A One-Layer Recurrent Neural Network With a Discontinuous Hard-Limiting Activation Function for Quadratic Programming
In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be glob...
Uložené v:
| Vydané v: | IEEE transactions on neural networks Ročník 19; číslo 4; s. 558 - 570 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
IEEE
01.04.2008
Institute of Electrical and Electronics Engineers |
| Predmet: | |
| ISSN: | 1045-9227, 1941-0093 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be globally stable and the output variables are proven to be convergent to optimal solutions as long as the objective function is strictly convex on a set defined by the equality constraints. In addition, a sequential quadratic programming approach based on the proposed recurrent neural network is developed for general nonlinear programming. Simulation results on numerical examples and support vector machine (SVM) learning show the effectiveness and performance of the neural network. |
|---|---|
| AbstractList | In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be globally stable and the output variables are proven to be convergent to optimal solutions as long as the objective function is strictly convex on a set defined by the equality constraints. In addition, a sequential quadratic programming approach based on the proposed recurrent neural network is developed for general nonlinear programming. Simulation results on numerical examples and support vector machine (SVM) learning show the effectiveness and performance of the neural network. In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be globally stable and the output variables are proven to be convergent to optimal solutions as long as the objective function is strictly convex on a set defined by the equality constraints. In addition, a sequential quadratic programming approach based on the proposed recurrent neural network is developed for general nonlinear programming. Simulation results on numerical examples and support vector machine (SVM) learning show the effectiveness and performance of the neural network.In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be globally stable and the output variables are proven to be convergent to optimal solutions as long as the objective function is strictly convex on a set defined by the equality constraints. In addition, a sequential quadratic programming approach based on the proposed recurrent neural network is developed for general nonlinear programming. Simulation results on numerical examples and support vector machine (SVM) learning show the effectiveness and performance of the neural network. |
| Author | Jun Wang Qingshan Liu |
| Author_xml | – sequence: 1 givenname: Q surname: Liu fullname: Liu, Q email: qsliu@mae.cuhk.edu.hk organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong. qsliu@mae.cuhk.edu.hk – sequence: 2 givenname: J surname: Wang fullname: Wang, J |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20228656$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18390304$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1v1DAQxS1URD_gzAEJ-cLHJdtx7NjxcVVairTaAiriGHm9TjEkdms7VP3vmXaXInHY04ys3xv7jd8h2QsxOEJeMpgxBvr4crmc1QBqphkoLp-QA6YFqwA038MeRFPpulb75DDnnwBMNCCfkX3Wcg0cxAGZ5vQiuGph7lyiX52dUnKh0KWbkhmwlNuYftHvvvyghn7w2cZQfJjilOm5Setq4UePB1d0bov_bYqPgZ5NwT40fUz0y2TWCc8t_ZziVTLjiPRz8rQ3Q3YvtvWIfDs7vTw5rxYXHz-dzBeVFVyVSnNtZGtts1oxI51lgq2lbvnK1o1plGqtbKSSvVWtUGAdx-K4gb7p0TUHfkTebeZep3gzuVy6ES24YTDBoYWuVbgPKRqB5NudpAIhtdISwfc7QSYVExwfxxF9vUWn1ejW3XXyo0l33d_tI_BmC5hszdAnE6zPj1wNdd2iQ-SON5xNMefk-n-joLvPQYc56O5z0G1ygIrmP4X15eF3SjJ-2KF7tdF559zjLUIIJrXmfwCSl73I |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2024_3350335 crossref_primary_10_1109_TNN_2010_2048123 crossref_primary_10_1109_TFUZZ_2010_2040185 crossref_primary_10_1109_TNNLS_2021_3084740 crossref_primary_10_1109_TNNLS_2016_2575860 crossref_primary_10_1109_TETCI_2024_3369667 crossref_primary_10_1109_TNNLS_2014_2354432 crossref_primary_10_1109_TNNLS_2017_2731325 crossref_primary_10_1109_ACCESS_2019_2949175 crossref_primary_10_1109_JAS_2021_1004284 crossref_primary_10_1016_j_neucom_2020_02_100 crossref_primary_10_1016_j_neucom_2010_03_009 crossref_primary_10_1016_j_neucom_2016_05_091 crossref_primary_10_1109_TNN_2008_2003287 crossref_primary_10_1109_TNN_2010_2045129 crossref_primary_10_1016_j_neunet_2025_107344 crossref_primary_10_1007_s10489_017_1131_9 crossref_primary_10_1109_TCYB_2019_2925707 crossref_primary_10_1016_j_neunet_2016_08_014 crossref_primary_10_1016_j_neucom_2012_01_004 crossref_primary_10_1109_TNNLS_2016_2595489 crossref_primary_10_1016_j_chaos_2016_03_009 crossref_primary_10_1109_TNNLS_2021_3126730 crossref_primary_10_1016_j_neucom_2020_10_047 crossref_primary_10_1109_TNNLS_2019_2920408 crossref_primary_10_1016_j_matcom_2012_03_013 crossref_primary_10_1109_TNN_2011_2104979 crossref_primary_10_1109_TCYB_2016_2567449 crossref_primary_10_1016_j_neucom_2013_09_028 crossref_primary_10_1109_JOE_2012_2201797 crossref_primary_10_1016_j_neucom_2015_07_033 crossref_primary_10_1109_TIE_2011_2169636 crossref_primary_10_1016_j_neunet_2014_12_007 crossref_primary_10_1109_TCYB_2018_2883095 crossref_primary_10_1631_jzus_C1300182 crossref_primary_10_1016_j_enconman_2021_114829 crossref_primary_10_1109_TETCI_2017_2716377 crossref_primary_10_1109_TSMCB_2012_2198812 crossref_primary_10_1109_TCYB_2017_2760908 crossref_primary_10_1080_08839514_2023_2216051 crossref_primary_10_1016_j_neucom_2023_126937 crossref_primary_10_1016_j_neucom_2018_01_014 crossref_primary_10_1016_j_neucom_2016_12_067 crossref_primary_10_1016_j_neucom_2017_01_010 crossref_primary_10_1007_s12559_017_9495_z crossref_primary_10_1109_TNNLS_2012_2236571 crossref_primary_10_1109_TNNLS_2016_2582381 crossref_primary_10_1109_TSMC_2019_2898551 crossref_primary_10_1109_TNN_2008_2011266 crossref_primary_10_1016_j_cma_2024_117156 crossref_primary_10_1109_TNNLS_2014_2387862 crossref_primary_10_1007_s00521_017_3337_5 crossref_primary_10_1109_TNNLS_2013_2275732 crossref_primary_10_1016_j_neunet_2021_10_007 crossref_primary_10_1109_TNNLS_2015_2503749 crossref_primary_10_1007_s11227_025_07694_w crossref_primary_10_1049_iet_cta_2014_0117 crossref_primary_10_1016_j_enconman_2013_11_004 crossref_primary_10_1016_j_neunet_2019_12_015 crossref_primary_10_1109_TCYB_2020_2997686 crossref_primary_10_1109_TNNLS_2018_2836933 crossref_primary_10_1109_TNNLS_2014_2345734 crossref_primary_10_1109_TNNLS_2021_3110014 crossref_primary_10_1002_nme_7377 crossref_primary_10_1016_j_cam_2016_12_020 crossref_primary_10_1016_j_ijggc_2019_102790 crossref_primary_10_1109_TNN_2010_2050781 crossref_primary_10_1007_s12046_018_0996_6 crossref_primary_10_1109_TNNLS_2012_2230451 crossref_primary_10_1109_TNNLS_2016_2570257 crossref_primary_10_1109_TNSE_2023_3260259 crossref_primary_10_1016_j_engappai_2014_02_014 crossref_primary_10_1109_TIE_2024_3395780 crossref_primary_10_1016_j_neunet_2011_09_001 crossref_primary_10_1155_2018_2743678 crossref_primary_10_1007_s12555_019_0536_0 crossref_primary_10_1109_TSMC_2023_3331051 crossref_primary_10_1007_s11063_017_9640_4 crossref_primary_10_1109_TNNLS_2015_2425301 crossref_primary_10_1109_TNNLS_2021_3139865 crossref_primary_10_3390_s19020343 crossref_primary_10_1016_j_neunet_2021_01_004 crossref_primary_10_1109_TII_2012_2205582 crossref_primary_10_1016_j_neucom_2011_06_003 crossref_primary_10_1016_j_neunet_2017_05_004 crossref_primary_10_1007_s11432_010_0110_0 crossref_primary_10_1016_j_neucom_2013_01_025 crossref_primary_10_1109_TNN_2011_2169682 crossref_primary_10_1016_j_neunet_2021_04_038 crossref_primary_10_1109_TNNLS_2013_2244908 crossref_primary_10_1007_s11460_012_0186_y crossref_primary_10_1155_2009_439173 crossref_primary_10_1016_j_jfranklin_2020_02_057 crossref_primary_10_1007_s10462_009_9111_z crossref_primary_10_1109_TNNLS_2019_2957105 crossref_primary_10_1109_TNNLS_2015_2481006 crossref_primary_10_1109_TNNLS_2021_3098668 crossref_primary_10_1016_j_aeue_2018_06_019 crossref_primary_10_1016_j_neunet_2014_07_014 crossref_primary_10_1109_TNNLS_2013_2275948 crossref_primary_10_1109_TNNLS_2021_3082528 crossref_primary_10_1109_TSMC_2019_2930763 crossref_primary_10_1109_TNNLS_2019_2916597 crossref_primary_10_1109_TNNLS_2019_2891252 crossref_primary_10_1002_asjc_627 crossref_primary_10_1109_TNNLS_2014_2334364 crossref_primary_10_1109_TNNLS_2014_2305440 crossref_primary_10_1109_TNNLS_2017_2652478 crossref_primary_10_1109_TETCI_2024_3377265 crossref_primary_10_1016_j_neucom_2011_04_026 crossref_primary_10_1109_TNNLS_2016_2635676 crossref_primary_10_1109_TNNLS_2020_3027471 crossref_primary_10_1016_j_amc_2012_01_020 crossref_primary_10_3233_IDA_163145 crossref_primary_10_1007_s00521_017_2863_5 crossref_primary_10_1007_s10812_024_01713_z crossref_primary_10_1016_j_neunet_2020_04_020 crossref_primary_10_1109_JLT_2011_2159578 crossref_primary_10_1007_s12559_014_9249_0 crossref_primary_10_1016_j_knosys_2024_112502 crossref_primary_10_1016_j_neunet_2014_03_006 crossref_primary_10_1007_s00521_025_11635_2 crossref_primary_10_1109_TNNLS_2021_3082950 crossref_primary_10_1109_TNN_2011_2109735 crossref_primary_10_1109_TNN_2010_2052631 crossref_primary_10_1016_j_matcom_2014_02_006 crossref_primary_10_1016_j_neucom_2021_06_089 crossref_primary_10_1109_TNNLS_2016_2637567 crossref_primary_10_1016_j_neunet_2023_06_003 crossref_primary_10_1109_TIE_2016_2544718 crossref_primary_10_1016_j_patcog_2022_109254 crossref_primary_10_1109_TMECH_2020_3016757 crossref_primary_10_1155_2011_297147 crossref_primary_10_1109_TNNLS_2015_2404773 crossref_primary_10_1109_TNNLS_2013_2292893 crossref_primary_10_1109_TNNLS_2022_3175899 crossref_primary_10_1016_j_neucom_2019_06_016 crossref_primary_10_1016_j_neucom_2010_02_017 crossref_primary_10_1016_j_neunet_2019_07_019 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1007_s11063_009_9119_z crossref_primary_10_1016_j_eswa_2025_128692 crossref_primary_10_1016_j_amc_2010_02_010 crossref_primary_10_1587_nolta_2_432 crossref_primary_10_1109_TIV_2024_3372995 |
| Cites_doi | 10.1007/11759966_53 10.1109/72.728383 10.1109/TNN.2006.879775 10.1137/1.9781611970777 10.1016/j.physd.2005.12.006 10.1016/S0375-9601(01)00542-4 10.1109/TNN.2004.824252 10.1109/3477.907574 10.1007/978-3-642-69512-4 10.1109/TSMCB.2003.822955 10.1162/neco.2006.18.3.683 10.1109/TNN.2006.880584 10.1109/TNN.2006.880579 10.1109/TNN.2006.879774 10.1016/S0375-9601(02)00424-3 10.1016/j.neunet.2004.05.006 10.1016/0893-6080(94)90041-8 10.1109/TNN.2002.1031958 10.1006/jmaa.1997.5791 10.1109/81.995659 10.1109/TCSI.2003.818614 10.1016/j.neunet.2004.09.004 10.1109/31.1783 10.1109/TCSI.2004.834493 10.1109/TNN.2006.881046 10.1109/TCS.1986.1085953 10.1109/72.870050 10.1093/oso/9780198534419.001.0001 10.1007/978-1-4757-2440-0 10.1109/TNN.2004.841779 10.1109/72.548188 10.1109/82.160169 10.1007/978-1-4471-3467-1 10.1109/81.401145 10.1109/72.788643 10.1109/81.244913 |
| ContentType | Journal Article |
| Copyright | 2008 INIST-CNRS |
| Copyright_xml | – notice: 2008 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 7QO P64 |
| DOI | 10.1109/TNN.2007.910736 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Technology Research Database Engineering Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
| EISSN | 1941-0093 |
| EndPage | 570 |
| ExternalDocumentID | 18390304 20228656 10_1109_TNN_2007_910736 4441699 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 7QO P64 |
| ID | FETCH-LOGICAL-c437t-939a68cc5bb1a6ec141d6983bc25a5778c65676fc78470ce3847e3a0f5f922303 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 207 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258766700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9227 |
| IngestDate | Tue Oct 07 09:32:13 EDT 2025 Thu Sep 04 15:13:45 EDT 2025 Thu Sep 04 23:42:41 EDT 2025 Mon Jul 21 05:43:28 EDT 2025 Mon Jul 21 09:15:13 EDT 2025 Tue Nov 18 22:43:53 EST 2025 Sat Nov 29 03:59:22 EST 2025 Tue Aug 26 16:47:31 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Recurrent neural nets Statistical analysis recurrent neural network nonlinear programming global convergence Lyapunov method Non linear programming Neural network Quadratic programming hard-limiting activation function Activation function Sequential method Optimal solution Equality constraint Vector support machine Lyapunov stability Convex function Objective function Differential inclusion Lyapunov function Quadratic function |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c437t-939a68cc5bb1a6ec141d6983bc25a5778c65676fc78470ce3847e3a0f5f922303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 18390304 |
| PQID | 1671435773 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_4441699 proquest_miscellaneous_70469796 crossref_citationtrail_10_1109_TNN_2007_910736 proquest_miscellaneous_875066454 crossref_primary_10_1109_TNN_2007_910736 pubmed_primary_18390304 pascalfrancis_primary_20228656 proquest_miscellaneous_1671435773 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-04-01 |
| PublicationDateYYYYMMDD | 2008-04-01 |
| PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 2008 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 helmke (ref26) 1994 ref33 ref11 ref32 ref10 ref2 ref17 ref38 li (ref30) 2006; 3971 ref16 ref19 ref18 bazaraa (ref1) 1993 clarke (ref29) 1969 ref24 ref23 ref25 ref20 dierckx (ref39) 1993 ref22 ref21 ref27 ref8 ref7 aubin (ref28) 1984 ref9 ref4 ref3 ref6 ref5 tan (ref36) 2000 |
| References_xml | – volume: 3971 start-page: 344 year: 2006 ident: ref30 publication-title: Lecture Notes in Computer Science doi: 10.1007/11759966_53 – year: 1969 ident: ref29 publication-title: Optimization and Non-Smooth Analysis – ident: ref9 doi: 10.1109/72.728383 – ident: ref23 doi: 10.1109/TNN.2006.879775 – ident: ref31 doi: 10.1137/1.9781611970777 – year: 1993 ident: ref1 publication-title: Nonlinear Programming Theory and Algorithms – ident: ref22 doi: 10.1016/j.physd.2005.12.006 – ident: ref11 doi: 10.1016/S0375-9601(01)00542-4 – ident: ref14 doi: 10.1109/TNN.2004.824252 – ident: ref10 doi: 10.1109/3477.907574 – year: 1984 ident: ref28 publication-title: Differential Inclusions doi: 10.1007/978-3-642-69512-4 – ident: ref38 doi: 10.1109/TSMCB.2003.822955 – ident: ref25 doi: 10.1162/neco.2006.18.3.683 – ident: ref34 doi: 10.1109/TNN.2006.880584 – ident: ref20 doi: 10.1109/TNN.2006.880579 – ident: ref18 doi: 10.1109/TNN.2006.879774 – ident: ref13 doi: 10.1016/S0375-9601(02)00424-3 – ident: ref15 doi: 10.1016/j.neunet.2004.05.006 – ident: ref6 doi: 10.1016/0893-6080(94)90041-8 – ident: ref37 doi: 10.1109/TNN.2002.1031958 – ident: ref27 doi: 10.1006/jmaa.1997.5791 – ident: ref12 doi: 10.1109/81.995659 – ident: ref21 doi: 10.1109/TCSI.2003.818614 – ident: ref24 doi: 10.1016/j.neunet.2004.09.004 – ident: ref3 doi: 10.1109/31.1783 – start-page: 411 year: 2000 ident: ref36 article-title: neural network realization of support vector methods for pattern classification publication-title: Proc IEEE Int Joint Conf Neural Netw – ident: ref16 doi: 10.1109/TCSI.2004.834493 – ident: ref19 doi: 10.1109/TNN.2006.881046 – ident: ref2 doi: 10.1109/TCS.1986.1085953 – ident: ref33 doi: 10.1109/72.870050 – year: 1993 ident: ref39 publication-title: Curve and Surface Fitting with Splines doi: 10.1093/oso/9780198534419.001.0001 – ident: ref35 doi: 10.1007/978-1-4757-2440-0 – ident: ref17 doi: 10.1109/TNN.2004.841779 – ident: ref8 doi: 10.1109/72.548188 – ident: ref4 doi: 10.1109/82.160169 – year: 1994 ident: ref26 publication-title: Optimization and Dynamical Systems doi: 10.1007/978-1-4471-3467-1 – ident: ref7 doi: 10.1109/81.401145 – ident: ref32 doi: 10.1109/72.788643 – ident: ref5 doi: 10.1109/81.244913 |
| SSID | ssj0014506 |
| Score | 2.3658586 |
| Snippet | In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 558 |
| SubjectTerms | Activation Applied sciences Artificial intelligence Computer science; control theory; systems Computer Simulation Connectionism. Neural networks Convergence Data processing. List processing. Character string processing Differential inclusion Exact sciences and technology global convergence hard-limiting activation function Lagrangian functions Linear programming Lyapunov stability Machine learning Mathematical analysis Mathematical models Memory organisation. Data processing Nerve Net Neural network hardware Neural networks Nonlinear Dynamics nonlinear programming Numerical simulation Programming, Linear Quadratic programming recurrent neural network Recurrent neural networks Signal Processing, Computer-Assisted Software Support vector machines Time Factors |
| Title | A One-Layer Recurrent Neural Network With a Discontinuous Hard-Limiting Activation Function for Quadratic Programming |
| URI | https://ieeexplore.ieee.org/document/4441699 https://www.ncbi.nlm.nih.gov/pubmed/18390304 https://www.proquest.com/docview/1671435773 https://www.proquest.com/docview/70469796 https://www.proquest.com/docview/875066454 |
| Volume | 19 |
| WOSCitedRecordID | wos000258766700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0093 dateEnd: 20111231 omitProxy: false ssIdentifier: ssj0014506 issn: 1045-9227 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc40LLLI0AXIyHEgbRJbMfxcVVYcahCQQX2FjmOV6xEs6i7QeLfM2NnUyqxB05xlMnLM9bM2OPvA3hVNzWvF8LEIktcLHKpYtPkeKoKST6hVh634Ou5KstiPtcXe_B22AvjnPPFZ-6Emn4tv1nZjqbKTgX67lzrfdhXKg97tYYVAyE9jyZmFzLWWaZ6GJ800aeXZRmwCtE1Ku5JizAsoDXBW87Is6tQbaRZY_csAq_F7sDTO6DZ4f99-hHc7wNNNg2W8QD2XDuC8bTFJPvqN3vNfOmnn1MfweGW24H1Q30E9_4CKhxDN2UfWxefGwzQ2WeaoidQJ0bIHviOMpSSs2_LzXdm2Lvlmgrgl2236taMSgNiv40Kn8SmdkunxmboUX0Dw2b2qTMN2aJlF6Fg7AqlH8KX2fvLsw9xT9gQW8HVJtZcm7ywVtZ1anJnU5E2uS54bTNppFKFxehR0e4i9ImJdRwPjptkIReoMnSmj-CgXbXuCTCDkWxTC00IeQJDa1OnSWIlJWA848pFcLLVXGV7NHMi1fhR-awm0RVqnTg2VRW0HsGb4YafAchjt-iYFDiI9bqLYHLLNIbrGWEI4Z9F8HJrKxUOUlp5Ma3Drq7SnGjmsQd4BC92yCiaqVAan8J2SGBqiQGikCKCx8ESb_6kN-in__70Z3A31LlQxdFzONhcd-4Y7thfm-X6eoLDaV5M_HD6A6VIGXg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ8MGhhhB-bkRDigWxJbMfxYwVUQ5QwUIG9RY7jikpbitYGif-eOzstTKIPPCVRLk7iO-vu7PP3ATyvm5rXM2FikSUuFrlUsWlyvFSFJJ9QK49b8HWiyrI4O9OnO_BqsxfGOeeLz9wRnfq1_GZhO5oqOxbou3Otr8F1KbDtsFtrs2YgpGfSxPxCxjrLVA_kkyb6eFqWAa0QnaPinrYIAwNaFbzijjy_ClVHmiV20CwwW2wPPb0LGu_938ffhTt9qMlGwTbuwY5rBzActZhmX_xiL5gv_vSz6gPYW7M7sH6wD-D2X1CFQ-hG7GPr4onBEJ19pkl6gnVihO2B7yhDMTn7Nl99Z4a9mS-pBH7edotuyag4IPYbqbAlNrJrQjU2Rp_qTzBwZp8605A1WnYaSsYuUPo-fBm_nb4-iXvKhtgKrlax5trkhbWyrlOTO5uKtMl1wWubSSOVKizGj4r2F6FXTKzjeHDcJDM5Q5WhO30Au-2idQ-BGYxlm1powsgTGFybOk0SKykF4xlXLoKjteYq2-OZE63GeeXzmkRXqHVi2VRV0HoELzcP_AhQHttFh6TAjVivuwgOrpjG5n5GKEL4ZxE8W9tKhcOU1l5M67CrqzQnonnsAR7B4RYZRXMVSmMrbIsEJpcYIgopItgPlvjnT3qDfvTvTz-EmyfTD5Nq8q58_xhuhaoXqj96Arury849hRv252q-vDzwg-o3wlAb1w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+One-Layer+Recurrent+Neural+Network+With+a+Discontinuous+Hard-Limiting+Activation+Function+for+Quadratic+Programming&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Qingshan+Liu&rft.au=Jun+Wang&rft.date=2008-04-01&rft.pub=IEEE&rft.issn=1045-9227&rft.volume=19&rft.issue=4&rft.spage=558&rft.epage=570&rft_id=info:doi/10.1109%2FTNN.2007.910736&rft_id=info%3Apmid%2F18390304&rft.externalDocID=4441699 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |