Synthetic methane for closing the carbon loop: Comparative study of three carbon sources for remote carbon-neutral fuel synthetization
Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availabil...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 358; S. 122606 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.03.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availability is intermittent, which makes them challenging to work with. In this paper, we build upon the concept of Remote Renewable Energy Hubs (RREHs), which are hubs located at remote places with abundant renewable energy sources whose purpose is to produce carbon-neutral synthetic fuels. More precisely, we model and study the Energy Supply Chain (ESC) that would be required to provide a constant source of carbon-neutral synthetic methane, also called e-NG (electric Natural Gas) or e-methane (electric methane), in Belgium from an RREH located in Morocco. To be carbon neutral, a synthetic fuel has to be produced from existing carbon dioxide (CO2) that needs to be captured using either Direct Air Capture (DAC) or Post Combustion Carbon Capture (PCCC). In this work, we detail the impact of three different carbon sourcing configurations on the price of the e-methane delivered in Belgium. Our results show that sourcing CO2 through a combination of DAC and PCCC is more cost-effective, resulting in a cost of 146 €/MWh for e-methane delivered in Belgium, as opposed to relying solely on DAC, which leads to a cost of 158 €/MWh. Moreover, these scenarios are compared to a scenario where CO2 is captured in Morocco from a CO2 emitting asset that allow to deliver e-methane for a cost of 136 €/MWh.
•Model energy supply chain from Morocco to Belgium for electric methane;•Explore three CO2 sources for electric methane synthesis;•Analyse the pros and cons of each CO2 source on price and energy efficiency. |
|---|---|
| AbstractList | Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availability is intermittent, which makes them challenging to work with. In this paper, we build upon the concept of Remote Renewable Energy Hubs (RREHs), which are hubs located at remote places with abundant renewable energy sources whose purpose is to produce carbon-neutral synthetic fuels. More precisely, we model and study the Energy Supply Chain (ESC) that would be required to provide a constant source of carbon-neutral synthetic methane, also called e-NG (electric Natural Gas) or e-methane (electric methane), in Belgium from an RREH located in Morocco. To be carbon neutral, a synthetic fuel has to be produced from existing carbon dioxide (CO2) that needs to be captured using either Direct Air Capture (DAC) or Post Combustion Carbon Capture (PCCC). In this work, we detail the impact of three different carbon sourcing configurations on the price of the e-methane delivered in Belgium. Our results show that sourcing CO2 through a combination of DAC and PCCC is more cost-effective,
resulting in a cost of 146 e/MWh for e-methane delivered in Belgium, as opposed to relying solely on DAC, which leads to a cost of 158 e/MWh. Moreover, these scenarios are compared to a scenario where CO2 is captured in Morocco from a CO2 emitting asset that allow to deliver e-methane for a cost of 136 e/MWh. Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availability is intermittent, which makes them challenging to work with. In this paper, we build upon the concept of Remote Renewable Energy Hubs (RREHs), which are hubs located at remote places with abundant renewable energy sources whose purpose is to produce carbon-neutral synthetic fuels. More precisely, we model and study the Energy Supply Chain (ESC) that would be required to provide a constant source of carbon-neutral synthetic methane, also called e-NG (electric Natural Gas) or e-methane (electric methane), in Belgium from an RREH located in Morocco. To be carbon neutral, a synthetic fuel has to be produced from existing carbon dioxide (CO2) that needs to be captured using either Direct Air Capture (DAC) or Post Combustion Carbon Capture (PCCC). In this work, we detail the impact of three different carbon sourcing configurations on the price of the e-methane delivered in Belgium. Our results show that sourcing CO2 through a combination of DAC and PCCC is more cost-effective, resulting in a cost of 146 €/MWh for e-methane delivered in Belgium, as opposed to relying solely on DAC, which leads to a cost of 158 €/MWh. Moreover, these scenarios are compared to a scenario where CO2 is captured in Morocco from a CO2 emitting asset that allow to deliver e-methane for a cost of 136 €/MWh. Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availability is intermittent, which makes them challenging to work with. In this paper, we build upon the concept of Remote Renewable Energy Hubs (RREHs), which are hubs located at remote places with abundant renewable energy sources whose purpose is to produce carbon-neutral synthetic fuels. More precisely, we model and study the Energy Supply Chain (ESC) that would be required to provide a constant source of carbon-neutral synthetic methane, also called e-NG (electric Natural Gas) or e-methane (electric methane), in Belgium from an RREH located in Morocco. To be carbon neutral, a synthetic fuel has to be produced from existing carbon dioxide (CO2) that needs to be captured using either Direct Air Capture (DAC) or Post Combustion Carbon Capture (PCCC). In this work, we detail the impact of three different carbon sourcing configurations on the price of the e-methane delivered in Belgium. Our results show that sourcing CO2 through a combination of DAC and PCCC is more cost-effective, resulting in a cost of 146 €/MWh for e-methane delivered in Belgium, as opposed to relying solely on DAC, which leads to a cost of 158 €/MWh. Moreover, these scenarios are compared to a scenario where CO2 is captured in Morocco from a CO2 emitting asset that allow to deliver e-methane for a cost of 136 €/MWh. •Model energy supply chain from Morocco to Belgium for electric methane;•Explore three CO2 sources for electric methane synthesis;•Analyse the pros and cons of each CO2 source on price and energy efficiency. |
| ArticleNumber | 122606 |
| Author | Ernst, Damien Fonder, Michaël de Séjournet, Jehan Dachet, Victor Counotte, Pierre |
| Author_xml | – sequence: 1 givenname: Michaël orcidid: 0000-0002-9166-136X surname: Fonder fullname: Fonder, Michaël organization: University of Liège, Liège, Belgium – sequence: 2 givenname: Pierre surname: Counotte fullname: Counotte, Pierre organization: University of Liège, Liège, Belgium – sequence: 3 givenname: Victor orcidid: 0009-0005-6945-1111 surname: Dachet fullname: Dachet, Victor email: victor.dachet@uliege.be organization: University of Liège, Liège, Belgium – sequence: 4 givenname: Jehan surname: de Séjournet fullname: de Séjournet, Jehan organization: Tree Energy Solutions, Zaventem, Belgium – sequence: 5 givenname: Damien surname: Ernst fullname: Ernst, Damien organization: University of Liège, Liège, Belgium |
| BookMark | eNqFkc1u1DAUhS1UJKaFV0BessnUP4njIBagERSkSiyAteU4N1OPHDvYzkjTB-C58TQtCzZdXV_d8x1L51yiCx88IPSWki0lVFwftnoGD3F_2jLC-JYyJoh4gTZUtqzqKJUXaEM4ERUTtHuFLlM6EEIYZWSD_vw4-XwH2Ro8Qb7THvAYIjYuJOv3uJyw0bEPHrsQ5vd4F6ZZR53tEXDKy3DCYSyqCP90KSzRQHqwiTCF_HSpPCw5aofHBRxOj__eF6_gX6OXo3YJ3jzOK_Try-efu6_V7febb7tPt5WpeZurvq27pm5110lO615wILrvZFdrQijIoexATNeO7TjUbdMIqWkvRDMY3UsiRn6F-OrrLOxBhdhbdWQqaLu-F7dX2qgeVAlRKk7aWtJCvVupOYbfC6SsJpsMOFfiCktSnDacypqRs1SsUhNDShFGNUc76XhSlKhzXeqgnupS57rUWlcBP_wHGpsfsimZWfc8_nHFoaR3tBBVMha8gcFGMFkNwT5n8RfnLbpX |
| CitedBy_id | crossref_primary_10_1093_ce_zkae050 crossref_primary_10_1016_j_ijhydene_2024_09_216 crossref_primary_10_1016_j_egyr_2025_02_040 crossref_primary_10_1038_s41467_025_60652_1 crossref_primary_10_1109_TPS_2025_3540172 crossref_primary_10_1016_j_ijhydene_2024_07_137 crossref_primary_10_1016_j_enpol_2025_114622 |
| Cites_doi | 10.1021/acsengineeringau.1c00002 10.3390/en14134027 10.1016/j.fuel.2015.10.111 10.1016/j.apenergy.2018.06.001 10.1088/2516-1083/abf1ce 10.1016/j.energy.2016.08.068 10.1016/j.rser.2017.05.288 10.3389/fenrg.2020.533850 10.1016/S0921-5093(99)00092-1 10.1016/j.applthermaleng.2019.114071 10.1038/s41467-019-12618-3 10.1016/j.jcou.2015.03.003 10.1016/j.rser.2018.09.027 10.1016/j.apenergy.2016.12.098 10.1016/j.fuel.2023.127969 10.1016/j.renene.2015.07.066 10.1016/j.desal.2016.02.004 10.1016/j.jes.2019.03.014 10.1016/j.egyr.2022.01.042 10.1016/j.spc.2021.12.004 10.1371/journal.pone.0281380 10.1016/j.apenergy.2019.113594 10.21105/joss.04158 10.1016/j.energy.2016.08.060 10.3389/fenrg.2021.671279 10.3389/fclim.2021.630893 10.1016/j.jclepro.2022.135033 10.1109/MPAE.2007.264850 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 JLOSS Q33 |
| DOI | 10.1016/j.apenergy.2023.122606 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | oai_orbi_ulg_ac_be_2268_307481 10_1016_j_apenergy_2023_122606 S0306261923019700 |
| GeographicLocations | Belgium Morocco |
| GeographicLocations_xml | – name: Morocco – name: Belgium |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 R2- SAC WUQ ZY4 ~HD 7S9 L.6 JLOSS Q33 |
| ID | FETCH-LOGICAL-c437t-b749547a998314b63e0ab9894a001e8d3e0e0c97f7fd475568a1b665dcab806f3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001154240400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 1872-9118 |
| IngestDate | Sat Nov 29 01:28:25 EST 2025 Sat Sep 27 21:43:59 EDT 2025 Sat Nov 29 07:22:39 EST 2025 Tue Nov 18 21:42:05 EST 2025 Sat Mar 02 16:00:56 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Remote renewable energy hub Synthetic methane CO2 sourcing Energy transition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c437t-b749547a998314b63e0ab9894a001e8d3e0e0c97f7fd475568a1b665dcab806f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 9. Industry, innovation and infrastructure scopus-id:2-s2.0-85182884167 13. Climate action 7. Affordable and clean energy |
| ORCID | 0000-0002-9166-136X 0009-0005-6945-1111 0000-0002-3035-8260 |
| OpenAccessLink | https://orbi.uliege.be/handle/2268/307481 |
| PQID | 3153184201 |
| PQPubID | 24069 |
| ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_307481 proquest_miscellaneous_3153184201 crossref_primary_10_1016_j_apenergy_2023_122606 crossref_citationtrail_10_1016_j_apenergy_2023_122606 elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_122606 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-15 |
| PublicationDateYYYYMMDD | 2024-03-15 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Federici, Puna, Mata, Martins (b12) 2022; 8 Agora Verkehrswende, Agora Energiewende and Frontier Economics (b45) 2018 Danish Energy Agency (b31) 2023 Pospisil, Charvat, Arsenyeva, Klimes, Spilacek, Klemes (b43) 2019; 99 Coppitters, Costa, Chauvy, Dubois, De Paepe, Thomas, De Weireld, Contino (b30) 2023; 344 Staffell, Pfenninger (b26) 2016; 114 International Renewable Energy Agency (IRENA) (b42) 2012 Howard Rogers (for the Oxford Institute for Energy Studies) (b44) 2018 International Energy Agency (IEA) (b50) 2019 Hashimoto, Yamasaki, Fujimura, Matsui, Izumiya, Komori, El-Moneim, Akiyama, Habazaki, Kumagai, Kawashima, Asami (b3) 1999; 267 Berger, Radu, Detienne, Deschuyteneer, Richel, Ernst (b20) 2021; 9 Group (b25) 2023 Shayegh, Bosetti, Tavoni (b16) 2021; 3 Cui, Hultman, Edwards, He, Sen, Surana, McJeon, Iyer, Patel, Yu, Nace, Shearer (b33) 2019 Dongsha, Ning, Jun, Li, Yinghua (b54) 2017 Xlinks (b2) 2023 Miftari, Berger, Djelassi, Ernst (b23) 2022; 7 CIGRE C1.35 Working Group (b47) 2019 Sadeghi, Rashidinejad, Moeini-Aghtaie, Abdollahi (b4) 2019; 161 Reiter, Lindorfer (b9) 2015; 10 Schreiber, Peschel, Hentschel, Zapp (b11) 2020; 8 McQueen, Gomes, McCormick, Blumanthal, Pisciotta, Wilcox (b15) 2021; 3 Xiang, Merlin, Green (b38) 2016 Danish Energy Agency (b34) 2020 Mitsubishi Heavy Industries (for IEA Greenhouse Gas R&D Programme) (b36) 2004 Caldera, Bogdanov, Breyer (b37) 2016; 385 Marseille (b51) 2016 Zanco, Pérez-Calvo, Gasós, Cordiano, Becattini, Mazzotti (b17) 2021; 1 Danish Energy Agency (b49) 2020 Gorre, Ortloff, van Leeuwen (b29) 2019; 253 (b28) 2023 Götz, Lefebvre, Mörs, Koch, Graf, Bajohr, Reimert, Kolb (b40) 2016; 85 Brynolf, Taljegard, Grahn, Hansson (b7) 2018; 81 Brian Songhurst (b52) 2018 Mitsubishi Heavy Industries, LTD (b32) 2004 Danish Energy Agency (b46) 2020 Economic Research Institute for ASEAN and East Asia (ERIA) (b53) 2018 IEA ETSAP (b39) 2014 Rixhon, Limpens, Coppitters, Jeanmart, Contino (b8) 2021; 14 Hampp, Düren, Brown (b1) 2023; 18 Goffart De Roeck, Buchmayr, Gripekoven, Mertens, Dewulf (b13) 2022; 380 Fasihi, Bogdanov, Breyer (b21) 2015 Pfenninger, Staffell (b27) 2016; 114 Geidl, Koeppel, Favre-Perrod, Klockl, Andersson, Frohlich (b5) 2006; 5 Nareva (b24) 2023 Roensch, Schneider, Matthischke, Schlaeter, Gaetz, Lefebvre, Prabhakaran, Bajohr (b41) 2016; 166 Zhang, Bauer, Mutel, Volkart (b10) 2017; 190 Mukherjee, Okolie, Abdelrasoul, Niu, Dalai (b18) 2019; 83 Dachet, Benzerga, Fonteneau, Ernst (b19) 2023 Interior Gas Utility (b35) 2013 EIA (b48) 2018 Roussanaly, Rubin, Der Spek, Booras, Berghout, Fout, Garcia, Gardarsdottir, Kuncheekanna, Matuszewski, McCoy, Morgan, Nazir, Ramirez (b22) 2021 Lewandowska-Bernat, Desideri (b6) 2018; 228 Chauvy, Dubois, Thomas, De Weireld (b14) 2022; 30 Mitsubishi Heavy Industries, LTD (10.1016/j.apenergy.2023.122606_b32) 2004 Roussanaly (10.1016/j.apenergy.2023.122606_b22) 2021 Group (10.1016/j.apenergy.2023.122606_b25) 2023 Rixhon (10.1016/j.apenergy.2023.122606_b8) 2021; 14 Geidl (10.1016/j.apenergy.2023.122606_b5) 2006; 5 Pospisil (10.1016/j.apenergy.2023.122606_b43) 2019; 99 Brian Songhurst (10.1016/j.apenergy.2023.122606_b52) 2018 Zhang (10.1016/j.apenergy.2023.122606_b10) 2017; 190 Coppitters (10.1016/j.apenergy.2023.122606_b30) 2023; 344 Cui (10.1016/j.apenergy.2023.122606_b33) 2019 Howard Rogers (for the Oxford Institute for Energy Studies) (10.1016/j.apenergy.2023.122606_b44) 2018 Xlinks (10.1016/j.apenergy.2023.122606_b2) 2023 Danish Energy Agency (10.1016/j.apenergy.2023.122606_b34) 2020 Reiter (10.1016/j.apenergy.2023.122606_b9) 2015; 10 Xiang (10.1016/j.apenergy.2023.122606_b38) 2016 Economic Research Institute for ASEAN and East Asia (ERIA) (10.1016/j.apenergy.2023.122606_b53) 2018 Danish Energy Agency (10.1016/j.apenergy.2023.122606_b46) 2020 Danish Energy Agency (10.1016/j.apenergy.2023.122606_b49) 2020 Danish Energy Agency (10.1016/j.apenergy.2023.122606_b31) 2023 Agora Verkehrswende, Agora Energiewende and Frontier Economics (10.1016/j.apenergy.2023.122606_b45) 2018 Zanco (10.1016/j.apenergy.2023.122606_b17) 2021; 1 McQueen (10.1016/j.apenergy.2023.122606_b15) 2021; 3 Pfenninger (10.1016/j.apenergy.2023.122606_b27) 2016; 114 International Energy Agency (IEA) (10.1016/j.apenergy.2023.122606_b50) 2019 Nareva (10.1016/j.apenergy.2023.122606_b24) 2023 Staffell (10.1016/j.apenergy.2023.122606_b26) 2016; 114 Hampp (10.1016/j.apenergy.2023.122606_b1) 2023; 18 Mitsubishi Heavy Industries (for IEA Greenhouse Gas R&D Programme) (10.1016/j.apenergy.2023.122606_b36) 2004 EIA (10.1016/j.apenergy.2023.122606_b48) 2018 CIGRE C1.35 Working Group (10.1016/j.apenergy.2023.122606_b47) 2019 IEA ETSAP (10.1016/j.apenergy.2023.122606_b39) 2014 Hashimoto (10.1016/j.apenergy.2023.122606_b3) 1999; 267 Interior Gas Utility (10.1016/j.apenergy.2023.122606_b35) 2013 Schreiber (10.1016/j.apenergy.2023.122606_b11) 2020; 8 Fasihi (10.1016/j.apenergy.2023.122606_b21) 2015 (10.1016/j.apenergy.2023.122606_b28) 2023 Goffart De Roeck (10.1016/j.apenergy.2023.122606_b13) 2022; 380 Berger (10.1016/j.apenergy.2023.122606_b20) 2021; 9 International Renewable Energy Agency (IRENA) (10.1016/j.apenergy.2023.122606_b42) 2012 Sadeghi (10.1016/j.apenergy.2023.122606_b4) 2019; 161 Mukherjee (10.1016/j.apenergy.2023.122606_b18) 2019; 83 Dachet (10.1016/j.apenergy.2023.122606_b19) 2023 Gorre (10.1016/j.apenergy.2023.122606_b29) 2019; 253 Chauvy (10.1016/j.apenergy.2023.122606_b14) 2022; 30 Dongsha (10.1016/j.apenergy.2023.122606_b54) 2017 Caldera (10.1016/j.apenergy.2023.122606_b37) 2016; 385 Marseille (10.1016/j.apenergy.2023.122606_b51) 2016 Brynolf (10.1016/j.apenergy.2023.122606_b7) 2018; 81 Lewandowska-Bernat (10.1016/j.apenergy.2023.122606_b6) 2018; 228 Federici (10.1016/j.apenergy.2023.122606_b12) 2022; 8 Roensch (10.1016/j.apenergy.2023.122606_b41) 2016; 166 Götz (10.1016/j.apenergy.2023.122606_b40) 2016; 85 Shayegh (10.1016/j.apenergy.2023.122606_b16) 2021; 3 Miftari (10.1016/j.apenergy.2023.122606_b23) 2022; 7 |
| References_xml | – volume: 18 year: 2023 ident: b1 article-title: Import options for chemical energy carriers from renewable sources to Germany publication-title: PLoS One – volume: 228 start-page: 57 year: 2018 end-page: 67 ident: b6 article-title: Opportunities of power-to-gas technology in different energy systems architectures publication-title: Appl Energy – start-page: 3051 year: 2015 end-page: 3068 ident: b21 article-title: Economics of global LNG trading based on hybrid PV-wind power plants publication-title: 31st European photovoltaic solar energy conference and exhibition; 3051-3067 – year: 2017 ident: b54 article-title: Comparative research on LNG receiving terminals and FSRU – year: 2013 ident: b35 article-title: LNG storage tank cost analysis – volume: 380 year: 2022 ident: b13 article-title: Comparative life cycle assessment of power-to-methane pathways: Process simulation of biological and catalytic biogas methanation publication-title: J Clean Prod – year: 2023 ident: b19 article-title: Towards CO2 valorization in a multi remote renewable energy hub framework publication-title: 36th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems (ECOS 2023) – year: 2020 ident: b34 article-title: Technology data for energy storage – volume: 5 start-page: 24 year: 2006 end-page: 30 ident: b5 article-title: Energy hubs for the future publication-title: IEEE Power Energy Mag – year: 2019 ident: b33 article-title: Quantifying operational lifetimes for coal power plants under the Paris goals publication-title: Nature Commun – year: 2018 ident: b52 article-title: LNG plant cost reduction 2014–2018 – volume: 8 year: 2020 ident: b11 article-title: Life cycle assessment of power-to-syngas: Comparing high temperature co-electrolysis and steam methane reforming publication-title: Front Energy Res – volume: 114 start-page: 1251 year: 2016 end-page: 1265 ident: b27 article-title: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data publication-title: Energy – volume: 344 year: 2023 ident: b30 article-title: Energy, Exergy, Economic and Environmental (4E) analysis of integrated direct air capture and CO publication-title: Fuel – year: 2023 ident: b31 article-title: Technology data for carbon capture, transport and storage – volume: 1 start-page: 50 year: 2021 end-page: 72 ident: b17 article-title: Postcombustion CO2 capture: A comparative techno-economic assessment of three technologies using a solvent, an adsorbent, and a membrane publication-title: ACS Eng Au – volume: 114 start-page: 1224 year: 2016 end-page: 1239 ident: b26 article-title: Using bias-corrected reanalysis to simulate current and future wind power output publication-title: Energy – start-page: 1 year: 2004 end-page: 115 ident: b32 article-title: Ship transport of CO2 – volume: 161 year: 2019 ident: b4 article-title: The energy hub: An extensive survey on the state-of-the-art publication-title: Appl Therm Eng – volume: 385 start-page: 207 year: 2016 end-page: 216 ident: b37 article-title: Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate publication-title: Desalination – volume: 253 year: 2019 ident: b29 article-title: Production costs for synthetic methane in 2030 and 2050 of an optimized power-to-gas plant with intermediate hydrogen storage publication-title: Appl Energy – volume: 3 year: 2021 ident: b15 article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future publication-title: Prog Energy – volume: 30 start-page: 301 year: 2022 end-page: 315 ident: b14 article-title: Environmental impacts of the production of synthetic natural gas from industrial carbon dioxide publication-title: Sustain Prod Consump – year: 2023 ident: b25 article-title: Safi ciment plant – year: 2018 ident: b45 article-title: The future cost of electricity-based synthetic fuels – volume: 7 start-page: 4158 year: 2022 ident: b23 article-title: GBOML: Graph-based optimization modeling language publication-title: J Open Source Softw – year: 2014 ident: b39 article-title: Electricity transmission and distribution – volume: 14 start-page: 1 year: 2021 end-page: 23 ident: b8 article-title: The role of electrofuels under uncertainties for the Belgian energy transition publication-title: Energies – volume: 190 start-page: 326 year: 2017 end-page: 338 ident: b10 article-title: Life cycle assessment of power-to-gas: Approaches, system variations and their environmental implications publication-title: Appl Energy – volume: 81 start-page: 1887 year: 2018 end-page: 1905 ident: b7 article-title: Electrofuels for the transport sector: A review of production costs publication-title: Renew Sustain Energy Rev – start-page: 1 year: 2016 end-page: 6 ident: b38 article-title: Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection publication-title: 12th IET international conference on AC and DC power transmission (ACDC 2016) – year: 2020 ident: b46 article-title: Technology data for generation of electricity and district heating – year: 2019 ident: b50 article-title: The future of hydrogen – year: 2016 ident: b51 article-title: Desalination technologies and economics – year: 2023 ident: b2 article-title: The Morocco - UK power project – volume: 99 start-page: 1 year: 2019 end-page: 15 ident: b43 article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage publication-title: Renew Sustain Energy Rev – year: 2019 ident: b47 article-title: Global electricity network: Feasibility study – year: 2021 ident: b22 article-title: Towards improved guidelines for cost evaluation of carbon capture and storage – year: 2023 ident: b28 article-title: Renewables.ninja – year: 2004 ident: b36 article-title: Ship transport of CO2 (Report PH4/30 – volume: 9 year: 2021 ident: b20 article-title: Remote renewable hubs for carbon-neutral synthetic fuel production publication-title: Front Energy Res – volume: 8 start-page: 554 year: 2022 end-page: 560 ident: b12 article-title: Life cycle analysis of a combined electrolysis and methanation reactor for methane production publication-title: Energy Rep – year: 2023 ident: b24 article-title: Safi thermal power plant – volume: 267 start-page: 200 year: 1999 end-page: 206 ident: b3 article-title: Global CO2 recycling—novel materials and prospect for prevention of global warming and abundant energy supply publication-title: Mater Sci Eng A – year: 2018 ident: b48 article-title: Assessing HVDC transmission for impacts of non-dispatchable generation – volume: 166 start-page: 276 year: 2016 end-page: 296 ident: b41 article-title: Review on methanation: From fundamentals to current projects publication-title: Fuel – volume: 3 year: 2021 ident: b16 article-title: Future prospects of direct air capture technologies: Insights from an expert elicitation survey publication-title: Front Clim – year: 2020 ident: b49 article-title: Technology data for renewable fuels – year: 2012 ident: b42 article-title: Water desalination using renewable energy: Technology brief – volume: 83 start-page: 46 year: 2019 end-page: 63 ident: b18 article-title: Review of post-combustion carbon dioxide capture technologies using activated carbon publication-title: J Environ Sci – volume: 85 start-page: 1371 year: 2016 end-page: 1390 ident: b40 article-title: Renewable power-to-gas: A technological and economic review publication-title: Renew Energy – year: 2018 ident: b44 article-title: The LNG shipping forecast: Costs rebounding, outlook uncertain – year: 2018 ident: b53 article-title: Investment in LNG supply chain infrastructure estimation – volume: 10 start-page: 40 year: 2015 end-page: 49 ident: b9 article-title: Evaluating CO2 sources for power-to-gas applications - A case study for Austria publication-title: J CO2 Util – volume: 1 start-page: 50 issue: 1 year: 2021 ident: 10.1016/j.apenergy.2023.122606_b17 article-title: Postcombustion CO2 capture: A comparative techno-economic assessment of three technologies using a solvent, an adsorbent, and a membrane publication-title: ACS Eng Au doi: 10.1021/acsengineeringau.1c00002 – start-page: 3051 year: 2015 ident: 10.1016/j.apenergy.2023.122606_b21 article-title: Economics of global LNG trading based on hybrid PV-wind power plants – volume: 14 start-page: 1 issue: 13 year: 2021 ident: 10.1016/j.apenergy.2023.122606_b8 article-title: The role of electrofuels under uncertainties for the Belgian energy transition publication-title: Energies doi: 10.3390/en14134027 – year: 2020 ident: 10.1016/j.apenergy.2023.122606_b46 – year: 2018 ident: 10.1016/j.apenergy.2023.122606_b48 – volume: 166 start-page: 276 year: 2016 ident: 10.1016/j.apenergy.2023.122606_b41 article-title: Review on methanation: From fundamentals to current projects publication-title: Fuel doi: 10.1016/j.fuel.2015.10.111 – year: 2012 ident: 10.1016/j.apenergy.2023.122606_b42 – volume: 228 start-page: 57 year: 2018 ident: 10.1016/j.apenergy.2023.122606_b6 article-title: Opportunities of power-to-gas technology in different energy systems architectures publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.001 – year: 2018 ident: 10.1016/j.apenergy.2023.122606_b53 – year: 2023 ident: 10.1016/j.apenergy.2023.122606_b2 – volume: 3 issue: 3 year: 2021 ident: 10.1016/j.apenergy.2023.122606_b15 article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future publication-title: Prog Energy doi: 10.1088/2516-1083/abf1ce – year: 2020 ident: 10.1016/j.apenergy.2023.122606_b34 – volume: 114 start-page: 1224 year: 2016 ident: 10.1016/j.apenergy.2023.122606_b26 article-title: Using bias-corrected reanalysis to simulate current and future wind power output publication-title: Energy doi: 10.1016/j.energy.2016.08.068 – volume: 81 start-page: 1887 year: 2018 ident: 10.1016/j.apenergy.2023.122606_b7 article-title: Electrofuels for the transport sector: A review of production costs publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.288 – year: 2023 ident: 10.1016/j.apenergy.2023.122606_b31 – volume: 8 year: 2020 ident: 10.1016/j.apenergy.2023.122606_b11 article-title: Life cycle assessment of power-to-syngas: Comparing high temperature co-electrolysis and steam methane reforming publication-title: Front Energy Res doi: 10.3389/fenrg.2020.533850 – volume: 267 start-page: 200 issue: 2 year: 1999 ident: 10.1016/j.apenergy.2023.122606_b3 article-title: Global CO2 recycling—novel materials and prospect for prevention of global warming and abundant energy supply publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(99)00092-1 – start-page: 1 year: 2004 ident: 10.1016/j.apenergy.2023.122606_b32 – volume: 161 year: 2019 ident: 10.1016/j.apenergy.2023.122606_b4 article-title: The energy hub: An extensive survey on the state-of-the-art publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114071 – year: 2023 ident: 10.1016/j.apenergy.2023.122606_b24 – year: 2019 ident: 10.1016/j.apenergy.2023.122606_b33 article-title: Quantifying operational lifetimes for coal power plants under the Paris goals publication-title: Nature Commun doi: 10.1038/s41467-019-12618-3 – start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2023.122606_b38 article-title: Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection – volume: 10 start-page: 40 year: 2015 ident: 10.1016/j.apenergy.2023.122606_b9 article-title: Evaluating CO2 sources for power-to-gas applications - A case study for Austria publication-title: J CO2 Util doi: 10.1016/j.jcou.2015.03.003 – year: 2023 ident: 10.1016/j.apenergy.2023.122606_b25 – volume: 99 start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2023.122606_b43 article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.09.027 – year: 2023 ident: 10.1016/j.apenergy.2023.122606_b19 article-title: Towards CO2 valorization in a multi remote renewable energy hub framework – year: 2018 ident: 10.1016/j.apenergy.2023.122606_b45 – volume: 190 start-page: 326 year: 2017 ident: 10.1016/j.apenergy.2023.122606_b10 article-title: Life cycle assessment of power-to-gas: Approaches, system variations and their environmental implications publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.098 – volume: 344 year: 2023 ident: 10.1016/j.apenergy.2023.122606_b30 article-title: Energy, Exergy, Economic and Environmental (4E) analysis of integrated direct air capture and CO2 methanation under uncertainty publication-title: Fuel doi: 10.1016/j.fuel.2023.127969 – volume: 85 start-page: 1371 year: 2016 ident: 10.1016/j.apenergy.2023.122606_b40 article-title: Renewable power-to-gas: A technological and economic review publication-title: Renew Energy doi: 10.1016/j.renene.2015.07.066 – year: 2020 ident: 10.1016/j.apenergy.2023.122606_b49 – volume: 385 start-page: 207 year: 2016 ident: 10.1016/j.apenergy.2023.122606_b37 article-title: Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate publication-title: Desalination doi: 10.1016/j.desal.2016.02.004 – volume: 83 start-page: 46 year: 2019 ident: 10.1016/j.apenergy.2023.122606_b18 article-title: Review of post-combustion carbon dioxide capture technologies using activated carbon publication-title: J Environ Sci doi: 10.1016/j.jes.2019.03.014 – year: 2023 ident: 10.1016/j.apenergy.2023.122606_b28 – year: 2019 ident: 10.1016/j.apenergy.2023.122606_b50 – volume: 8 start-page: 554 year: 2022 ident: 10.1016/j.apenergy.2023.122606_b12 article-title: Life cycle analysis of a combined electrolysis and methanation reactor for methane production publication-title: Energy Rep doi: 10.1016/j.egyr.2022.01.042 – volume: 30 start-page: 301 year: 2022 ident: 10.1016/j.apenergy.2023.122606_b14 article-title: Environmental impacts of the production of synthetic natural gas from industrial carbon dioxide publication-title: Sustain Prod Consump doi: 10.1016/j.spc.2021.12.004 – year: 2013 ident: 10.1016/j.apenergy.2023.122606_b35 – volume: 18 issue: 2 year: 2023 ident: 10.1016/j.apenergy.2023.122606_b1 article-title: Import options for chemical energy carriers from renewable sources to Germany publication-title: PLoS One doi: 10.1371/journal.pone.0281380 – year: 2018 ident: 10.1016/j.apenergy.2023.122606_b44 – year: 2017 ident: 10.1016/j.apenergy.2023.122606_b54 – volume: 253 year: 2019 ident: 10.1016/j.apenergy.2023.122606_b29 article-title: Production costs for synthetic methane in 2030 and 2050 of an optimized power-to-gas plant with intermediate hydrogen storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113594 – year: 2018 ident: 10.1016/j.apenergy.2023.122606_b52 – year: 2014 ident: 10.1016/j.apenergy.2023.122606_b39 – year: 2019 ident: 10.1016/j.apenergy.2023.122606_b47 – volume: 7 start-page: 4158 issue: 72 year: 2022 ident: 10.1016/j.apenergy.2023.122606_b23 article-title: GBOML: Graph-based optimization modeling language publication-title: J Open Source Softw doi: 10.21105/joss.04158 – volume: 114 start-page: 1251 year: 2016 ident: 10.1016/j.apenergy.2023.122606_b27 article-title: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data publication-title: Energy doi: 10.1016/j.energy.2016.08.060 – year: 2004 ident: 10.1016/j.apenergy.2023.122606_b36 – year: 2021 ident: 10.1016/j.apenergy.2023.122606_b22 – volume: 9 year: 2021 ident: 10.1016/j.apenergy.2023.122606_b20 article-title: Remote renewable hubs for carbon-neutral synthetic fuel production publication-title: Front Energy Res doi: 10.3389/fenrg.2021.671279 – volume: 3 year: 2021 ident: 10.1016/j.apenergy.2023.122606_b16 article-title: Future prospects of direct air capture technologies: Insights from an expert elicitation survey publication-title: Front Clim doi: 10.3389/fclim.2021.630893 – year: 2016 ident: 10.1016/j.apenergy.2023.122606_b51 – volume: 380 year: 2022 ident: 10.1016/j.apenergy.2023.122606_b13 article-title: Comparative life cycle assessment of power-to-methane pathways: Process simulation of biological and catalytic biogas methanation publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.135033 – volume: 5 start-page: 24 issue: 1 year: 2006 ident: 10.1016/j.apenergy.2023.122606_b5 article-title: Energy hubs for the future publication-title: IEEE Power Energy Mag doi: 10.1109/MPAE.2007.264850 |
| SSID | ssj0002120 |
| Score | 2.4921188 |
| Snippet | Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is... |
| SourceID | liege proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122606 |
| SubjectTerms | air assets Belgium carbon carbon dioxide CO2 Sourcing combustion comparative study cost effectiveness Energie Energy Energy Transition Engineering, computing & technology Ingénierie, informatique & technologie Mathematics - Optimization and Control methane Morocco natural gas prices Remote Renewable Energy Hub renewable energy sources supply chain synthetic fuels Synthetic Methane |
| Title | Synthetic methane for closing the carbon loop: Comparative study of three carbon sources for remote carbon-neutral fuel synthetization |
| URI | https://dx.doi.org/10.1016/j.apenergy.2023.122606 https://www.proquest.com/docview/3153184201 https://orbi.uliege.be/handle/2268/307481 |
| Volume | 358 |
| WOSCitedRecordID | wos001154240400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FhgMcEBQqwkuLxK24-P3gVkoQcKgqpaDcVrvrNaSy7CgvFX4Av4Yfycw-7JSCCkJcIsdeP5Lv887s7sw3hDwLMbvaz5Xn-4p7sUhiTyRR5YErLgMlI5mmlS42kR0f59NpcTIYfHe5MJs6a5r8_LyY_1eoYR-AjamzfwF3d1HYAdsAOnwC7PD5R8BPvjTg1KEOK1aH5o1R9ZZ1u3SZUZIvBIBet-0cJwSOtgTAl05jegUYdy3NDL9WbthfKADXHfEatcapkv1qrWpUP9B3_tqj7fRtra-rdKZhb_ma0jBGB-_rNftXXcQHZsu3K1O97wSMdx-l-xpFqLXx-DiTRi3ZBeNO7MK_nqo1yyzqs30B7NxGGGNwl8nuNBNuLummj3DSiV5-6uHAz5gw02_nWYj9dr7dsUdGFP6SkTDzFWcHfG5-9QGWkD8IwBH1f1Ll1nZ-gjc0A03whzPfv0aGYZYU0IcOD9-Np-87yx9aGVD3gFsZ6b--2--coWGNEROX3APt85zeJrfsYIUeGpLdIQPV7JKbWxKWu2Rv3GdKQlNrKpZ3ybeOh9TykAJ9qOUhhUPUcIgiD1_SLRZSzULaVlSz0LWzLNSXMSykF1lIkYX0IgvvkQ9vxqdHbz1b9MOTcZStPJHBkD3OeFHkURCLNFI-F1glgINDpfISvitfFlmVVWWcoX4eD0SaJqXkIvfTKtojO03bqPuEClSfi6oChyxxIStRln5ViSrhUclh3DMiifv3mbSK-FiYpWYu9PGMOdQYosYMaiPyojtvbjRhrjyjcOAy69kaj5UBJ68897lmA2sXYsY2IUNBeL29rj8xLplQDBrmDKx1nAcj8tSRhoGlwOU_QLhdL1kEzk2Qx-DxP_iHx3lIbvRv6iOys1qs1WNyXW5Ws-XiiX0jfgCa7-2D |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+methane+for+closing+the+carbon+loop%3A+Comparative+study+of+three+carbon+sources+for+remote+carbon-neutral+fuel+synthetization&rft.jtitle=Applied+energy&rft.au=Fonder%2C+Micha%C3%ABl&rft.au=Counotte%2C+Pierre&rft.au=Dachet%2C+Victor&rft.au=de+S%C3%A9journet%2C+Jehan&rft.date=2024-03-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=358&rft_id=info:doi/10.1016%2Fj.apenergy.2023.122606&rft.externalDocID=S0306261923019700 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |