10.1016/j.ijheatmasstransfer.2018.04.033_b0015) 2017; 42
Dean (10.1016/j.ijheatmasstransfer.2018.04.033_b0170) 1928; 5
Kurganov (10.1016/j.ijheatmasstransfer.2018.04.033_b0035) 2012; 55
Mao (10.1016/j.ijheatmasstransfer.2018.04.033_b0195) 2010; 4
Negoescu (10.1016/j.ijheatmasstransfer.2018.04.033_b0050) 2017; 134
Lee (10.1016/j.ijheatmasstransfer.2018.04.033_b0100) 1985; 28
Xu (10.1016/j.ijheatmasstransfer.2018.04.033_b0010) 2015; 86
Mikielewicz (10.1016/j.ijheatmasstransfer.2018.04.033_b0180) 2002; 45
References_xml – volume: 16
  start-page: 1267
  year: 1973
  end-page: 1288
  ident: b0025
  article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 119
  start-page: 467
  year: 1997
  ident: b0175
  article-title: The effects of prandtl numbers on local and average convective heat transfer characteristics
  publication-title: J. Heat Transf.
– volume: 10
  start-page: 463
  year: 2006
  end-page: 490
  ident: b0020
  article-title: A review of flow and heat transfer characteristics in curved tubes
  publication-title: Renew. Sustain. Energy Rev.
– volume: 28
  start-page: 631
  year: 1985
  end-page: 640
  ident: b0100
  article-title: Buoyancy in developed laminar curved tube flows
  publication-title: Int. J. Heat Mass Transf.
– volume: 15
  start-page: 301
  year: 1972
  end-page: 314
  ident: b0045
  article-title: The prediction of laminarization with a two-equation model of turbulence
  publication-title: Int. J. Heat Mass Transf.
– volume: 13
  start-page: 431
  year: 1970
  end-page: 433
  ident: b0040
  article-title: Relaminarization in tubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 125
  start-page: 1
  year: 2006
  end-page: 8
  ident: b0130
  article-title: On the effect of torsion on a helical pipe flow
  publication-title: J. Fluid Mech.
– volume: 10
  start-page: 681
  year: 1967
  end-page: 695
  ident: b0165
  article-title: Study on forced convective heat transfer in curved pipes: (3rd report, theoretical analysis under the condition of uniform wall temperature and practical formulae)
  publication-title: Int. J. Heat Mass Transf.
– volume: 5
  start-page: 673
  year: 1928
  end-page: 695
  ident: b0170
  article-title: The stream-line motion of fluid in a curved pipe (Second paper)
  publication-title: Lond. Edinburgh Dublin Philos. Mag. J. Sci.
– volume: 124
  start-page: 1481
  year: 2017
  end-page: 1491
  ident: b0030
  article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration
  publication-title: Appl. Therm. Eng.
– volume: 127
  start-page: 897
  year: 2005
  end-page: 902
  ident: b0070
  article-title: Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube
  publication-title: J. Heat Transf.
– volume: 3
  start-page: 495
  year: 1982
  end-page: 500
  ident: b0155
  article-title: Mixed convection heat transfer to supercritical pressure water
  publication-title: Int. Heat Transf. Conf. München
– volume: 134
  start-page: 1096
  year: 2017
  end-page: 1106
  ident: b0050
  article-title: Heat transfer behavior of supercritical nitrogen in the large specific heat region flowing in a vertical tube
  publication-title: Energy
– volume: 116
  year: 2017
  ident: b0125
  article-title: Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO
  publication-title: Appl. Therm. Eng.
– volume: 86
  start-page: 414
  year: 2015
  end-page: 422
  ident: b0010
  article-title: Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO
  publication-title: Energy
– volume: 41
  start-page: 61
  year: 1998
  end-page: 72
  ident: b0095
  article-title: Developing mixed convection in a coiled heat exchanger
  publication-title: Int. J. Heat Mass Transf.
– volume: 88
  start-page: 61
  year: 2015
  end-page: 70
  ident: b0105
  article-title: Mixed convective heat transfer of CO
  publication-title: Appl. Therm. Eng.
– volume: 54
  start-page: 1950
  year: 2011
  end-page: 1958
  ident: b0055
  article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes
  publication-title: Int. J. Heat Mass Transf.
– reference: B. Petukhov, A. Polyakov, V. Kuleshohov, Y.L. Sheckter, Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermo-gravitational forces, in: Fifth Int. Heat Transfer Conference, 1974, pp. 3–7.
– volume: 4
  start-page: 546
  year: 2010
  end-page: 552
  ident: b0195
  article-title: Convective heat transfer in helical coils for constant-property and variable-property flows with high Reynolds numbers
  publication-title: Front. Energy Power Eng. Chin.
– volume: 59
  start-page: 380
  year: 2013
  end-page: 388
  ident: b0080
  article-title: Influence of buoyancy on heat transfer to water flowing in horizontal tubes under supercritical pressure
  publication-title: Appl. Therm. Eng.
– volume: 34
  start-page: 1295
  year: 2010
  end-page: 1308
  ident: b0075
  article-title: Forced and mixed convection heat transfer to supercritical CO
  publication-title: Exp. Therm Fluid Sci.
– volume: 84
  start-page: 529
  year: 2015
  end-page: 541
  ident: b0060
  article-title: Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube
  publication-title: Int. J. Heat Mass Transf.
– volume: 108
  start-page: 1645
  year: 2017
  end-page: 1655
  ident: b0120
  article-title: Experimental and numerical investigation on heat transfer characteristics of supercritical CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 148
  start-page: 477
  year: 2017
  end-page: 488
  ident: b0005
  article-title: Multi-objective optimization of the carbon dioxide transcritical power cycle with various configurations for engine waste heat recovery
  publication-title: Energy Convers. Manage.
– volume: 99
  start-page: 112
  year: 2015
  end-page: 120
  ident: b0115
  article-title: Numerical investigation on heat transfer of supercritical CO
  publication-title: J. Supercrit. Fluids
– volume: 42
  start-page: 29597
  year: 2017
  end-page: 29605
  ident: b0015
  article-title: Experimental and theoretical study of flammability limits of hydrocarbon–CO
  publication-title: Int. J. Hydrogen Energy
– volume: 52
  start-page: 713
  year: 2016
  end-page: 726
  ident: b0085
  article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube
  publication-title: Heat Mass Transf.
– volume: 45
  start-page: 4333
  year: 2002
  end-page: 4352
  ident: b0180
  article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data
  publication-title: Int. J. Heat Mass Transf.
– volume: 55
  start-page: 3061
  year: 2012
  end-page: 3075
  ident: b0035
  article-title: Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part I: Specifics of thermo-physical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art)
  publication-title: Int. J. Heat Mass Transf.
– volume: 41
  start-page: 665
  year: 1998
  end-page: 669
  ident: b0190
  article-title: The correction to take account of variable property effects on turbulent forced convection to water in a pipe
  publication-title: Int. J. Heat Mass Transf.
– volume: 81
  start-page: 123
  year: 1959
  end-page: 134
  ident: b0140
  article-title: Friction factors for turbulent flow in curved pipes
  publication-title: J. Basic Eng.
– volume: 67
  start-page: 190
  year: 2016
  end-page: 201
  ident: b0090
  article-title: Experimental investigation on heat transfer characteristics of supercritical CO
  publication-title: Int. J. Refrig.
– volume: 116
  start-page: 661
  year: 2016
  end-page: 676
  ident: b0110
  article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO
  publication-title: Energy
– volume: 154
  start-page: 335
  year: 2005
  end-page: 349
  ident: b0150
  article-title: Heat transfer in a supercritical fluid: Classification of heat transfer regimes
  publication-title: Journals
– volume: 2
  start-page: 613
  year: 1979
  end-page: 640
  ident: b0145
  article-title: Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions
  publication-title: Turbulent Forced Convection Channels Bundles
– volume: 44
  start-page: 521
  year: 2005
  end-page: 530
  ident: b0185
  article-title: A computational study of convection heat transfer to CO
  publication-title: Int. J. Therm. Sci.
– volume: 240
  start-page: 3336
  year: 2010
  end-page: 3349
  ident: b0065
  article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube
  publication-title: Nucl. Eng. Des.
– volume: 80
  start-page: 748
  year: 2015
  end-page: 758
  ident: b0135
  article-title: Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure
  publication-title: Int. J. Heat Mass Transf.
– volume: 80
  start-page: 748
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0135
  article-title: Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.09.066
– volume: 154
  start-page: 335
  issue: 3
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0150
  article-title: Heat transfer in a supercritical fluid: Classification of heat transfer regimes
  publication-title: Journals
– volume: 15
  start-page: 301
  issue: 2
  year: 1972
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0045
  article-title: The prediction of laminarization with a two-equation model of turbulence
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(72)90076-2
– volume: 5
  start-page: 673
  issue: 30
  year: 1928
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0170
  article-title: The stream-line motion of fluid in a curved pipe (Second paper)
  publication-title: Lond. Edinburgh Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440408564513
– volume: 16
  start-page: 1267
  issue: 6
  year: 1973
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0025
  article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(73)90135-X
– volume: 10
  start-page: 681
  issue: 5
  year: 1967
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0165
  article-title: Study on forced convective heat transfer in curved pipes: (3rd report, theoretical analysis under the condition of uniform wall temperature and practical formulae)
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(67)90113-5
– volume: 84
  start-page: 529
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0060
  article-title: Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.01.047
– volume: 116
  start-page: 661
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0110
  article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankin cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.005
– volume: 41
  start-page: 61
  issue: 1
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0095
  article-title: Developing mixed convection in a coiled heat exchanger
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(97)00111-7
– volume: 116
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0125
  article-title: Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.01.103
– volume: 125
  start-page: 1
  issue: 125
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0130
  article-title: On the effect of torsion on a helical pipe flow
  publication-title: J. Fluid Mech.
– volume: 41
  start-page: 665
  issue: 4–5
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0190
  article-title: The correction to take account of variable property effects on turbulent forced convection to water in a pipe
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(97)00228-7
– volume: 240
  start-page: 3336
  issue: 10
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0065
  article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2010.07.002
– volume: 4
  start-page: 546
  issue: 4
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0195
  article-title: Convective heat transfer in helical coils for constant-property and variable-property flows with high Reynolds numbers
  publication-title: Front. Energy Power Eng. Chin.
  doi: 10.1007/s11708-010-0116-8
– volume: 34
  start-page: 1295
  issue: 8
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0075
  article-title: Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.06.001
– volume: 124
  start-page: 1481
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0030
  article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.146
– volume: 54
  start-page: 1950
  issue: 9–10
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0055
  article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.008
– volume: 2
  start-page: 613
  year: 1979
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0145
  article-title: Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions
  publication-title: Turbulent Forced Convection Channels Bundles
– volume: 10
  start-page: 463
  issue: 5
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0020
  article-title: A review of flow and heat transfer characteristics in curved tubes
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2004.09.014
– volume: 45
  start-page: 4333
  issue: 21
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0180
  article-title: Temperature, velocity and mean turbulence structure in strongly heated internal gas flows: comparison of numerical predictions with data
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00119-9
– volume: 148
  start-page: 477
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0005
  article-title: Multi-objective optimization of the carbon dioxide transcritical power cycle with various configurations for engine waste heat recovery
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.05.038
– volume: 44
  start-page: 521
  issue: 6
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0185
  article-title: A computational study of convection heat transfer to CO2 at supercritical pressures in a vertical mini tube
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2004.11.003
– volume: 28
  start-page: 631
  issue: 3
  year: 1985
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0100
  article-title: Buoyancy in developed laminar curved tube flows
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(85)90185-1
– volume: 119
  start-page: 467
  issue: 3
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0175
  article-title: The effects of prandtl numbers on local and average convective heat transfer characteristics
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2824120
– volume: 55
  start-page: 3061
  issue: 11–12
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0035
  article-title: Heat transfer and hydraulic resistance of supercritical-pressure coolants. Part I: Specifics of thermo-physical properties of supercritical pressure fluids and turbulent heat transfer under heating conditions in round tubes (state of the art)
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.01.031
– volume: 52
  start-page: 713
  issue: 4
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0085
  article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-015-1580-9
– volume: 108
  start-page: 1645
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0120
  article-title: Experimental and numerical investigation on heat transfer characteristics of supercritical CO2 in the cooled helically coiled tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.01.004
– volume: 81
  start-page: 123
  year: 1959
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0140
  article-title: Friction factors for turbulent flow in curved pipes
  publication-title: J. Basic Eng.
  doi: 10.1115/1.4008390
– ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0160
  doi: 10.1615/IHTC5.3130
– volume: 134
  start-page: 1096
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0050
  article-title: Heat transfer behavior of supercritical nitrogen in the large specific heat region flowing in a vertical tube
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.047
– volume: 59
  start-page: 380
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0080
  article-title: Influence of buoyancy on heat transfer to water flowing in horizontal tubes under supercritical pressure
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.05.034
– volume: 127
  start-page: 897
  issue: 8
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0070
  article-title: Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube
  publication-title: J. Heat Transf.
  doi: 10.1115/1.1929787
– volume: 88
  start-page: 61
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0105
  article-title: Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.10.031
– volume: 67
  start-page: 190
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0090
  article-title: Experimental investigation on heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2016.03.010
– volume: 42
  start-page: 29597
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0015
  article-title: Experimental and theoretical study of flammability limits of hydrocarbon–CO2 mixture
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.10.053
– volume: 99
  start-page: 112
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0115
  article-title: Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2015.02.001
– volume: 13
  start-page: 431
  year: 1970
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0040
  article-title: Relaminarization in tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(70)90118-3
– volume: 86
  start-page: 414
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0010
  article-title: Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.043
– volume: 3
  start-page: 495
  year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2018.04.033_b0155
  article-title: Mixed convection heat transfer to supercritical pressure water
  publication-title: Int. Heat Transf. Conf. München
SSID ssj0017046
ssib006542062
ssib006542063
ssib025352553
Score 2.5097015
Snippet •The buoyancy parameter ϕ2 is proposed to quantified analysis buoyancy effect.•Flow acceleration plays a role in the heat transfer deterioration at...
SourceID crossref
nii
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 274
SubjectTerms Buoyancy force
Flow acceleration
Helically coiled tube
Semi-empirical correlation
Supercritical CO2
Title The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.033
https://cir.nii.ac.jp/crid/1873679867662660224
Volume 125
WOSCitedRecordID wos000440118600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLSAuiKcoUDQHDkiRUeL1Y31CVVQECBUOBYWT5V2vhaNgR0lc0h_Dn-QXMGPvbpNGoEaIQ6xoE493M19mPq_nwdgLlWeFjEK0fkUceoFMIk8oxT0tZJQXURwkbcWbLx_i01MxHiefer1fNhfmfBpXlVitktl_VTWOobIpdXYHdTuhOIDvUel4RLXj8dqKl019QWaTgghNRkAxrX_0M6XQzRilr4VyLJqZnivb9WD00TfPEProkGRDjokY5ZIaSiDN1XPKF96o81xW7ReQvbb9nVWbYUn7gdPpRV_VaHpylCU34o42NyPXSli0l6I5f0dm7665vcX9rZyUDpfjhsbGZVav8OXijMrGBBXUW-d_zfLa-G2z7TEULoDOmXJ0rwk3MbHWlPvhujHu-v8Yv-53rYq2XEa3ezF5VU5odbQwuy4K_BNtIdyuVsdmte4rXtTFNtqwuUm6LTEliekgSFHiHjvw4zBBS3xw_O5k_N49-4oHXXqZXeAt9vIyKvHvs_wTudqrynKNNp3dZXfM_Q4cdzi9x3q6us9utnHHavGA_US0gkUrtGgF1DwQWmEdrWDQCnUBG2gFRCvg54hWcGgFmj7YucMVtEJZQYdWsGgFh1bo0AqE1ofs85uTs9Fbz3QM8VTA46WnwoKqDRXDSA61lnwgY5EnRebnMgwCSd0QpMoyzVWEvHgQ6CyUIo-EUCGn9H7-iO1XdaUfM9BIArKA8xwZbaAF3kgJJYcZ8r2EhyjxkL22P3WqTDl96uoyTa8LgEOWOAmzrrTMDueOrHZTQ5U7CpwirHeQcoTAwOnTcShiTo9koziKkLUTt3_yDzN8ym5f_m2fsf3lvNFH7IY6X5aL-XOD-d8woAJM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+buoyancy+force+and+flow+acceleration+effects+of+supercritical+CO2+on+the+turbulent+heat+transfer+characteristics+in+heated+vertical+helically+coiled+tube&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhang%2C+Shijie&rft.au=Xu%2C+Xiaoxiao&rft.au=Liu%2C+Chao&rft.au=Zhang%2C+Yadong&rft.date=2018-10-01&rft.issn=0017-9310&rft.volume=125&rft.spage=274&rft.epage=289&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.04.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2018_04_033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon