A One-Layer Recurrent Neural Network With a Discontinuous Hard-Limiting Activation Function for Quadratic Programming

In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be glob...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on neural networks Ročník 19; číslo 4; s. 558 - 570
Hlavní autori: Liu, Q, Wang, J
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.04.2008
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1045-9227, 1941-0093
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be globally stable and the output variables are proven to be convergent to optimal solutions as long as the objective function is strictly convex on a set defined by the equality constraints. In addition, a sequential quadratic programming approach based on the proposed recurrent neural network is developed for general nonlinear programming. Simulation results on numerical examples and support vector machine (SVM) learning show the effectiveness and performance of the neural network.
AbstractList In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be globally stable and the output variables are proven to be convergent to optimal solutions as long as the objective function is strictly convex on a set defined by the equality constraints. In addition, a sequential quadratic programming approach based on the proposed recurrent neural network is developed for general nonlinear programming. Simulation results on numerical examples and support vector machine (SVM) learning show the effectiveness and performance of the neural network.
In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be globally stable and the output variables are proven to be convergent to optimal solutions as long as the objective function is strictly convex on a set defined by the equality constraints. In addition, a sequential quadratic programming approach based on the proposed recurrent neural network is developed for general nonlinear programming. Simulation results on numerical examples and support vector machine (SVM) learning show the effectiveness and performance of the neural network.In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural network is capable of solving a large class of quadratic programming problems. The state variables of the neural network are proven to be globally stable and the output variables are proven to be convergent to optimal solutions as long as the objective function is strictly convex on a set defined by the equality constraints. In addition, a sequential quadratic programming approach based on the proposed recurrent neural network is developed for general nonlinear programming. Simulation results on numerical examples and support vector machine (SVM) learning show the effectiveness and performance of the neural network.
Author Jun Wang
Qingshan Liu
Author_xml – sequence: 1
  givenname: Q
  surname: Liu
  fullname: Liu, Q
  email: qsliu@mae.cuhk.edu.hk
  organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong. qsliu@mae.cuhk.edu.hk
– sequence: 2
  givenname: J
  surname: Wang
  fullname: Wang, J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20228656$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18390304$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1v1DAQxS1URD_gzAEJ-cLHJdtx7NjxcVVairTaAiriGHm9TjEkdms7VP3vmXaXInHY04ys3xv7jd8h2QsxOEJeMpgxBvr4crmc1QBqphkoLp-QA6YFqwA038MeRFPpulb75DDnnwBMNCCfkX3Wcg0cxAGZ5vQiuGph7lyiX52dUnKh0KWbkhmwlNuYftHvvvyghn7w2cZQfJjilOm5Setq4UePB1d0bov_bYqPgZ5NwT40fUz0y2TWCc8t_ZziVTLjiPRz8rQ3Q3YvtvWIfDs7vTw5rxYXHz-dzBeVFVyVSnNtZGtts1oxI51lgq2lbvnK1o1plGqtbKSSvVWtUGAdx-K4gb7p0TUHfkTebeZep3gzuVy6ES24YTDBoYWuVbgPKRqB5NudpAIhtdISwfc7QSYVExwfxxF9vUWn1ejW3XXyo0l33d_tI_BmC5hszdAnE6zPj1wNdd2iQ-SON5xNMefk-n-joLvPQYc56O5z0G1ygIrmP4X15eF3SjJ-2KF7tdF559zjLUIIJrXmfwCSl73I
CODEN ITNNEP
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3350335
crossref_primary_10_1109_TNN_2010_2048123
crossref_primary_10_1109_TFUZZ_2010_2040185
crossref_primary_10_1109_TNNLS_2021_3084740
crossref_primary_10_1109_TNNLS_2016_2575860
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1109_TNNLS_2014_2354432
crossref_primary_10_1109_TNNLS_2017_2731325
crossref_primary_10_1109_ACCESS_2019_2949175
crossref_primary_10_1109_JAS_2021_1004284
crossref_primary_10_1016_j_neucom_2020_02_100
crossref_primary_10_1016_j_neucom_2010_03_009
crossref_primary_10_1016_j_neucom_2016_05_091
crossref_primary_10_1109_TNN_2008_2003287
crossref_primary_10_1109_TNN_2010_2045129
crossref_primary_10_1016_j_neunet_2025_107344
crossref_primary_10_1007_s10489_017_1131_9
crossref_primary_10_1109_TCYB_2019_2925707
crossref_primary_10_1016_j_neunet_2016_08_014
crossref_primary_10_1016_j_neucom_2012_01_004
crossref_primary_10_1109_TNNLS_2016_2595489
crossref_primary_10_1016_j_chaos_2016_03_009
crossref_primary_10_1109_TNNLS_2021_3126730
crossref_primary_10_1016_j_neucom_2020_10_047
crossref_primary_10_1109_TNNLS_2019_2920408
crossref_primary_10_1016_j_matcom_2012_03_013
crossref_primary_10_1109_TNN_2011_2104979
crossref_primary_10_1109_TCYB_2016_2567449
crossref_primary_10_1016_j_neucom_2013_09_028
crossref_primary_10_1109_JOE_2012_2201797
crossref_primary_10_1016_j_neucom_2015_07_033
crossref_primary_10_1109_TIE_2011_2169636
crossref_primary_10_1016_j_neunet_2014_12_007
crossref_primary_10_1109_TCYB_2018_2883095
crossref_primary_10_1631_jzus_C1300182
crossref_primary_10_1016_j_enconman_2021_114829
crossref_primary_10_1109_TETCI_2017_2716377
crossref_primary_10_1109_TSMCB_2012_2198812
crossref_primary_10_1109_TCYB_2017_2760908
crossref_primary_10_1080_08839514_2023_2216051
crossref_primary_10_1016_j_neucom_2023_126937
crossref_primary_10_1016_j_neucom_2018_01_014
crossref_primary_10_1016_j_neucom_2016_12_067
crossref_primary_10_1016_j_neucom_2017_01_010
crossref_primary_10_1007_s12559_017_9495_z
crossref_primary_10_1109_TNNLS_2012_2236571
crossref_primary_10_1109_TNNLS_2016_2582381
crossref_primary_10_1109_TSMC_2019_2898551
crossref_primary_10_1109_TNN_2008_2011266
crossref_primary_10_1016_j_cma_2024_117156
crossref_primary_10_1109_TNNLS_2014_2387862
crossref_primary_10_1007_s00521_017_3337_5
crossref_primary_10_1109_TNNLS_2013_2275732
crossref_primary_10_1016_j_neunet_2021_10_007
crossref_primary_10_1109_TNNLS_2015_2503749
crossref_primary_10_1007_s11227_025_07694_w
crossref_primary_10_1049_iet_cta_2014_0117
crossref_primary_10_1016_j_enconman_2013_11_004
crossref_primary_10_1016_j_neunet_2019_12_015
crossref_primary_10_1109_TCYB_2020_2997686
crossref_primary_10_1109_TNNLS_2018_2836933
crossref_primary_10_1109_TNNLS_2014_2345734
crossref_primary_10_1109_TNNLS_2021_3110014
crossref_primary_10_1002_nme_7377
crossref_primary_10_1016_j_cam_2016_12_020
crossref_primary_10_1016_j_ijggc_2019_102790
crossref_primary_10_1109_TNN_2010_2050781
crossref_primary_10_1007_s12046_018_0996_6
crossref_primary_10_1109_TNNLS_2012_2230451
crossref_primary_10_1109_TNNLS_2016_2570257
crossref_primary_10_1109_TNSE_2023_3260259
crossref_primary_10_1016_j_engappai_2014_02_014
crossref_primary_10_1109_TIE_2024_3395780
crossref_primary_10_1016_j_neunet_2011_09_001
crossref_primary_10_1155_2018_2743678
crossref_primary_10_1007_s12555_019_0536_0
crossref_primary_10_1109_TSMC_2023_3331051
crossref_primary_10_1007_s11063_017_9640_4
crossref_primary_10_1109_TNNLS_2015_2425301
crossref_primary_10_1109_TNNLS_2021_3139865
crossref_primary_10_3390_s19020343
crossref_primary_10_1016_j_neunet_2021_01_004
crossref_primary_10_1109_TII_2012_2205582
crossref_primary_10_1016_j_neucom_2011_06_003
crossref_primary_10_1016_j_neunet_2017_05_004
crossref_primary_10_1007_s11432_010_0110_0
crossref_primary_10_1016_j_neucom_2013_01_025
crossref_primary_10_1109_TNN_2011_2169682
crossref_primary_10_1016_j_neunet_2021_04_038
crossref_primary_10_1109_TNNLS_2013_2244908
crossref_primary_10_1007_s11460_012_0186_y
crossref_primary_10_1155_2009_439173
crossref_primary_10_1016_j_jfranklin_2020_02_057
crossref_primary_10_1007_s10462_009_9111_z
crossref_primary_10_1109_TNNLS_2019_2957105
crossref_primary_10_1109_TNNLS_2015_2481006
crossref_primary_10_1109_TNNLS_2021_3098668
crossref_primary_10_1016_j_aeue_2018_06_019
crossref_primary_10_1016_j_neunet_2014_07_014
crossref_primary_10_1109_TNNLS_2013_2275948
crossref_primary_10_1109_TNNLS_2021_3082528
crossref_primary_10_1109_TSMC_2019_2930763
crossref_primary_10_1109_TNNLS_2019_2916597
crossref_primary_10_1109_TNNLS_2019_2891252
crossref_primary_10_1002_asjc_627
crossref_primary_10_1109_TNNLS_2014_2334364
crossref_primary_10_1109_TNNLS_2014_2305440
crossref_primary_10_1109_TNNLS_2017_2652478
crossref_primary_10_1109_TETCI_2024_3377265
crossref_primary_10_1016_j_neucom_2011_04_026
crossref_primary_10_1109_TNNLS_2016_2635676
crossref_primary_10_1109_TNNLS_2020_3027471
crossref_primary_10_1016_j_amc_2012_01_020
crossref_primary_10_3233_IDA_163145
crossref_primary_10_1007_s00521_017_2863_5
crossref_primary_10_1007_s10812_024_01713_z
crossref_primary_10_1016_j_neunet_2020_04_020
crossref_primary_10_1109_JLT_2011_2159578
crossref_primary_10_1007_s12559_014_9249_0
crossref_primary_10_1016_j_knosys_2024_112502
crossref_primary_10_1016_j_neunet_2014_03_006
crossref_primary_10_1007_s00521_025_11635_2
crossref_primary_10_1109_TNNLS_2021_3082950
crossref_primary_10_1109_TNN_2011_2109735
crossref_primary_10_1109_TNN_2010_2052631
crossref_primary_10_1016_j_matcom_2014_02_006
crossref_primary_10_1016_j_neucom_2021_06_089
crossref_primary_10_1109_TNNLS_2016_2637567
crossref_primary_10_1016_j_neunet_2023_06_003
crossref_primary_10_1109_TIE_2016_2544718
crossref_primary_10_1016_j_patcog_2022_109254
crossref_primary_10_1109_TMECH_2020_3016757
crossref_primary_10_1155_2011_297147
crossref_primary_10_1109_TNNLS_2015_2404773
crossref_primary_10_1109_TNNLS_2013_2292893
crossref_primary_10_1109_TNNLS_2022_3175899
crossref_primary_10_1016_j_neucom_2019_06_016
crossref_primary_10_1016_j_neucom_2010_02_017
crossref_primary_10_1016_j_neunet_2019_07_019
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1007_s11063_009_9119_z
crossref_primary_10_1016_j_eswa_2025_128692
crossref_primary_10_1016_j_amc_2010_02_010
crossref_primary_10_1587_nolta_2_432
crossref_primary_10_1109_TIV_2024_3372995
Cites_doi 10.1007/11759966_53
10.1109/72.728383
10.1109/TNN.2006.879775
10.1137/1.9781611970777
10.1016/j.physd.2005.12.006
10.1016/S0375-9601(01)00542-4
10.1109/TNN.2004.824252
10.1109/3477.907574
10.1007/978-3-642-69512-4
10.1109/TSMCB.2003.822955
10.1162/neco.2006.18.3.683
10.1109/TNN.2006.880584
10.1109/TNN.2006.880579
10.1109/TNN.2006.879774
10.1016/S0375-9601(02)00424-3
10.1016/j.neunet.2004.05.006
10.1016/0893-6080(94)90041-8
10.1109/TNN.2002.1031958
10.1006/jmaa.1997.5791
10.1109/81.995659
10.1109/TCSI.2003.818614
10.1016/j.neunet.2004.09.004
10.1109/31.1783
10.1109/TCSI.2004.834493
10.1109/TNN.2006.881046
10.1109/TCS.1986.1085953
10.1109/72.870050
10.1093/oso/9780198534419.001.0001
10.1007/978-1-4757-2440-0
10.1109/TNN.2004.841779
10.1109/72.548188
10.1109/82.160169
10.1007/978-1-4471-3467-1
10.1109/81.401145
10.1109/72.788643
10.1109/81.244913
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
7QO
P64
DOI 10.1109/TNN.2007.910736
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Technology Research Database

Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 570
ExternalDocumentID 18390304
20228656
10_1109_TNN_2007_910736
4441699
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
7QO
P64
ID FETCH-LOGICAL-c437t-939a68cc5bb1a6ec141d6983bc25a5778c65676fc78470ce3847e3a0f5f922303
IEDL.DBID RIE
ISICitedReferencesCount 207
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258766700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
IngestDate Tue Oct 07 09:32:13 EDT 2025
Thu Sep 04 15:13:45 EDT 2025
Thu Sep 04 23:42:41 EDT 2025
Mon Jul 21 05:43:28 EDT 2025
Mon Jul 21 09:15:13 EDT 2025
Tue Nov 18 22:43:53 EST 2025
Sat Nov 29 03:59:22 EST 2025
Tue Aug 26 16:47:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Recurrent neural nets
Statistical analysis
recurrent neural network
nonlinear programming
global convergence
Lyapunov method
Non linear programming
Neural network
Quadratic programming
hard-limiting activation function
Activation function
Sequential method
Optimal solution
Equality constraint
Vector support machine
Lyapunov stability
Convex function
Objective function
Differential inclusion
Lyapunov function
Quadratic function
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-939a68cc5bb1a6ec141d6983bc25a5778c65676fc78470ce3847e3a0f5f922303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18390304
PQID 1671435773
PQPubID 23500
PageCount 13
ParticipantIDs ieee_primary_4441699
proquest_miscellaneous_70469796
crossref_citationtrail_10_1109_TNN_2007_910736
proquest_miscellaneous_875066454
crossref_primary_10_1109_TNN_2007_910736
pubmed_primary_18390304
pascalfrancis_primary_20228656
proquest_miscellaneous_1671435773
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
helmke (ref26) 1994
ref33
ref11
ref32
ref10
ref2
ref17
ref38
li (ref30) 2006; 3971
ref16
ref19
ref18
bazaraa (ref1) 1993
clarke (ref29) 1969
ref24
ref23
ref25
ref20
dierckx (ref39) 1993
ref22
ref21
ref27
ref8
ref7
aubin (ref28) 1984
ref9
ref4
ref3
ref6
ref5
tan (ref36) 2000
References_xml – volume: 3971
  start-page: 344
  year: 2006
  ident: ref30
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11759966_53
– year: 1969
  ident: ref29
  publication-title: Optimization and Non-Smooth Analysis
– ident: ref9
  doi: 10.1109/72.728383
– ident: ref23
  doi: 10.1109/TNN.2006.879775
– ident: ref31
  doi: 10.1137/1.9781611970777
– year: 1993
  ident: ref1
  publication-title: Nonlinear Programming Theory and Algorithms
– ident: ref22
  doi: 10.1016/j.physd.2005.12.006
– ident: ref11
  doi: 10.1016/S0375-9601(01)00542-4
– ident: ref14
  doi: 10.1109/TNN.2004.824252
– ident: ref10
  doi: 10.1109/3477.907574
– year: 1984
  ident: ref28
  publication-title: Differential Inclusions
  doi: 10.1007/978-3-642-69512-4
– ident: ref38
  doi: 10.1109/TSMCB.2003.822955
– ident: ref25
  doi: 10.1162/neco.2006.18.3.683
– ident: ref34
  doi: 10.1109/TNN.2006.880584
– ident: ref20
  doi: 10.1109/TNN.2006.880579
– ident: ref18
  doi: 10.1109/TNN.2006.879774
– ident: ref13
  doi: 10.1016/S0375-9601(02)00424-3
– ident: ref15
  doi: 10.1016/j.neunet.2004.05.006
– ident: ref6
  doi: 10.1016/0893-6080(94)90041-8
– ident: ref37
  doi: 10.1109/TNN.2002.1031958
– ident: ref27
  doi: 10.1006/jmaa.1997.5791
– ident: ref12
  doi: 10.1109/81.995659
– ident: ref21
  doi: 10.1109/TCSI.2003.818614
– ident: ref24
  doi: 10.1016/j.neunet.2004.09.004
– ident: ref3
  doi: 10.1109/31.1783
– start-page: 411
  year: 2000
  ident: ref36
  article-title: neural network realization of support vector methods for pattern classification
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– ident: ref16
  doi: 10.1109/TCSI.2004.834493
– ident: ref19
  doi: 10.1109/TNN.2006.881046
– ident: ref2
  doi: 10.1109/TCS.1986.1085953
– ident: ref33
  doi: 10.1109/72.870050
– year: 1993
  ident: ref39
  publication-title: Curve and Surface Fitting with Splines
  doi: 10.1093/oso/9780198534419.001.0001
– ident: ref35
  doi: 10.1007/978-1-4757-2440-0
– ident: ref17
  doi: 10.1109/TNN.2004.841779
– ident: ref8
  doi: 10.1109/72.548188
– ident: ref4
  doi: 10.1109/82.160169
– year: 1994
  ident: ref26
  publication-title: Optimization and Dynamical Systems
  doi: 10.1007/978-1-4471-3467-1
– ident: ref7
  doi: 10.1109/81.401145
– ident: ref32
  doi: 10.1109/72.788643
– ident: ref5
  doi: 10.1109/81.244913
SSID ssj0014506
Score 2.3658586
Snippet In this paper, a one-layer recurrent neural network with a discontinuous hard-limiting activation function is proposed for quadratic programming. This neural...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 558
SubjectTerms Activation
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer Simulation
Connectionism. Neural networks
Convergence
Data processing. List processing. Character string processing
Differential inclusion
Exact sciences and technology
global convergence
hard-limiting activation function
Lagrangian functions
Linear programming
Lyapunov stability
Machine learning
Mathematical analysis
Mathematical models
Memory organisation. Data processing
Nerve Net
Neural network hardware
Neural networks
Nonlinear Dynamics
nonlinear programming
Numerical simulation
Programming, Linear
Quadratic programming
recurrent neural network
Recurrent neural networks
Signal Processing, Computer-Assisted
Software
Support vector machines
Time Factors
Title A One-Layer Recurrent Neural Network With a Discontinuous Hard-Limiting Activation Function for Quadratic Programming
URI https://ieeexplore.ieee.org/document/4441699
https://www.ncbi.nlm.nih.gov/pubmed/18390304
https://www.proquest.com/docview/1671435773
https://www.proquest.com/docview/70469796
https://www.proquest.com/docview/875066454
Volume 19
WOSCitedRecordID wos000258766700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc40LLLI0AXIyHEgbRJbMfxcVVYcahCQQX2FjmOV6xEs6i7QeLfM2NnUyqxB05xlMnLM9bM2OPvA3hVNzWvF8LEIktcLHKpYtPkeKoKST6hVh634Ou5KstiPtcXe_B22AvjnPPFZ-6Emn4tv1nZjqbKTgX67lzrfdhXKg97tYYVAyE9jyZmFzLWWaZ6GJ800aeXZRmwCtE1Ku5JizAsoDXBW87Is6tQbaRZY_csAq_F7sDTO6DZ4f99-hHc7wNNNg2W8QD2XDuC8bTFJPvqN3vNfOmnn1MfweGW24H1Q30E9_4CKhxDN2UfWxefGwzQ2WeaoidQJ0bIHviOMpSSs2_LzXdm2Lvlmgrgl2236taMSgNiv40Kn8SmdkunxmboUX0Dw2b2qTMN2aJlF6Fg7AqlH8KX2fvLsw9xT9gQW8HVJtZcm7ywVtZ1anJnU5E2uS54bTNppFKFxehR0e4i9ImJdRwPjptkIReoMnSmj-CgXbXuCTCDkWxTC00IeQJDa1OnSWIlJWA848pFcLLVXGV7NHMi1fhR-awm0RVqnTg2VRW0HsGb4YafAchjt-iYFDiI9bqLYHLLNIbrGWEI4Z9F8HJrKxUOUlp5Ma3Drq7SnGjmsQd4BC92yCiaqVAan8J2SGBqiQGikCKCx8ESb_6kN-in__70Z3A31LlQxdFzONhcd-4Y7thfm-X6eoLDaV5M_HD6A6VIGXg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgQQ8MGhhhB-bkRDigWxJbMfxYwVUQ5QwUIG9RY7jikpbitYGif-eOzstTKIPPCVRLk7iO-vu7PP3ATyvm5rXM2FikSUuFrlUsWlyvFSFJJ9QK49b8HWiyrI4O9OnO_BqsxfGOeeLz9wRnfq1_GZhO5oqOxbou3Otr8F1KbDtsFtrs2YgpGfSxPxCxjrLVA_kkyb6eFqWAa0QnaPinrYIAwNaFbzijjy_ClVHmiV20CwwW2wPPb0LGu_938ffhTt9qMlGwTbuwY5rBzActZhmX_xiL5gv_vSz6gPYW7M7sH6wD-D2X1CFQ-hG7GPr4onBEJ19pkl6gnVihO2B7yhDMTn7Nl99Z4a9mS-pBH7edotuyag4IPYbqbAlNrJrQjU2Rp_qTzBwZp8605A1WnYaSsYuUPo-fBm_nb4-iXvKhtgKrlax5trkhbWyrlOTO5uKtMl1wWubSSOVKizGj4r2F6FXTKzjeHDcJDM5Q5WhO30Au-2idQ-BGYxlm1powsgTGFybOk0SKykF4xlXLoKjteYq2-OZE63GeeXzmkRXqHVi2VRV0HoELzcP_AhQHttFh6TAjVivuwgOrpjG5n5GKEL4ZxE8W9tKhcOU1l5M67CrqzQnonnsAR7B4RYZRXMVSmMrbIsEJpcYIgopItgPlvjnT3qDfvTvTz-EmyfTD5Nq8q58_xhuhaoXqj96Arury849hRv252q-vDzwg-o3wlAb1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+One-Layer+Recurrent+Neural+Network+With+a+Discontinuous+Hard-Limiting+Activation+Function+for+Quadratic+Programming&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Qingshan+Liu&rft.au=Jun+Wang&rft.date=2008-04-01&rft.pub=IEEE&rft.issn=1045-9227&rft.volume=19&rft.issue=4&rft.spage=558&rft.epage=570&rft_id=info:doi/10.1109%2FTNN.2007.910736&rft_id=info%3Apmid%2F18390304&rft.externalDocID=4441699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon