Solution of the Initial Inverse Problems in the Heat Equation Using the Finite Difference Method with Positivity-Preserving Padé Schemes
The classical inverse problem of recovering the initial temperature distribution from the final temperature distribution is extremely ill-posed. We propose a class of numerical schemes based on positivity-preserving Padé approximations to solve initial inverse problems in the heat equation. We also...
Uložené v:
| Vydané v: | Numerical heat transfer. Part A, Applications Ročník 57; číslo 9; s. 691 - 708 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis Group
03.06.2010
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1040-7782, 1521-0634 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The classical inverse problem of recovering the initial temperature distribution from the final temperature distribution is extremely ill-posed. We propose a class of numerical schemes based on positivity-preserving Padé approximations to solve initial inverse problems in the heat equation. We also utilize a partial fraction decomposition technique to solve the problem more efficiently when higher order Padé approximations are used. We apply the proposed numerical schemes on the parabolic heat equation. Our aim is to model the problem as a direct problem and use our numerical schemes to recover the initial profile in a stable and efficient way. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1040-7782 1521-0634 |
| DOI: | 10.1080/10407781003744763 |