Synthetic methane for closing the carbon loop: Comparative study of three carbon sources for remote carbon-neutral fuel synthetization

Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 358; S. 122606
Hauptverfasser: Fonder, Michaël, Counotte, Pierre, Dachet, Victor, de Séjournet, Jehan, Ernst, Damien
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.03.2024
Elsevier
Schlagworte:
ISSN:0306-2619, 1872-9118, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availability is intermittent, which makes them challenging to work with. In this paper, we build upon the concept of Remote Renewable Energy Hubs (RREHs), which are hubs located at remote places with abundant renewable energy sources whose purpose is to produce carbon-neutral synthetic fuels. More precisely, we model and study the Energy Supply Chain (ESC) that would be required to provide a constant source of carbon-neutral synthetic methane, also called e-NG (electric Natural Gas) or e-methane (electric methane), in Belgium from an RREH located in Morocco. To be carbon neutral, a synthetic fuel has to be produced from existing carbon dioxide (CO2) that needs to be captured using either Direct Air Capture (DAC) or Post Combustion Carbon Capture (PCCC). In this work, we detail the impact of three different carbon sourcing configurations on the price of the e-methane delivered in Belgium. Our results show that sourcing CO2 through a combination of DAC and PCCC is more cost-effective, resulting in a cost of 146 €/MWh for e-methane delivered in Belgium, as opposed to relying solely on DAC, which leads to a cost of 158 €/MWh. Moreover, these scenarios are compared to a scenario where CO2 is captured in Morocco from a CO2 emitting asset that allow to deliver e-methane for a cost of 136 €/MWh. •Model energy supply chain from Morocco to Belgium for electric methane;•Explore three CO2 sources for electric methane synthesis;•Analyse the pros and cons of each CO2 source on price and energy efficiency.
AbstractList Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availability is intermittent, which makes them challenging to work with. In this paper, we build upon the concept of Remote Renewable Energy Hubs (RREHs), which are hubs located at remote places with abundant renewable energy sources whose purpose is to produce carbon-neutral synthetic fuels. More precisely, we model and study the Energy Supply Chain (ESC) that would be required to provide a constant source of carbon-neutral synthetic methane, also called e-NG (electric Natural Gas) or e-methane (electric methane), in Belgium from an RREH located in Morocco. To be carbon neutral, a synthetic fuel has to be produced from existing carbon dioxide (CO2) that needs to be captured using either Direct Air Capture (DAC) or Post Combustion Carbon Capture (PCCC). In this work, we detail the impact of three different carbon sourcing configurations on the price of the e-methane delivered in Belgium. Our results show that sourcing CO2 through a combination of DAC and PCCC is more cost-effective, resulting in a cost of 146 e/MWh for e-methane delivered in Belgium, as opposed to relying solely on DAC, which leads to a cost of 158 e/MWh. Moreover, these scenarios are compared to a scenario where CO2 is captured in Morocco from a CO2 emitting asset that allow to deliver e-methane for a cost of 136 e/MWh.
Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availability is intermittent, which makes them challenging to work with. In this paper, we build upon the concept of Remote Renewable Energy Hubs (RREHs), which are hubs located at remote places with abundant renewable energy sources whose purpose is to produce carbon-neutral synthetic fuels. More precisely, we model and study the Energy Supply Chain (ESC) that would be required to provide a constant source of carbon-neutral synthetic methane, also called e-NG (electric Natural Gas) or e-methane (electric methane), in Belgium from an RREH located in Morocco. To be carbon neutral, a synthetic fuel has to be produced from existing carbon dioxide (CO2) that needs to be captured using either Direct Air Capture (DAC) or Post Combustion Carbon Capture (PCCC). In this work, we detail the impact of three different carbon sourcing configurations on the price of the e-methane delivered in Belgium. Our results show that sourcing CO2 through a combination of DAC and PCCC is more cost-effective, resulting in a cost of 146 €/MWh for e-methane delivered in Belgium, as opposed to relying solely on DAC, which leads to a cost of 158 €/MWh. Moreover, these scenarios are compared to a scenario where CO2 is captured in Morocco from a CO2 emitting asset that allow to deliver e-methane for a cost of 136 €/MWh.
Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is to leverage renewable energies. However, these energy sources are often located far away from places that need the energy, and their availability is intermittent, which makes them challenging to work with. In this paper, we build upon the concept of Remote Renewable Energy Hubs (RREHs), which are hubs located at remote places with abundant renewable energy sources whose purpose is to produce carbon-neutral synthetic fuels. More precisely, we model and study the Energy Supply Chain (ESC) that would be required to provide a constant source of carbon-neutral synthetic methane, also called e-NG (electric Natural Gas) or e-methane (electric methane), in Belgium from an RREH located in Morocco. To be carbon neutral, a synthetic fuel has to be produced from existing carbon dioxide (CO2) that needs to be captured using either Direct Air Capture (DAC) or Post Combustion Carbon Capture (PCCC). In this work, we detail the impact of three different carbon sourcing configurations on the price of the e-methane delivered in Belgium. Our results show that sourcing CO2 through a combination of DAC and PCCC is more cost-effective, resulting in a cost of 146 €/MWh for e-methane delivered in Belgium, as opposed to relying solely on DAC, which leads to a cost of 158 €/MWh. Moreover, these scenarios are compared to a scenario where CO2 is captured in Morocco from a CO2 emitting asset that allow to deliver e-methane for a cost of 136 €/MWh. •Model energy supply chain from Morocco to Belgium for electric methane;•Explore three CO2 sources for electric methane synthesis;•Analyse the pros and cons of each CO2 source on price and energy efficiency.
ArticleNumber 122606
Author Ernst, Damien
Fonder, Michaël
de Séjournet, Jehan
Dachet, Victor
Counotte, Pierre
Author_xml – sequence: 1
  givenname: Michaël
  orcidid: 0000-0002-9166-136X
  surname: Fonder
  fullname: Fonder, Michaël
  organization: University of Liège, Liège, Belgium
– sequence: 2
  givenname: Pierre
  surname: Counotte
  fullname: Counotte, Pierre
  organization: University of Liège, Liège, Belgium
– sequence: 3
  givenname: Victor
  orcidid: 0009-0005-6945-1111
  surname: Dachet
  fullname: Dachet, Victor
  email: victor.dachet@uliege.be
  organization: University of Liège, Liège, Belgium
– sequence: 4
  givenname: Jehan
  surname: de Séjournet
  fullname: de Séjournet, Jehan
  organization: Tree Energy Solutions, Zaventem, Belgium
– sequence: 5
  givenname: Damien
  surname: Ernst
  fullname: Ernst, Damien
  organization: University of Liège, Liège, Belgium
BookMark eNqFkc1u1DAUhS1UJKaFV0BessnUP4njIBagERSkSiyAteU4N1OPHDvYzkjTB-C58TQtCzZdXV_d8x1L51yiCx88IPSWki0lVFwftnoGD3F_2jLC-JYyJoh4gTZUtqzqKJUXaEM4ERUTtHuFLlM6EEIYZWSD_vw4-XwH2Ro8Qb7THvAYIjYuJOv3uJyw0bEPHrsQ5vd4F6ZZR53tEXDKy3DCYSyqCP90KSzRQHqwiTCF_HSpPCw5aofHBRxOj__eF6_gX6OXo3YJ3jzOK_Try-efu6_V7febb7tPt5WpeZurvq27pm5110lO615wILrvZFdrQijIoexATNeO7TjUbdMIqWkvRDMY3UsiRn6F-OrrLOxBhdhbdWQqaLu-F7dX2qgeVAlRKk7aWtJCvVupOYbfC6SsJpsMOFfiCktSnDacypqRs1SsUhNDShFGNUc76XhSlKhzXeqgnupS57rUWlcBP_wHGpsfsimZWfc8_nHFoaR3tBBVMha8gcFGMFkNwT5n8RfnLbpX
CitedBy_id crossref_primary_10_1093_ce_zkae050
crossref_primary_10_1016_j_ijhydene_2024_09_216
crossref_primary_10_1016_j_egyr_2025_02_040
crossref_primary_10_1038_s41467_025_60652_1
crossref_primary_10_1109_TPS_2025_3540172
crossref_primary_10_1016_j_ijhydene_2024_07_137
crossref_primary_10_1016_j_enpol_2025_114622
Cites_doi 10.1021/acsengineeringau.1c00002
10.3390/en14134027
10.1016/j.fuel.2015.10.111
10.1016/j.apenergy.2018.06.001
10.1088/2516-1083/abf1ce
10.1016/j.energy.2016.08.068
10.1016/j.rser.2017.05.288
10.3389/fenrg.2020.533850
10.1016/S0921-5093(99)00092-1
10.1016/j.applthermaleng.2019.114071
10.1038/s41467-019-12618-3
10.1016/j.jcou.2015.03.003
10.1016/j.rser.2018.09.027
10.1016/j.apenergy.2016.12.098
10.1016/j.fuel.2023.127969
10.1016/j.renene.2015.07.066
10.1016/j.desal.2016.02.004
10.1016/j.jes.2019.03.014
10.1016/j.egyr.2022.01.042
10.1016/j.spc.2021.12.004
10.1371/journal.pone.0281380
10.1016/j.apenergy.2019.113594
10.21105/joss.04158
10.1016/j.energy.2016.08.060
10.3389/fenrg.2021.671279
10.3389/fclim.2021.630893
10.1016/j.jclepro.2022.135033
10.1109/MPAE.2007.264850
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
JLOSS
Q33
DOI 10.1016/j.apenergy.2023.122606
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID oai_orbi_ulg_ac_be_2268_307481
10_1016_j_apenergy_2023_122606
S0306261923019700
GeographicLocations Belgium
Morocco
GeographicLocations_xml – name: Morocco
– name: Belgium
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
JLOSS
Q33
ID FETCH-LOGICAL-c437t-b749547a998314b63e0ab9894a001e8d3e0e0c97f7fd475568a1b665dcab806f3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001154240400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
1872-9118
IngestDate Sat Nov 29 01:28:25 EST 2025
Sat Sep 27 21:43:59 EDT 2025
Sat Nov 29 07:22:39 EST 2025
Tue Nov 18 21:42:05 EST 2025
Sat Mar 02 16:00:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Remote renewable energy hub
Synthetic methane
CO2 sourcing
Energy transition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-b749547a998314b63e0ab9894a001e8d3e0e0c97f7fd475568a1b665dcab806f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
9. Industry, innovation and infrastructure
scopus-id:2-s2.0-85182884167
13. Climate action
7. Affordable and clean energy
ORCID 0000-0002-9166-136X
0009-0005-6945-1111
0000-0002-3035-8260
OpenAccessLink https://orbi.uliege.be/handle/2268/307481
PQID 3153184201
PQPubID 24069
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_307481
proquest_miscellaneous_3153184201
crossref_primary_10_1016_j_apenergy_2023_122606
crossref_citationtrail_10_1016_j_apenergy_2023_122606
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_122606
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Federici, Puna, Mata, Martins (b12) 2022; 8
Agora Verkehrswende, Agora Energiewende and Frontier Economics (b45) 2018
Danish Energy Agency (b31) 2023
Pospisil, Charvat, Arsenyeva, Klimes, Spilacek, Klemes (b43) 2019; 99
Coppitters, Costa, Chauvy, Dubois, De Paepe, Thomas, De Weireld, Contino (b30) 2023; 344
Staffell, Pfenninger (b26) 2016; 114
International Renewable Energy Agency (IRENA) (b42) 2012
Howard Rogers (for the Oxford Institute for Energy Studies) (b44) 2018
International Energy Agency (IEA) (b50) 2019
Hashimoto, Yamasaki, Fujimura, Matsui, Izumiya, Komori, El-Moneim, Akiyama, Habazaki, Kumagai, Kawashima, Asami (b3) 1999; 267
Berger, Radu, Detienne, Deschuyteneer, Richel, Ernst (b20) 2021; 9
Group (b25) 2023
Shayegh, Bosetti, Tavoni (b16) 2021; 3
Cui, Hultman, Edwards, He, Sen, Surana, McJeon, Iyer, Patel, Yu, Nace, Shearer (b33) 2019
Dongsha, Ning, Jun, Li, Yinghua (b54) 2017
Xlinks (b2) 2023
Miftari, Berger, Djelassi, Ernst (b23) 2022; 7
CIGRE C1.35 Working Group (b47) 2019
Sadeghi, Rashidinejad, Moeini-Aghtaie, Abdollahi (b4) 2019; 161
Reiter, Lindorfer (b9) 2015; 10
Schreiber, Peschel, Hentschel, Zapp (b11) 2020; 8
McQueen, Gomes, McCormick, Blumanthal, Pisciotta, Wilcox (b15) 2021; 3
Xiang, Merlin, Green (b38) 2016
Danish Energy Agency (b34) 2020
Mitsubishi Heavy Industries (for IEA Greenhouse Gas R&D Programme) (b36) 2004
Caldera, Bogdanov, Breyer (b37) 2016; 385
Marseille (b51) 2016
Zanco, Pérez-Calvo, Gasós, Cordiano, Becattini, Mazzotti (b17) 2021; 1
Danish Energy Agency (b49) 2020
Gorre, Ortloff, van Leeuwen (b29) 2019; 253
(b28) 2023
Götz, Lefebvre, Mörs, Koch, Graf, Bajohr, Reimert, Kolb (b40) 2016; 85
Brynolf, Taljegard, Grahn, Hansson (b7) 2018; 81
Brian Songhurst (b52) 2018
Mitsubishi Heavy Industries, LTD (b32) 2004
Danish Energy Agency (b46) 2020
Economic Research Institute for ASEAN and East Asia (ERIA) (b53) 2018
IEA ETSAP (b39) 2014
Rixhon, Limpens, Coppitters, Jeanmart, Contino (b8) 2021; 14
Hampp, Düren, Brown (b1) 2023; 18
Goffart De Roeck, Buchmayr, Gripekoven, Mertens, Dewulf (b13) 2022; 380
Fasihi, Bogdanov, Breyer (b21) 2015
Pfenninger, Staffell (b27) 2016; 114
Geidl, Koeppel, Favre-Perrod, Klockl, Andersson, Frohlich (b5) 2006; 5
Nareva (b24) 2023
Roensch, Schneider, Matthischke, Schlaeter, Gaetz, Lefebvre, Prabhakaran, Bajohr (b41) 2016; 166
Zhang, Bauer, Mutel, Volkart (b10) 2017; 190
Mukherjee, Okolie, Abdelrasoul, Niu, Dalai (b18) 2019; 83
Dachet, Benzerga, Fonteneau, Ernst (b19) 2023
Interior Gas Utility (b35) 2013
EIA (b48) 2018
Roussanaly, Rubin, Der Spek, Booras, Berghout, Fout, Garcia, Gardarsdottir, Kuncheekanna, Matuszewski, McCoy, Morgan, Nazir, Ramirez (b22) 2021
Lewandowska-Bernat, Desideri (b6) 2018; 228
Chauvy, Dubois, Thomas, De Weireld (b14) 2022; 30
Mitsubishi Heavy Industries, LTD (10.1016/j.apenergy.2023.122606_b32) 2004
Roussanaly (10.1016/j.apenergy.2023.122606_b22) 2021
Group (10.1016/j.apenergy.2023.122606_b25) 2023
Rixhon (10.1016/j.apenergy.2023.122606_b8) 2021; 14
Geidl (10.1016/j.apenergy.2023.122606_b5) 2006; 5
Pospisil (10.1016/j.apenergy.2023.122606_b43) 2019; 99
Brian Songhurst (10.1016/j.apenergy.2023.122606_b52) 2018
Zhang (10.1016/j.apenergy.2023.122606_b10) 2017; 190
Coppitters (10.1016/j.apenergy.2023.122606_b30) 2023; 344
Cui (10.1016/j.apenergy.2023.122606_b33) 2019
Howard Rogers (for the Oxford Institute for Energy Studies) (10.1016/j.apenergy.2023.122606_b44) 2018
Xlinks (10.1016/j.apenergy.2023.122606_b2) 2023
Danish Energy Agency (10.1016/j.apenergy.2023.122606_b34) 2020
Reiter (10.1016/j.apenergy.2023.122606_b9) 2015; 10
Xiang (10.1016/j.apenergy.2023.122606_b38) 2016
Economic Research Institute for ASEAN and East Asia (ERIA) (10.1016/j.apenergy.2023.122606_b53) 2018
Danish Energy Agency (10.1016/j.apenergy.2023.122606_b46) 2020
Danish Energy Agency (10.1016/j.apenergy.2023.122606_b49) 2020
Danish Energy Agency (10.1016/j.apenergy.2023.122606_b31) 2023
Agora Verkehrswende, Agora Energiewende and Frontier Economics (10.1016/j.apenergy.2023.122606_b45) 2018
Zanco (10.1016/j.apenergy.2023.122606_b17) 2021; 1
McQueen (10.1016/j.apenergy.2023.122606_b15) 2021; 3
Pfenninger (10.1016/j.apenergy.2023.122606_b27) 2016; 114
International Energy Agency (IEA) (10.1016/j.apenergy.2023.122606_b50) 2019
Nareva (10.1016/j.apenergy.2023.122606_b24) 2023
Staffell (10.1016/j.apenergy.2023.122606_b26) 2016; 114
Hampp (10.1016/j.apenergy.2023.122606_b1) 2023; 18
Mitsubishi Heavy Industries (for IEA Greenhouse Gas R&D Programme) (10.1016/j.apenergy.2023.122606_b36) 2004
EIA (10.1016/j.apenergy.2023.122606_b48) 2018
CIGRE C1.35 Working Group (10.1016/j.apenergy.2023.122606_b47) 2019
IEA ETSAP (10.1016/j.apenergy.2023.122606_b39) 2014
Hashimoto (10.1016/j.apenergy.2023.122606_b3) 1999; 267
Interior Gas Utility (10.1016/j.apenergy.2023.122606_b35) 2013
Schreiber (10.1016/j.apenergy.2023.122606_b11) 2020; 8
Fasihi (10.1016/j.apenergy.2023.122606_b21) 2015
(10.1016/j.apenergy.2023.122606_b28) 2023
Goffart De Roeck (10.1016/j.apenergy.2023.122606_b13) 2022; 380
Berger (10.1016/j.apenergy.2023.122606_b20) 2021; 9
International Renewable Energy Agency (IRENA) (10.1016/j.apenergy.2023.122606_b42) 2012
Sadeghi (10.1016/j.apenergy.2023.122606_b4) 2019; 161
Mukherjee (10.1016/j.apenergy.2023.122606_b18) 2019; 83
Dachet (10.1016/j.apenergy.2023.122606_b19) 2023
Gorre (10.1016/j.apenergy.2023.122606_b29) 2019; 253
Chauvy (10.1016/j.apenergy.2023.122606_b14) 2022; 30
Dongsha (10.1016/j.apenergy.2023.122606_b54) 2017
Caldera (10.1016/j.apenergy.2023.122606_b37) 2016; 385
Marseille (10.1016/j.apenergy.2023.122606_b51) 2016
Brynolf (10.1016/j.apenergy.2023.122606_b7) 2018; 81
Lewandowska-Bernat (10.1016/j.apenergy.2023.122606_b6) 2018; 228
Federici (10.1016/j.apenergy.2023.122606_b12) 2022; 8
Roensch (10.1016/j.apenergy.2023.122606_b41) 2016; 166
Götz (10.1016/j.apenergy.2023.122606_b40) 2016; 85
Shayegh (10.1016/j.apenergy.2023.122606_b16) 2021; 3
Miftari (10.1016/j.apenergy.2023.122606_b23) 2022; 7
References_xml – volume: 18
  year: 2023
  ident: b1
  article-title: Import options for chemical energy carriers from renewable sources to Germany
  publication-title: PLoS One
– volume: 228
  start-page: 57
  year: 2018
  end-page: 67
  ident: b6
  article-title: Opportunities of power-to-gas technology in different energy systems architectures
  publication-title: Appl Energy
– start-page: 3051
  year: 2015
  end-page: 3068
  ident: b21
  article-title: Economics of global LNG trading based on hybrid PV-wind power plants
  publication-title: 31st European photovoltaic solar energy conference and exhibition; 3051-3067
– year: 2017
  ident: b54
  article-title: Comparative research on LNG receiving terminals and FSRU
– year: 2013
  ident: b35
  article-title: LNG storage tank cost analysis
– volume: 380
  year: 2022
  ident: b13
  article-title: Comparative life cycle assessment of power-to-methane pathways: Process simulation of biological and catalytic biogas methanation
  publication-title: J Clean Prod
– year: 2023
  ident: b19
  article-title: Towards CO2 valorization in a multi remote renewable energy hub framework
  publication-title: 36th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems (ECOS 2023)
– year: 2020
  ident: b34
  article-title: Technology data for energy storage
– volume: 5
  start-page: 24
  year: 2006
  end-page: 30
  ident: b5
  article-title: Energy hubs for the future
  publication-title: IEEE Power Energy Mag
– year: 2019
  ident: b33
  article-title: Quantifying operational lifetimes for coal power plants under the Paris goals
  publication-title: Nature Commun
– year: 2018
  ident: b52
  article-title: LNG plant cost reduction 2014–2018
– volume: 8
  year: 2020
  ident: b11
  article-title: Life cycle assessment of power-to-syngas: Comparing high temperature co-electrolysis and steam methane reforming
  publication-title: Front Energy Res
– volume: 114
  start-page: 1251
  year: 2016
  end-page: 1265
  ident: b27
  article-title: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data
  publication-title: Energy
– volume: 344
  year: 2023
  ident: b30
  article-title: Energy, Exergy, Economic and Environmental (4E) analysis of integrated direct air capture and CO
  publication-title: Fuel
– year: 2023
  ident: b31
  article-title: Technology data for carbon capture, transport and storage
– volume: 1
  start-page: 50
  year: 2021
  end-page: 72
  ident: b17
  article-title: Postcombustion CO2 capture: A comparative techno-economic assessment of three technologies using a solvent, an adsorbent, and a membrane
  publication-title: ACS Eng Au
– volume: 114
  start-page: 1224
  year: 2016
  end-page: 1239
  ident: b26
  article-title: Using bias-corrected reanalysis to simulate current and future wind power output
  publication-title: Energy
– start-page: 1
  year: 2004
  end-page: 115
  ident: b32
  article-title: Ship transport of CO2
– volume: 161
  year: 2019
  ident: b4
  article-title: The energy hub: An extensive survey on the state-of-the-art
  publication-title: Appl Therm Eng
– volume: 385
  start-page: 207
  year: 2016
  end-page: 216
  ident: b37
  article-title: Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate
  publication-title: Desalination
– volume: 253
  year: 2019
  ident: b29
  article-title: Production costs for synthetic methane in 2030 and 2050 of an optimized power-to-gas plant with intermediate hydrogen storage
  publication-title: Appl Energy
– volume: 3
  year: 2021
  ident: b15
  article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future
  publication-title: Prog Energy
– volume: 30
  start-page: 301
  year: 2022
  end-page: 315
  ident: b14
  article-title: Environmental impacts of the production of synthetic natural gas from industrial carbon dioxide
  publication-title: Sustain Prod Consump
– year: 2023
  ident: b25
  article-title: Safi ciment plant
– year: 2018
  ident: b45
  article-title: The future cost of electricity-based synthetic fuels
– volume: 7
  start-page: 4158
  year: 2022
  ident: b23
  article-title: GBOML: Graph-based optimization modeling language
  publication-title: J Open Source Softw
– year: 2014
  ident: b39
  article-title: Electricity transmission and distribution
– volume: 14
  start-page: 1
  year: 2021
  end-page: 23
  ident: b8
  article-title: The role of electrofuels under uncertainties for the Belgian energy transition
  publication-title: Energies
– volume: 190
  start-page: 326
  year: 2017
  end-page: 338
  ident: b10
  article-title: Life cycle assessment of power-to-gas: Approaches, system variations and their environmental implications
  publication-title: Appl Energy
– volume: 81
  start-page: 1887
  year: 2018
  end-page: 1905
  ident: b7
  article-title: Electrofuels for the transport sector: A review of production costs
  publication-title: Renew Sustain Energy Rev
– start-page: 1
  year: 2016
  end-page: 6
  ident: b38
  article-title: Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection
  publication-title: 12th IET international conference on AC and DC power transmission (ACDC 2016)
– year: 2020
  ident: b46
  article-title: Technology data for generation of electricity and district heating
– year: 2019
  ident: b50
  article-title: The future of hydrogen
– year: 2016
  ident: b51
  article-title: Desalination technologies and economics
– year: 2023
  ident: b2
  article-title: The Morocco - UK power project
– volume: 99
  start-page: 1
  year: 2019
  end-page: 15
  ident: b43
  article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage
  publication-title: Renew Sustain Energy Rev
– year: 2019
  ident: b47
  article-title: Global electricity network: Feasibility study
– year: 2021
  ident: b22
  article-title: Towards improved guidelines for cost evaluation of carbon capture and storage
– year: 2023
  ident: b28
  article-title: Renewables.ninja
– year: 2004
  ident: b36
  article-title: Ship transport of CO2 (Report PH4/30
– volume: 9
  year: 2021
  ident: b20
  article-title: Remote renewable hubs for carbon-neutral synthetic fuel production
  publication-title: Front Energy Res
– volume: 8
  start-page: 554
  year: 2022
  end-page: 560
  ident: b12
  article-title: Life cycle analysis of a combined electrolysis and methanation reactor for methane production
  publication-title: Energy Rep
– year: 2023
  ident: b24
  article-title: Safi thermal power plant
– volume: 267
  start-page: 200
  year: 1999
  end-page: 206
  ident: b3
  article-title: Global CO2 recycling—novel materials and prospect for prevention of global warming and abundant energy supply
  publication-title: Mater Sci Eng A
– year: 2018
  ident: b48
  article-title: Assessing HVDC transmission for impacts of non-dispatchable generation
– volume: 166
  start-page: 276
  year: 2016
  end-page: 296
  ident: b41
  article-title: Review on methanation: From fundamentals to current projects
  publication-title: Fuel
– volume: 3
  year: 2021
  ident: b16
  article-title: Future prospects of direct air capture technologies: Insights from an expert elicitation survey
  publication-title: Front Clim
– year: 2020
  ident: b49
  article-title: Technology data for renewable fuels
– year: 2012
  ident: b42
  article-title: Water desalination using renewable energy: Technology brief
– volume: 83
  start-page: 46
  year: 2019
  end-page: 63
  ident: b18
  article-title: Review of post-combustion carbon dioxide capture technologies using activated carbon
  publication-title: J Environ Sci
– volume: 85
  start-page: 1371
  year: 2016
  end-page: 1390
  ident: b40
  article-title: Renewable power-to-gas: A technological and economic review
  publication-title: Renew Energy
– year: 2018
  ident: b44
  article-title: The LNG shipping forecast: Costs rebounding, outlook uncertain
– year: 2018
  ident: b53
  article-title: Investment in LNG supply chain infrastructure estimation
– volume: 10
  start-page: 40
  year: 2015
  end-page: 49
  ident: b9
  article-title: Evaluating CO2 sources for power-to-gas applications - A case study for Austria
  publication-title: J CO2 Util
– volume: 1
  start-page: 50
  issue: 1
  year: 2021
  ident: 10.1016/j.apenergy.2023.122606_b17
  article-title: Postcombustion CO2 capture: A comparative techno-economic assessment of three technologies using a solvent, an adsorbent, and a membrane
  publication-title: ACS Eng Au
  doi: 10.1021/acsengineeringau.1c00002
– start-page: 3051
  year: 2015
  ident: 10.1016/j.apenergy.2023.122606_b21
  article-title: Economics of global LNG trading based on hybrid PV-wind power plants
– volume: 14
  start-page: 1
  issue: 13
  year: 2021
  ident: 10.1016/j.apenergy.2023.122606_b8
  article-title: The role of electrofuels under uncertainties for the Belgian energy transition
  publication-title: Energies
  doi: 10.3390/en14134027
– year: 2020
  ident: 10.1016/j.apenergy.2023.122606_b46
– year: 2018
  ident: 10.1016/j.apenergy.2023.122606_b48
– volume: 166
  start-page: 276
  year: 2016
  ident: 10.1016/j.apenergy.2023.122606_b41
  article-title: Review on methanation: From fundamentals to current projects
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.10.111
– year: 2012
  ident: 10.1016/j.apenergy.2023.122606_b42
– volume: 228
  start-page: 57
  year: 2018
  ident: 10.1016/j.apenergy.2023.122606_b6
  article-title: Opportunities of power-to-gas technology in different energy systems architectures
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.001
– year: 2018
  ident: 10.1016/j.apenergy.2023.122606_b53
– year: 2023
  ident: 10.1016/j.apenergy.2023.122606_b2
– volume: 3
  issue: 3
  year: 2021
  ident: 10.1016/j.apenergy.2023.122606_b15
  article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future
  publication-title: Prog Energy
  doi: 10.1088/2516-1083/abf1ce
– year: 2020
  ident: 10.1016/j.apenergy.2023.122606_b34
– volume: 114
  start-page: 1224
  year: 2016
  ident: 10.1016/j.apenergy.2023.122606_b26
  article-title: Using bias-corrected reanalysis to simulate current and future wind power output
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.068
– volume: 81
  start-page: 1887
  year: 2018
  ident: 10.1016/j.apenergy.2023.122606_b7
  article-title: Electrofuels for the transport sector: A review of production costs
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.288
– year: 2023
  ident: 10.1016/j.apenergy.2023.122606_b31
– volume: 8
  year: 2020
  ident: 10.1016/j.apenergy.2023.122606_b11
  article-title: Life cycle assessment of power-to-syngas: Comparing high temperature co-electrolysis and steam methane reforming
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2020.533850
– volume: 267
  start-page: 200
  issue: 2
  year: 1999
  ident: 10.1016/j.apenergy.2023.122606_b3
  article-title: Global CO2 recycling—novel materials and prospect for prevention of global warming and abundant energy supply
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(99)00092-1
– start-page: 1
  year: 2004
  ident: 10.1016/j.apenergy.2023.122606_b32
– volume: 161
  year: 2019
  ident: 10.1016/j.apenergy.2023.122606_b4
  article-title: The energy hub: An extensive survey on the state-of-the-art
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114071
– year: 2023
  ident: 10.1016/j.apenergy.2023.122606_b24
– year: 2019
  ident: 10.1016/j.apenergy.2023.122606_b33
  article-title: Quantifying operational lifetimes for coal power plants under the Paris goals
  publication-title: Nature Commun
  doi: 10.1038/s41467-019-12618-3
– start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2023.122606_b38
  article-title: Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection
– volume: 10
  start-page: 40
  year: 2015
  ident: 10.1016/j.apenergy.2023.122606_b9
  article-title: Evaluating CO2 sources for power-to-gas applications - A case study for Austria
  publication-title: J CO2 Util
  doi: 10.1016/j.jcou.2015.03.003
– year: 2023
  ident: 10.1016/j.apenergy.2023.122606_b25
– volume: 99
  start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2023.122606_b43
  article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.09.027
– year: 2023
  ident: 10.1016/j.apenergy.2023.122606_b19
  article-title: Towards CO2 valorization in a multi remote renewable energy hub framework
– year: 2018
  ident: 10.1016/j.apenergy.2023.122606_b45
– volume: 190
  start-page: 326
  year: 2017
  ident: 10.1016/j.apenergy.2023.122606_b10
  article-title: Life cycle assessment of power-to-gas: Approaches, system variations and their environmental implications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.098
– volume: 344
  year: 2023
  ident: 10.1016/j.apenergy.2023.122606_b30
  article-title: Energy, Exergy, Economic and Environmental (4E) analysis of integrated direct air capture and CO2 methanation under uncertainty
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.127969
– volume: 85
  start-page: 1371
  year: 2016
  ident: 10.1016/j.apenergy.2023.122606_b40
  article-title: Renewable power-to-gas: A technological and economic review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.07.066
– year: 2020
  ident: 10.1016/j.apenergy.2023.122606_b49
– volume: 385
  start-page: 207
  year: 2016
  ident: 10.1016/j.apenergy.2023.122606_b37
  article-title: Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.02.004
– volume: 83
  start-page: 46
  year: 2019
  ident: 10.1016/j.apenergy.2023.122606_b18
  article-title: Review of post-combustion carbon dioxide capture technologies using activated carbon
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2019.03.014
– year: 2023
  ident: 10.1016/j.apenergy.2023.122606_b28
– year: 2019
  ident: 10.1016/j.apenergy.2023.122606_b50
– volume: 8
  start-page: 554
  year: 2022
  ident: 10.1016/j.apenergy.2023.122606_b12
  article-title: Life cycle analysis of a combined electrolysis and methanation reactor for methane production
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.01.042
– volume: 30
  start-page: 301
  year: 2022
  ident: 10.1016/j.apenergy.2023.122606_b14
  article-title: Environmental impacts of the production of synthetic natural gas from industrial carbon dioxide
  publication-title: Sustain Prod Consump
  doi: 10.1016/j.spc.2021.12.004
– year: 2013
  ident: 10.1016/j.apenergy.2023.122606_b35
– volume: 18
  issue: 2
  year: 2023
  ident: 10.1016/j.apenergy.2023.122606_b1
  article-title: Import options for chemical energy carriers from renewable sources to Germany
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0281380
– year: 2018
  ident: 10.1016/j.apenergy.2023.122606_b44
– year: 2017
  ident: 10.1016/j.apenergy.2023.122606_b54
– volume: 253
  year: 2019
  ident: 10.1016/j.apenergy.2023.122606_b29
  article-title: Production costs for synthetic methane in 2030 and 2050 of an optimized power-to-gas plant with intermediate hydrogen storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113594
– year: 2018
  ident: 10.1016/j.apenergy.2023.122606_b52
– year: 2014
  ident: 10.1016/j.apenergy.2023.122606_b39
– year: 2019
  ident: 10.1016/j.apenergy.2023.122606_b47
– volume: 7
  start-page: 4158
  issue: 72
  year: 2022
  ident: 10.1016/j.apenergy.2023.122606_b23
  article-title: GBOML: Graph-based optimization modeling language
  publication-title: J Open Source Softw
  doi: 10.21105/joss.04158
– volume: 114
  start-page: 1251
  year: 2016
  ident: 10.1016/j.apenergy.2023.122606_b27
  article-title: Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.060
– year: 2004
  ident: 10.1016/j.apenergy.2023.122606_b36
– year: 2021
  ident: 10.1016/j.apenergy.2023.122606_b22
– volume: 9
  year: 2021
  ident: 10.1016/j.apenergy.2023.122606_b20
  article-title: Remote renewable hubs for carbon-neutral synthetic fuel production
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2021.671279
– volume: 3
  year: 2021
  ident: 10.1016/j.apenergy.2023.122606_b16
  article-title: Future prospects of direct air capture technologies: Insights from an expert elicitation survey
  publication-title: Front Clim
  doi: 10.3389/fclim.2021.630893
– year: 2016
  ident: 10.1016/j.apenergy.2023.122606_b51
– volume: 380
  year: 2022
  ident: 10.1016/j.apenergy.2023.122606_b13
  article-title: Comparative life cycle assessment of power-to-methane pathways: Process simulation of biological and catalytic biogas methanation
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.135033
– volume: 5
  start-page: 24
  issue: 1
  year: 2006
  ident: 10.1016/j.apenergy.2023.122606_b5
  article-title: Energy hubs for the future
  publication-title: IEEE Power Energy Mag
  doi: 10.1109/MPAE.2007.264850
SSID ssj0002120
Score 2.4921188
Snippet Achieving carbon neutrality is probably one of the most important challenges of the 21st century for our societies. Part of the solution to this challenge is...
SourceID liege
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122606
SubjectTerms air
assets
Belgium
carbon
carbon dioxide
CO2 Sourcing
combustion
comparative study
cost effectiveness
Energie
Energy
Energy Transition
Engineering, computing & technology
Ingénierie, informatique & technologie
Mathematics - Optimization and Control
methane
Morocco
natural gas
prices
Remote Renewable Energy Hub
renewable energy sources
supply chain
synthetic fuels
Synthetic Methane
Title Synthetic methane for closing the carbon loop: Comparative study of three carbon sources for remote carbon-neutral fuel synthetization
URI https://dx.doi.org/10.1016/j.apenergy.2023.122606
https://www.proquest.com/docview/3153184201
https://orbi.uliege.be/handle/2268/307481
Volume 358
WOSCitedRecordID wos001154240400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FhgMcEBQqwkuLxK24-P3gVkoQcKgqpaDcVrvrNaSy7CgvFX4Av4Yfycw-7JSCCkJcIsdeP5Lv887s7sw3hDwLMbvaz5Xn-4p7sUhiTyRR5YErLgMlI5mmlS42kR0f59NpcTIYfHe5MJs6a5r8_LyY_1eoYR-AjamzfwF3d1HYAdsAOnwC7PD5R8BPvjTg1KEOK1aH5o1R9ZZ1u3SZUZIvBIBet-0cJwSOtgTAl05jegUYdy3NDL9WbthfKADXHfEatcapkv1qrWpUP9B3_tqj7fRtra-rdKZhb_ma0jBGB-_rNftXXcQHZsu3K1O97wSMdx-l-xpFqLXx-DiTRi3ZBeNO7MK_nqo1yyzqs30B7NxGGGNwl8nuNBNuLummj3DSiV5-6uHAz5gw02_nWYj9dr7dsUdGFP6SkTDzFWcHfG5-9QGWkD8IwBH1f1Ll1nZ-gjc0A03whzPfv0aGYZYU0IcOD9-Np-87yx9aGVD3gFsZ6b--2--coWGNEROX3APt85zeJrfsYIUeGpLdIQPV7JKbWxKWu2Rv3GdKQlNrKpZ3ybeOh9TykAJ9qOUhhUPUcIgiD1_SLRZSzULaVlSz0LWzLNSXMSykF1lIkYX0IgvvkQ9vxqdHbz1b9MOTcZStPJHBkD3OeFHkURCLNFI-F1glgINDpfISvitfFlmVVWWcoX4eD0SaJqXkIvfTKtojO03bqPuEClSfi6oChyxxIStRln5ViSrhUclh3DMiifv3mbSK-FiYpWYu9PGMOdQYosYMaiPyojtvbjRhrjyjcOAy69kaj5UBJ68897lmA2sXYsY2IUNBeL29rj8xLplQDBrmDKx1nAcj8tSRhoGlwOU_QLhdL1kEzk2Qx-DxP_iHx3lIbvRv6iOys1qs1WNyXW5Ws-XiiX0jfgCa7-2D
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+methane+for+closing+the+carbon+loop%3A+Comparative+study+of+three+carbon+sources+for+remote+carbon-neutral+fuel+synthetization&rft.jtitle=Applied+energy&rft.au=Fonder%2C+Micha%C3%ABl&rft.au=Counotte%2C+Pierre&rft.au=Dachet%2C+Victor&rft.au=de+S%C3%A9journet%2C+Jehan&rft.date=2024-03-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=358&rft_id=info:doi/10.1016%2Fj.apenergy.2023.122606&rft.externalDocID=S0306261923019700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon