Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population

The low specificity and sensitivity of the carcinoembryonic antigen test makes it not an ideal biomarker for the detection of colorectal cancer. We developed and evaluated a proteomic approach for the simultaneous detection and analysis of multiple proteins for distinguishing individuals with colore...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research Vol. 10; no. 24; p. 8380
Main Authors: Chen, Yi-ding, Zheng, Shu, Yu, Jie-kai, Hu, Xun
Format: Journal Article
Language:English
Published: United States 15.12.2004
Subjects:
ISSN:1078-0432
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The low specificity and sensitivity of the carcinoembryonic antigen test makes it not an ideal biomarker for the detection of colorectal cancer. We developed and evaluated a proteomic approach for the simultaneous detection and analysis of multiple proteins for distinguishing individuals with colorectal cancer from healthy individuals. We subjected serum samples (including 55 colorectal cancer patients and 92 age- and sex-matched healthy individuals) from 147 individuals, for analysis by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Peaks were detected with Ciphergen SELDI software version 3.0. Using a multilayer artificial neural network with a back propagation algorithm, we developed a classifier for separating the colorectal cancer groups from the healthy groups. The artificial neural network classifier separated the colorectal cancer from the healthy samples, with a sensitivity of 91% and specificity of 93%. Four top-scored peaks, at m/z of 5,911, 8,930, 8,817, and 4,476, were finally selected as the potential "fingerprints" for detection of colorectal cancer. The combination of SELDI-TOF mass spectrometry with the artificial neural networks in the analysis of serum protein yields significantly higher sensitivity and specificity values for the detection and diagnosis of colorectal cancer.
AbstractList The low specificity and sensitivity of the carcinoembryonic antigen test makes it not an ideal biomarker for the detection of colorectal cancer. We developed and evaluated a proteomic approach for the simultaneous detection and analysis of multiple proteins for distinguishing individuals with colorectal cancer from healthy individuals.PURPOSEThe low specificity and sensitivity of the carcinoembryonic antigen test makes it not an ideal biomarker for the detection of colorectal cancer. We developed and evaluated a proteomic approach for the simultaneous detection and analysis of multiple proteins for distinguishing individuals with colorectal cancer from healthy individuals.We subjected serum samples (including 55 colorectal cancer patients and 92 age- and sex-matched healthy individuals) from 147 individuals, for analysis by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Peaks were detected with Ciphergen SELDI software version 3.0. Using a multilayer artificial neural network with a back propagation algorithm, we developed a classifier for separating the colorectal cancer groups from the healthy groups.EXPERIMENTAL DESIGNWe subjected serum samples (including 55 colorectal cancer patients and 92 age- and sex-matched healthy individuals) from 147 individuals, for analysis by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Peaks were detected with Ciphergen SELDI software version 3.0. Using a multilayer artificial neural network with a back propagation algorithm, we developed a classifier for separating the colorectal cancer groups from the healthy groups.The artificial neural network classifier separated the colorectal cancer from the healthy samples, with a sensitivity of 91% and specificity of 93%. Four top-scored peaks, at m/z of 5,911, 8,930, 8,817, and 4,476, were finally selected as the potential "fingerprints" for detection of colorectal cancer.RESULTSThe artificial neural network classifier separated the colorectal cancer from the healthy samples, with a sensitivity of 91% and specificity of 93%. Four top-scored peaks, at m/z of 5,911, 8,930, 8,817, and 4,476, were finally selected as the potential "fingerprints" for detection of colorectal cancer.The combination of SELDI-TOF mass spectrometry with the artificial neural networks in the analysis of serum protein yields significantly higher sensitivity and specificity values for the detection and diagnosis of colorectal cancer.CONCLUSIONSThe combination of SELDI-TOF mass spectrometry with the artificial neural networks in the analysis of serum protein yields significantly higher sensitivity and specificity values for the detection and diagnosis of colorectal cancer.
The low specificity and sensitivity of the carcinoembryonic antigen test makes it not an ideal biomarker for the detection of colorectal cancer. We developed and evaluated a proteomic approach for the simultaneous detection and analysis of multiple proteins for distinguishing individuals with colorectal cancer from healthy individuals. We subjected serum samples (including 55 colorectal cancer patients and 92 age- and sex-matched healthy individuals) from 147 individuals, for analysis by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Peaks were detected with Ciphergen SELDI software version 3.0. Using a multilayer artificial neural network with a back propagation algorithm, we developed a classifier for separating the colorectal cancer groups from the healthy groups. The artificial neural network classifier separated the colorectal cancer from the healthy samples, with a sensitivity of 91% and specificity of 93%. Four top-scored peaks, at m/z of 5,911, 8,930, 8,817, and 4,476, were finally selected as the potential "fingerprints" for detection of colorectal cancer. The combination of SELDI-TOF mass spectrometry with the artificial neural networks in the analysis of serum protein yields significantly higher sensitivity and specificity values for the detection and diagnosis of colorectal cancer.
Author Chen, Yi-ding
Hu, Xun
Yu, Jie-kai
Zheng, Shu
Author_xml – sequence: 1
  givenname: Yi-ding
  surname: Chen
  fullname: Chen, Yi-ding
  organization: Department of Oncology, Second Affiliated Hospital, Zhejiang University, HangZhou, Zhejiang, People's Republic of China
– sequence: 2
  givenname: Shu
  surname: Zheng
  fullname: Zheng, Shu
– sequence: 3
  givenname: Jie-kai
  surname: Yu
  fullname: Yu, Jie-kai
– sequence: 4
  givenname: Xun
  surname: Hu
  fullname: Hu, Xun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15623616$$D View this record in MEDLINE/PubMed
BookMark eNo9UMtOwzAQ9AEE5fEJIJ-4BWzHcZJjVfGSKiEhOFeOs6EGxw5eR6j8FX9IKIXDPjSamR3tEdnzwQMhZ5xdcl5UV5yVVcZkLi4Xi8eMcyUylu-R2T9-SI4QXxnjkjN5QA55oUSuuJqRr3lMtrPGakc9jHE70keIb0i1126DFmnoKI6x0wYy8GvtDbTUaYRIW8AQh2SDv5rKfuqflfYakeIAJkW9FUMcezrEkMB6OuiUIHraWkzWv4wW14DUBBfipJgCmJ8LkXYx9HQN2qX1hg5hGN3W_YTsd9ohnO7mMXm-uX5a3GXLh9v7xXyZGZmXKdOmUk3TGCE7VpiqKGXT1sA1tFNrZGXKIgfVsE6KCWilaJu6VFDz0rBaCCWOycWv75T7fQRMq96iAee0hzDiSpW8rmtZTMTzHXFsemhXQ7S9jpvV35PFN0-ihqo
CitedBy_id crossref_primary_10_1002_jssc_200600323
crossref_primary_10_3892_ol_2019_10010
crossref_primary_10_1038_ncponc1187
crossref_primary_10_1038_nrgastro_2011_205
crossref_primary_10_1586_epr_10_81
crossref_primary_10_1089_cmb_2005_12_971
crossref_primary_10_1016_j_jhep_2011_05_027
crossref_primary_10_1155_2011_784967
crossref_primary_10_1016_j_addr_2006_05_004
crossref_primary_10_1177_10732748221095946
crossref_primary_10_1371_journal_pone_0007087
crossref_primary_10_3748_wjg_v20_i40_14958
crossref_primary_10_1186_1746_1596_7_45
crossref_primary_10_1515_CCLM_2009_159
crossref_primary_10_1586_14789450_2_6_847
crossref_primary_10_1097_01_sla_0000245577_68151_bd
crossref_primary_10_1038_sj_bjc_6602923
crossref_primary_10_1111_j_1582_4934_2008_00250_x
crossref_primary_10_1007_s11255_011_9962_5
crossref_primary_10_1177_117693510700300023
crossref_primary_10_1515_CCLM_2009_151
crossref_primary_10_1515_CCLM_2006_228
crossref_primary_10_1186_1756_9966_28_126
crossref_primary_10_1556_oh_2007_28073
crossref_primary_10_3390_ijms11114175
crossref_primary_10_1007_s10620_008_0656_5
crossref_primary_10_2217_17520363_2_3_253
crossref_primary_10_1016_j_vaccine_2007_06_040
crossref_primary_10_1371_journal_pone_0034318
crossref_primary_10_1038_labinvest_3700503
crossref_primary_10_3748_wjg_v27_i21_2681
crossref_primary_10_4137_BMI_S790
crossref_primary_10_1016_j_trim_2007_08_008
crossref_primary_10_3748_wjg_v12_i10_1536
crossref_primary_10_1155_2012_985020
crossref_primary_10_1016_j_chroma_2017_08_002
crossref_primary_10_1002_prca_201100095
crossref_primary_10_1002_pmic_200601047
crossref_primary_10_1111_j_1349_7006_2006_00339_x
crossref_primary_10_1586_14789450_2_3_315
crossref_primary_10_1002_jms_809
crossref_primary_10_1016_j_tips_2006_03_003
crossref_primary_10_1002_prca_200800111
crossref_primary_10_3892_ijo_2016_3544
crossref_primary_10_1007_s12014_010_9056_x
crossref_primary_10_1203_01_pdr_0000198817_35627_fc
crossref_primary_10_2217_bmm_09_33
crossref_primary_10_1186_1741_7015_8_13
crossref_primary_10_1002_elps_200700539
crossref_primary_10_1002_cfg_490
crossref_primary_10_1016_j_jpba_2014_07_028
crossref_primary_10_1159_000178883
crossref_primary_10_1177_172460080802300108
crossref_primary_10_1186_1477_5956_6_19
crossref_primary_10_1371_journal_pone_0222636
crossref_primary_10_1053_j_gastro_2006_07_011
crossref_primary_10_1016_j_actbio_2017_03_038
crossref_primary_10_1002_jcla_20230
crossref_primary_10_1002_pmic_200600284
crossref_primary_10_1080_10408360600922632
crossref_primary_10_1177_153303460900800307
crossref_primary_10_1007_s12094_006_0062_4
crossref_primary_10_1111_j_1349_7006_2007_00576_x
crossref_primary_10_1016_j_chroma_2006_11_054
crossref_primary_10_1245_s10434_010_1038_8
crossref_primary_10_1002_bab_1024
crossref_primary_10_1586_14789450_3_3_311
crossref_primary_10_1016_S1479_666X_07_80107_7
crossref_primary_10_1007_s00535_018_1448_0
crossref_primary_10_1093_jrr_rru081
crossref_primary_10_1002_pmic_200500833
crossref_primary_10_3109_13813455_2010_495130
crossref_primary_10_1093_bib_bbx141
crossref_primary_10_1038_sj_bjc_6603188
crossref_primary_10_1007_s12032_010_9663_4
crossref_primary_10_1093_bib_bbp012
crossref_primary_10_1080_10408363_2019_1670614
crossref_primary_10_2310_JIM_0b013e318224d8e4
crossref_primary_10_1186_1471_2407_9_287
crossref_primary_10_1002_jcb_24097
crossref_primary_10_1631_jzus_B1100266
crossref_primary_10_3390_ijms131113926
crossref_primary_10_1515_CCLM_2010_138
crossref_primary_10_1002_prca_200780083
crossref_primary_10_1038_sj_bjc_6603429
crossref_primary_10_1002_elps_200500493
crossref_primary_10_1542_peds_2006_1364
crossref_primary_10_1016_j_csbj_2024_04_044
crossref_primary_10_3109_1354750X_2010_521257
crossref_primary_10_1038_ncpgasthep0872
crossref_primary_10_1177_147323001003800120
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/1078-0432.CCR-1162-03
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
ExternalDocumentID 15623616
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.55
.GJ
18M
29B
2FS
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
H~9
IH2
KQ8
L7B
LSO
MVM
NPM
OHT
OK1
P0W
P2P
QTD
RCR
RHF
RHI
RNS
SJN
TR2
UDS
VH1
VXZ
W2D
W8F
WHG
WOQ
X7M
XJT
YKV
ZCG
ZGI
7X8
AAFWJ
AAJMC
AETEA
ID FETCH-LOGICAL-c437t-ac86bbbc24f05c8574bd9e1aede1ab48c753e6b0f42e1ad42db976e917c092262
IEDL.DBID 7X8
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000225957800033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1078-0432
IngestDate Thu Oct 02 10:51:52 EDT 2025
Wed Feb 19 01:40:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-ac86bbbc24f05c8574bd9e1aede1ab48c753e6b0f42e1ad42db976e917c092262
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 15623616
PQID 67199945
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67199945
pubmed_primary_15623616
PublicationCentury 2000
PublicationDate 2004-12-15
PublicationDateYYYYMMDD 2004-12-15
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2004
SSID ssj0014104
Score 2.184606
Snippet The low specificity and sensitivity of the carcinoembryonic antigen test makes it not an ideal biomarker for the detection of colorectal cancer. We developed...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8380
SubjectTerms Adult
Aged
Aged, 80 and over
Biomarkers, Tumor - metabolism
Blood Proteins - analysis
CA-19-9 Antigen - metabolism
Case-Control Studies
Colorectal Neoplasms - blood
Diagnosis, Differential
Female
Humans
Male
Middle Aged
Neural Networks (Computer)
Protein Array Analysis
Sensitivity and Specificity
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods
Title Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population
URI https://www.ncbi.nlm.nih.gov/pubmed/15623616
https://www.proquest.com/docview/67199945
Volume 10
WOSCitedRecordID wos000225957800033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELUKRYgLlI9CWwpz4Gp243UcW6pUVSuqHtpVhQDtbeVP6KHJNulW4mfxD5lxknJCHLg4ki0rlsaZPHvmvWHsQ7QmKGtK7lMKXBonuY1ecGu0jjMnZ1WWY_h2Xi0Werk0l1vsaOTCUFrl6BOzow6NpzvyiaqIMC_L4_UNp5pRFFsdCmg8YNszBDKU0FUt_8QQZJGLB-L5RnMSnhv4O0WpJ_d9H-fzz7wolOC5atZfMGb-15w--79V7rCnA8aEk35TPGdbsX7BHl8MUfSX7BeN9MoRQHqW-ZGzwTuwg0gJNAm6TZusjzzWP3KeACDSji2E2DVt9jQTuszteZxwjSgcMm-ztXlybDfXkGUgrmpYZxnPGgK5lPr7hjLxOyDFbPK4uABPb2iB2C7QczN_wvq-uNgr9vX005f5GR9KN3CP5r3l1mvlnPNCpmnpdVlJF0wsbAzYOKk9npKictMkBXYEKYJDXBTx7OinBhGh2GUP66aObxh4xCRJWDSW0zKZ4IRTaWo8YStVirDH3o-mWOGnQfEOW8dm061GY-yx1701V-tewWNVEOpThdr_59wD9mSUdizKt2w7oVOIh-yRv7u96tp3ecdhu7i8-A3nlecF
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+networks+analysis+of+surface-enhanced+laser+desorption%2Fionization+mass+spectra+of+serum+protein+pattern+distinguishes+colorectal+cancer+from+healthy+population&rft.jtitle=Clinical+cancer+research&rft.au=Chen%2C+Yi-ding&rft.au=Zheng%2C+Shu&rft.au=Yu%2C+Jie-kai&rft.au=Hu%2C+Xun&rft.date=2004-12-15&rft.issn=1078-0432&rft.volume=10&rft.issue=24&rft.spage=8380&rft_id=info:doi/10.1158%2F1078-0432.CCR-1162-03&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon