Solution of the Initial Inverse Problems in the Heat Equation Using the Finite Difference Method with Positivity-Preserving Padé Schemes

The classical inverse problem of recovering the initial temperature distribution from the final temperature distribution is extremely ill-posed. We propose a class of numerical schemes based on positivity-preserving Padé approximations to solve initial inverse problems in the heat equation. We also...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical heat transfer. Part A, Applications Ročník 57; číslo 9; s. 691 - 708
Hlavní autoři: Masood, K., Yousuf, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis Group 03.06.2010
Taylor & Francis Ltd
Témata:
ISSN:1040-7782, 1521-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The classical inverse problem of recovering the initial temperature distribution from the final temperature distribution is extremely ill-posed. We propose a class of numerical schemes based on positivity-preserving Padé approximations to solve initial inverse problems in the heat equation. We also utilize a partial fraction decomposition technique to solve the problem more efficiently when higher order Padé approximations are used. We apply the proposed numerical schemes on the parabolic heat equation. Our aim is to model the problem as a direct problem and use our numerical schemes to recover the initial profile in a stable and efficient way.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1040-7782
1521-0634
DOI:10.1080/10407781003744763