Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity
[Display omitted] •Tubular g-C3N4 with carbon vacancy was obtained by pyrolysis under N2 atmosphere.•Carbon vacancy facilitates the adsorption of NO and O2 on the surface of g-C3N4.•Carbon vacancy accelerates the separation and transfer of photo-generated carriers.•g-C3N4 with carbon vacancy exhibit...
Uloženo v:
| Vydáno v: | Applied catalysis. B, Environmental Ročník 262; s. 118281 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.03.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0926-3373, 1873-3883 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Tubular g-C3N4 with carbon vacancy was obtained by pyrolysis under N2 atmosphere.•Carbon vacancy facilitates the adsorption of NO and O2 on the surface of g-C3N4.•Carbon vacancy accelerates the separation and transfer of photo-generated carriers.•g-C3N4 with carbon vacancy exhibits improved visible photocatalytic NO oxidation.
We demonstrated that carbon vacancy modified C3N4 nanotubes can be qualified for more efficient and selective oxidation of NO to NO3− under visible light illumination than the pristine counterpart. Tubular C3N4 with carbon vacancy was fabricated by facile pyrolysis of the hydrolyzed melamine-urea mixture under N2 gas. With the particular structural merits for tubular nanostructure and the introduction of suitable carbon vacancy density, richly available surface defect sites, and accelerated separation and transfer of photo-generated charge carriers, the as-prepared carbon vacancy modified C3N4 nanotubes exhibited an excellent photocatalytic NO oxidation performance. Based on ESR measurement and DFT calculation, the electronic structure of carbon vacancy was revealed. The surface carbon vacancy in C3N4 nanotubes can greatly facilitate the adsorption of NO and O2, therefore, leading to its superior photocatalytic selectivity in conversion of NO to NO3−. The present work provides new insights into the understanding of defective semiconductor photocatalysis. |
|---|---|
| AbstractList | We demonstrated that carbon vacancy modified C3N4 nanotubes can be qualified for more efficient and selective oxidation of NO to NO3− under visible light illumination than the pristine counterpart. Tubular C3N4 with carbon vacancy was fabricated by facile pyrolysis of the hydrolyzed melamine-urea mixture under N2 gas. With the particular structural merits for tubular nanostructure and the introduction of suitable carbon vacancy density, richly available surface defect sites, and accelerated separation and transfer of photo-generated charge carriers, the as-prepared carbon vacancy modified C3N4 nanotubes exhibited an excellent photocatalytic NO oxidation performance. Based on ESR measurement and DFT calculation, the electronic structure of carbon vacancy was revealed. The surface carbon vacancy in C3N4 nanotubes can greatly facilitate the adsorption of NO and O2, therefore, leading to its superior photocatalytic selectivity in conversion of NO to NO3−. The present work provides new insights into the understanding of defective semiconductor photocatalysis. [Display omitted] •Tubular g-C3N4 with carbon vacancy was obtained by pyrolysis under N2 atmosphere.•Carbon vacancy facilitates the adsorption of NO and O2 on the surface of g-C3N4.•Carbon vacancy accelerates the separation and transfer of photo-generated carriers.•g-C3N4 with carbon vacancy exhibits improved visible photocatalytic NO oxidation. We demonstrated that carbon vacancy modified C3N4 nanotubes can be qualified for more efficient and selective oxidation of NO to NO3− under visible light illumination than the pristine counterpart. Tubular C3N4 with carbon vacancy was fabricated by facile pyrolysis of the hydrolyzed melamine-urea mixture under N2 gas. With the particular structural merits for tubular nanostructure and the introduction of suitable carbon vacancy density, richly available surface defect sites, and accelerated separation and transfer of photo-generated charge carriers, the as-prepared carbon vacancy modified C3N4 nanotubes exhibited an excellent photocatalytic NO oxidation performance. Based on ESR measurement and DFT calculation, the electronic structure of carbon vacancy was revealed. The surface carbon vacancy in C3N4 nanotubes can greatly facilitate the adsorption of NO and O2, therefore, leading to its superior photocatalytic selectivity in conversion of NO to NO3−. The present work provides new insights into the understanding of defective semiconductor photocatalysis. |
| ArticleNumber | 118281 |
| Author | Fan, Jiajie Gu, Miaoli Cui, Wen Zhang, Xianming Dong, Fan Li, Yuhan Shi, Ting Cheng, Jinshui Lv, Kangle |
| Author_xml | – sequence: 1 givenname: Yuhan surname: Li fullname: Li, Yuhan organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 2 givenname: Miaoli surname: Gu fullname: Gu, Miaoli organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 3 givenname: Ting surname: Shi fullname: Shi, Ting organization: Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China – sequence: 4 givenname: Wen orcidid: 0000-0001-9324-4140 surname: Cui fullname: Cui, Wen organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 5 givenname: Xianming surname: Zhang fullname: Zhang, Xianming organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 6 givenname: Fan surname: Dong fullname: Dong, Fan email: dfctbu@126.com organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China – sequence: 7 givenname: Jinshui surname: Cheng fullname: Cheng, Jinshui organization: Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China – sequence: 8 givenname: Jiajie orcidid: 0000-0002-3661-3306 surname: Fan fullname: Fan, Jiajie organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China – sequence: 9 givenname: Kangle orcidid: 0000-0001-8764-0892 surname: Lv fullname: Lv, Kangle email: lvkangle@mail.scuec.edu.cn organization: Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China |
| BookMark | eNqFkMtq3DAUhkVJoJPLG2QhyLae6GLZchaBMqRJIbSbdi2Oj-WMBo80keQBv309OKss0tWBw3_h_y7ImQ_eEnLD2ZozXt3t1nBAyO1aMN6sOddC8y9kxXUtC6m1PCMr1oiqkLKWX8lFSjvGmJBCr8iwgdgGT4-A4HGiztON_FVSDz7ksbX39HGwmGPwDmnKccQ8RvuNHrYhh7kThim5RPcWt-Bd2lPwHd261-0wUevnH9qOAmZ3dHm6Iuc9DMlev99L8vfH45_Nc_Hy--nn5vtLgaWsc9FwrLu210op2_TYKmFBALCyqUWnmOoVth1DabVCULxvOiF6tGVVtaJqKyEvye2Se4jhbbQpm10Yo58rzby61g1jms-qclFhDClF25tDdHuIk-HMnLianVm4mhNXs3CdbfcfbOgyZBd8juCG_5kfFrOd5x-djSahsydILs6YTRfc5wH_AOKVmak |
| CitedBy_id | crossref_primary_10_1016_j_cej_2021_128802 crossref_primary_10_1039_D0RA05580H crossref_primary_10_1016_j_jece_2024_114113 crossref_primary_10_1088_1361_6528_abe903 crossref_primary_10_1016_j_apsusc_2024_159701 crossref_primary_10_1016_j_mtener_2022_100966 crossref_primary_10_1002_smll_202505924 crossref_primary_10_1016_j_jece_2024_112971 crossref_primary_10_1016_j_apcatb_2021_120517 crossref_primary_10_1016_j_apcatb_2022_121329 crossref_primary_10_1016_j_jece_2024_113022 crossref_primary_10_1016_j_jece_2024_113427 crossref_primary_10_1016_j_jwpe_2022_103345 crossref_primary_10_1039_D0CY02453H crossref_primary_10_1016_j_jcis_2023_08_012 crossref_primary_10_1016_j_scitotenv_2021_148946 crossref_primary_10_1016_j_mssp_2021_106134 crossref_primary_10_1016_j_vacuum_2022_111483 crossref_primary_10_1016_j_envres_2021_111844 crossref_primary_10_1016_j_matchemphys_2021_124968 crossref_primary_10_1016_j_jhazmat_2023_132365 crossref_primary_10_3390_catal10101119 crossref_primary_10_1016_j_jcat_2025_116326 crossref_primary_10_1016_j_desal_2022_115905 crossref_primary_10_1016_j_cej_2024_149066 crossref_primary_10_1016_j_scitotenv_2022_153845 crossref_primary_10_1016_j_apcatb_2022_122025 crossref_primary_10_1016_j_apcatb_2023_122387 crossref_primary_10_1016_j_jhazmat_2023_131715 crossref_primary_10_1016_j_jhazmat_2022_129637 crossref_primary_10_1007_s11082_024_07798_2 crossref_primary_10_1016_j_seppur_2022_121221 crossref_primary_10_1016_j_jallcom_2025_180029 crossref_primary_10_1016_j_mssp_2023_107459 crossref_primary_10_1016_j_ijhydene_2024_12_181 crossref_primary_10_1007_s40843_023_2443_0 crossref_primary_10_1016_j_jhazmat_2025_138356 crossref_primary_10_1002_slct_202102478 crossref_primary_10_1016_j_apsusc_2025_164446 crossref_primary_10_1016_j_ijhydene_2023_04_218 crossref_primary_10_1016_j_apsusc_2021_149478 crossref_primary_10_1016_j_ceramint_2024_02_013 crossref_primary_10_1007_s12613_023_2678_6 crossref_primary_10_1016_j_cej_2022_135910 crossref_primary_10_3389_fchem_2021_652762 crossref_primary_10_1016_j_apsusc_2023_157888 crossref_primary_10_1016_j_apcatb_2022_121322 crossref_primary_10_1016_j_seppur_2023_124636 crossref_primary_10_1016_j_jallcom_2022_164028 crossref_primary_10_1016_j_ces_2024_120191 crossref_primary_10_3390_catal14090636 crossref_primary_10_1016_j_cej_2021_131677 crossref_primary_10_53941_ges_2025_100003 crossref_primary_10_1016_j_apsusc_2019_144654 crossref_primary_10_1016_j_apsusc_2020_148427 crossref_primary_10_1016_j_cej_2022_136051 crossref_primary_10_1016_j_jpcs_2021_110270 crossref_primary_10_1016_j_apt_2022_103531 crossref_primary_10_1016_j_cej_2024_150155 crossref_primary_10_1016_j_jhazmat_2022_130040 crossref_primary_10_1002_cssc_202101173 crossref_primary_10_1016_j_scitotenv_2020_139054 crossref_primary_10_1016_j_inoche_2022_110099 crossref_primary_10_3390_ijms232112979 crossref_primary_10_1007_s42247_025_01071_2 crossref_primary_10_1016_j_jcis_2021_11_011 crossref_primary_10_1039_D1CY01776D crossref_primary_10_1002_aesr_202300090 crossref_primary_10_3390_catal13010192 crossref_primary_10_1016_j_ijhydene_2022_12_212 crossref_primary_10_1016_j_jece_2021_106911 crossref_primary_10_1016_j_renene_2022_08_014 crossref_primary_10_1016_j_seppur_2024_128528 crossref_primary_10_1002_adfm_202213974 crossref_primary_10_1016_j_carbon_2023_118723 crossref_primary_10_1016_j_cej_2021_130877 crossref_primary_10_1016_j_seppur_2022_121124 crossref_primary_10_3390_polym13152568 crossref_primary_10_1016_j_cej_2020_127729 crossref_primary_10_1016_j_mssp_2023_107672 crossref_primary_10_1039_D5GC00353A crossref_primary_10_1002_smll_202404696 crossref_primary_10_1016_j_cej_2022_137436 crossref_primary_10_1002_smll_202301007 crossref_primary_10_1007_s11356_023_25276_2 crossref_primary_10_1016_j_apcatb_2024_124614 crossref_primary_10_1088_1361_6463_ac782d crossref_primary_10_1080_02603594_2025_2490643 crossref_primary_10_1016_j_jpowsour_2021_230721 crossref_primary_10_1016_j_ceramint_2023_09_226 crossref_primary_10_1016_j_colsurfa_2024_134339 crossref_primary_10_1002_aenm_202004001 crossref_primary_10_1016_j_surfin_2025_106284 crossref_primary_10_1016_j_apsusc_2023_158259 crossref_primary_10_1016_j_chemosphere_2020_127675 crossref_primary_10_1039_D4EN00715H crossref_primary_10_1016_j_jssc_2025_125518 crossref_primary_10_1016_j_jece_2024_114153 crossref_primary_10_1039_D0CY02009E crossref_primary_10_1016_j_rser_2024_114482 crossref_primary_10_1016_j_cplett_2021_138903 crossref_primary_10_1007_s13391_022_00377_1 crossref_primary_10_1016_j_seppur_2021_118424 crossref_primary_10_1007_s10562_021_03674_w crossref_primary_10_1007_s11665_025_11376_2 crossref_primary_10_1016_j_chemosphere_2021_130171 crossref_primary_10_1016_j_seppur_2023_125193 crossref_primary_10_1016_j_jes_2022_10_036 crossref_primary_10_1016_j_scitotenv_2022_159247 crossref_primary_10_1002_solr_202400804 crossref_primary_10_1002_anie_202218664 crossref_primary_10_1002_smll_202208254 crossref_primary_10_1016_j_trac_2020_116089 crossref_primary_10_1007_s12274_023_6014_2 crossref_primary_10_1016_j_cej_2023_143155 crossref_primary_10_1016_j_cej_2023_142584 crossref_primary_10_1016_j_compositesb_2021_109200 crossref_primary_10_1016_j_surfin_2024_104144 crossref_primary_10_1002_slct_202103884 crossref_primary_10_1007_s10854_021_06960_w crossref_primary_10_1016_j_jphotochem_2024_115933 crossref_primary_10_1016_j_seppur_2024_129392 crossref_primary_10_3390_nitrogen5020023 crossref_primary_10_1016_j_cej_2022_137053 crossref_primary_10_1002_smll_202102496 crossref_primary_10_1016_j_fuel_2024_132903 crossref_primary_10_1016_j_mcat_2021_111932 crossref_primary_10_3390_catal15090851 crossref_primary_10_1016_j_ccr_2025_216682 crossref_primary_10_1016_j_scitotenv_2020_144139 crossref_primary_10_1016_j_apsusc_2022_155808 crossref_primary_10_1016_j_seppur_2024_128577 crossref_primary_10_1016_j_jcis_2024_02_203 crossref_primary_10_1007_s40820_023_01297_x crossref_primary_10_1016_j_jece_2022_109235 crossref_primary_10_1016_j_seppur_2023_124670 crossref_primary_10_1016_j_cej_2021_131973 crossref_primary_10_1016_j_ccr_2024_215849 crossref_primary_10_1002_smll_202005149 crossref_primary_10_1016_j_apcatb_2021_120573 crossref_primary_10_1016_j_apsusc_2021_151901 crossref_primary_10_1016_j_ceramint_2024_01_381 crossref_primary_10_1016_j_jhazmat_2019_121947 crossref_primary_10_1016_j_cej_2020_124421 crossref_primary_10_3390_su17104358 crossref_primary_10_1016_j_jece_2024_112271 crossref_primary_10_1142_S1793604724510433 crossref_primary_10_1016_j_fuproc_2022_107617 crossref_primary_10_1016_j_jssc_2022_123670 crossref_primary_10_1016_j_fuel_2024_133329 crossref_primary_10_1016_j_vacuum_2022_111342 crossref_primary_10_1016_j_cis_2021_102523 crossref_primary_10_1002_aenm_202400742 crossref_primary_10_1016_j_apcatb_2022_122042 crossref_primary_10_1016_j_cattod_2020_12_037 crossref_primary_10_1016_j_apcatb_2022_121119 crossref_primary_10_1016_j_fuel_2023_130575 crossref_primary_10_1016_j_nanoms_2024_10_014 crossref_primary_10_1039_D1CY02181H crossref_primary_10_1002_aenm_202301047 crossref_primary_10_1039_D2QM00604A crossref_primary_10_1016_j_apcatb_2025_125477 crossref_primary_10_1016_j_cjsc_2024_100416 crossref_primary_10_1016_j_mssp_2023_107478 crossref_primary_10_1016_j_apsusc_2021_152064 crossref_primary_10_1016_j_apsusc_2022_153211 crossref_primary_10_1016_j_jcis_2023_03_209 crossref_primary_10_3390_nano13162300 crossref_primary_10_1016_j_apcata_2020_117618 crossref_primary_10_1016_j_seppur_2024_130515 crossref_primary_10_1021_acsami_5c10120 crossref_primary_10_1002_adfm_202210265 crossref_primary_10_1002_adsu_202100498 crossref_primary_10_1016_j_mtphys_2023_101080 crossref_primary_10_1002_adfm_202010763 crossref_primary_10_1002_ange_202218664 crossref_primary_10_1016_j_cej_2021_134105 crossref_primary_10_1039_D4CY00575A crossref_primary_10_1016_j_apcatb_2022_121864 crossref_primary_10_1016_j_apcatb_2022_121863 crossref_primary_10_1039_D2CY00474G crossref_primary_10_1088_1361_6528_ac4b30 crossref_primary_10_1016_j_seppur_2022_122778 |
| Cites_doi | 10.1016/j.nanoen.2017.05.038 10.1016/j.apcatb.2004.07.009 10.1016/j.apcatb.2016.09.055 10.1007/s12274-018-2003-2 10.1006/jcat.2002.3654 10.1016/j.apsusc.2018.08.189 10.1039/C5TA06540B 10.1016/j.apsusc.2018.06.014 10.1016/j.apcatb.2018.11.056 10.1016/0927-0256(96)00008-0 10.1021/acssuschemeng.8b02710 10.1016/j.apsusc.2018.06.156 10.1002/chem.201501183 10.1002/anie.201705628 10.1002/jcc.20495 10.1103/PhysRevB.54.11169 10.1039/c3ta13291a 10.1016/j.apsusc.2018.08.209 10.1103/PhysRevLett.77.3865 10.1016/j.cej.2019.06.029 10.1021/la0110895 10.1021/jp020257e 10.1021/acsami.9b00111 10.1016/j.apcatb.2018.03.014 10.1038/srep12389 10.1002/smll.201601660 10.1016/j.apcatb.2017.07.010 10.1016/j.apsusc.2019.05.056 10.1039/C9NR00887J 10.1016/j.apcatb.2017.03.064 10.1002/adfm.201900093 10.1016/j.apcatb.2019.02.020 10.1016/S1872-2067(19)63343-7 10.1016/j.apcatb.2019.01.013 10.1016/j.apcatb.2011.03.019 10.1016/j.apcatb.2017.07.022 10.1016/j.apcatb.2019.117825 10.1016/j.apcatb.2019.117867 10.1016/j.jhazmat.2015.12.072 10.1016/S0926-3373(99)00003-X 10.1038/ncomms2152 10.1016/j.cej.2017.11.045 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 2020 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 2020 |
| DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
| DOI | 10.1016/j.apcatb.2019.118281 |
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Environmental Sciences |
| EISSN | 1873-3883 |
| ExternalDocumentID | 10_1016_j_apcatb_2019_118281 S0926337319310276 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD 7SR 7ST 7U5 8BQ 8FD AGCQF C1K FR3 JG9 KR7 L7M SOI |
| ID | FETCH-LOGICAL-c437t-91c7dbf8555e9fcb52ea2aa04972d505f5cbd0c3e85ca51f9d22fce466b26b623 |
| ISICitedReferencesCount | 248 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501613700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-3373 |
| IngestDate | Wed Aug 13 06:35:30 EDT 2025 Tue Nov 18 22:16:03 EST 2025 Sat Nov 29 07:08:47 EST 2025 Sat Mar 02 16:00:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Reaction mechanism C3N4 nanotubes Carbon vacancy Photocatalytic oxidation Surface defect sites |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c437t-91c7dbf8555e9fcb52ea2aa04972d505f5cbd0c3e85ca51f9d22fce466b26b623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9324-4140 0000-0002-3661-3306 0000-0001-8764-0892 |
| PQID | 2327890081 |
| PQPubID | 2045281 |
| ParticipantIDs | proquest_journals_2327890081 crossref_primary_10_1016_j_apcatb_2019_118281 crossref_citationtrail_10_1016_j_apcatb_2019_118281 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118281 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Applied catalysis. B, Environmental |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Li, Wu, Ho, Lv, Li, Li, Lee (bib0160) 2018; 336 Tian, Yang, Liu, Qu, Tang (bib0140) 2018; 455 Guo, Tang, Xie, Tian, Feng, Zhou, Jiang (bib0110) 2017; 218 Liu, Shen, Liu, Yang, Tang (bib0130) 2018; 462 Grimme (bib0165) 2006; 27 Dong, Zhao, Wu, Zhu, Wang (bib0065) 2019; 245 Tian, Yang, Cui, Liu, Tang (bib0120) 2019; 463 Xu, Zhang, Cheng, Yu (bib0030) 2018; 6 Tahir, Cao, Butt, Idrees, Mahmood, Mahmood, Ali, Aslam, Tanveer, Rizwan, Mahmood (bib0090) 2013; 1 Tang, Wang, Zhao, Chen, Yang, Bukhvalov, Lin, Liu (bib0050) 2019; 374 Kresse, Furthmüller (bib0180) 1996; 6 Kuang, Ran, Liu, Wang, Li, Su, Jin, Qiao (bib0010) 2015; 21 Hadjiivanov, Avreyska, Klissurski, Marinova (bib0200) 2002; 18 Yang, Cai, Lv, Wu, Wang, Xu, Li, Li, Xu (bib0020) 2017; 210 Kresse, Furthmüller (bib0170) 1996; 54 Tong, Yang, Sun, Nan, Jiang (bib0060) 2016; 12 Tahir, Mahmood, Zhu, Mahmood, Butt, Rizwan, Aslam, Idrees, Shakir, Cao, Hou (bib0085) 2015; 5 Xia, Antonietti, Zhu, Heil, Yu, Cao (bib0125) 2019; 29 Zhao, Dong, Zhang, Lu, Huang (bib0005) 2019; 11 Li, Lv, Ho, Dong, Wu, Xia (bib0045) 2017; 202 Delahay, Valade, Guzman-Vargas, Coq (bib0215) 2005; 55 Tian, Zhang, Li, Xiao, Du, Dong, Waterhouse, Zhang, Huang (bib0055) 2017; 38 Li, Li, Ai, Jia, Zhang (bib0175) 2018; 57 Perdew, Burke, Ernzerhof (bib0190) 1996; 77 Wei, Huang, Gu, Wang, Zeng, Chen, Liu (bib0015) 2018; 231 Liu, Shen, Yu, Yang, Liu, Yang, Tang, Xu, Li, Li, Xu (bib0115) 2019; 248 Zhou, Zhao, Wang (bib0155) 2016; 307 Yang, Tian, Zhao, Tang, Liu, Li (bib0105) 2019; 244 Zhao, Chen, Xu, Liu, Xu, Tang, Li, Jiang, Qu, Lin, Yang (bib0095) 2019; 256 Lv, Xiang, Yu (bib0025) 2011; 104 Klingenberg, Vannice (bib0185) 1999; 21 Wu, Gao, Yu, Yu (bib0070) 2019; 11 McCurdy, Hess, Sotiris (bib0210) 2002; 106 Liu, Shen, Yang, Liu, Tang (bib0150) 2018; 456 Weingand, Kuba, Hadjiivanov, Knzinger (bib0205) 2002; 209 Jiang, Qu, Tian, Yang, Zou, Lin (bib0040) 2019; 487 Zhou, Shi, Shang, Wu, Tung, Zhang (bib0080) 2018; 11 Stephen, Laane, Ohlsen (bib0195) 2007; 27 Sun, Zhang, Zhang, Antonietti, Fu, Wang (bib0075) 2012; 3 Zhou, Dong, Yu, Huang (bib0035) 2019; 256 Dong, Ho, Wang (bib0135) 2015; 3 Dong, Jacobs, Zang, Wang (bib0100) 2017; 218 Wang, Li, Cao, Yu (bib0145) 2019; 40 Kresse (10.1016/j.apcatb.2019.118281_bib0170) 1996; 54 Perdew (10.1016/j.apcatb.2019.118281_bib0190) 1996; 77 Kresse (10.1016/j.apcatb.2019.118281_bib0180) 1996; 6 Tang (10.1016/j.apcatb.2019.118281_bib0050) 2019; 374 Tian (10.1016/j.apcatb.2019.118281_bib0055) 2017; 38 Zhou (10.1016/j.apcatb.2019.118281_bib0155) 2016; 307 Tahir (10.1016/j.apcatb.2019.118281_bib0085) 2015; 5 Zhou (10.1016/j.apcatb.2019.118281_bib0080) 2018; 11 Xu (10.1016/j.apcatb.2019.118281_bib0030) 2018; 6 Sun (10.1016/j.apcatb.2019.118281_bib0075) 2012; 3 Tian (10.1016/j.apcatb.2019.118281_bib0140) 2018; 455 Lv (10.1016/j.apcatb.2019.118281_bib0025) 2011; 104 Wei (10.1016/j.apcatb.2019.118281_bib0015) 2018; 231 Dong (10.1016/j.apcatb.2019.118281_bib0065) 2019; 245 Dong (10.1016/j.apcatb.2019.118281_bib0100) 2017; 218 Hadjiivanov (10.1016/j.apcatb.2019.118281_bib0200) 2002; 18 Xia (10.1016/j.apcatb.2019.118281_bib0125) 2019; 29 Delahay (10.1016/j.apcatb.2019.118281_bib0215) 2005; 55 Wu (10.1016/j.apcatb.2019.118281_bib0070) 2019; 11 McCurdy (10.1016/j.apcatb.2019.118281_bib0210) 2002; 106 Tahir (10.1016/j.apcatb.2019.118281_bib0090) 2013; 1 Li (10.1016/j.apcatb.2019.118281_bib0045) 2017; 202 Liu (10.1016/j.apcatb.2019.118281_bib0130) 2018; 462 Stephen (10.1016/j.apcatb.2019.118281_bib0195) 2007; 27 Li (10.1016/j.apcatb.2019.118281_bib0175) 2018; 57 Kuang (10.1016/j.apcatb.2019.118281_bib0010) 2015; 21 Wang (10.1016/j.apcatb.2019.118281_bib0145) 2019; 40 Guo (10.1016/j.apcatb.2019.118281_bib0110) 2017; 218 Zhao (10.1016/j.apcatb.2019.118281_bib0005) 2019; 11 Klingenberg (10.1016/j.apcatb.2019.118281_bib0185) 1999; 21 Jiang (10.1016/j.apcatb.2019.118281_bib0040) 2019; 487 Dong (10.1016/j.apcatb.2019.118281_bib0135) 2015; 3 Tong (10.1016/j.apcatb.2019.118281_bib0060) 2016; 12 Yang (10.1016/j.apcatb.2019.118281_bib0105) 2019; 244 Li (10.1016/j.apcatb.2019.118281_bib0160) 2018; 336 Liu (10.1016/j.apcatb.2019.118281_bib0150) 2018; 456 Grimme (10.1016/j.apcatb.2019.118281_bib0165) 2006; 27 Liu (10.1016/j.apcatb.2019.118281_bib0115) 2019; 248 Tian (10.1016/j.apcatb.2019.118281_bib0120) 2019; 463 Zhou (10.1016/j.apcatb.2019.118281_bib0035) 2019; 256 Zhao (10.1016/j.apcatb.2019.118281_bib0095) 2019; 256 Yang (10.1016/j.apcatb.2019.118281_bib0020) 2017; 210 Weingand (10.1016/j.apcatb.2019.118281_bib0205) 2002; 209 |
| References_xml | – volume: 57 start-page: 122 year: 2018 end-page: 138 ident: bib0175 article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew. Chem. Int. Ed. – volume: 487 start-page: 59 year: 2019 end-page: 67 ident: bib0040 article-title: Self-assembled g-C publication-title: Appl. Surf. Sci. – volume: 1 start-page: 13949 year: 2013 end-page: 13955 ident: bib0090 article-title: Tubular graphitic-C publication-title: J. Mater. Chem. A – volume: 463 start-page: 9 year: 2019 end-page: 17 ident: bib0120 article-title: Fabrication of dual direct Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: bib0180 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 6 start-page: 12291 year: 2018 end-page: 12298 ident: bib0030 article-title: Direct Z-scheme TiO publication-title: ACS Sustain. Chem. Eng. – volume: 374 start-page: 1064 year: 2019 end-page: 1075 ident: bib0050 article-title: Oxamide-modified g-C publication-title: Chem. Eng. J. – volume: 38 start-page: 72 year: 2017 end-page: 81 ident: bib0055 article-title: Precursor-reforming protocol to 3D mesoporous g-C publication-title: Nano Energy – volume: 11 start-page: 10042 year: 2019 end-page: 10051 ident: bib0005 article-title: Photocatalytic nitrogen oxide removal activity improved step-by-step through serial multistep Cu modifications publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 465 year: 2007 end-page: 513 ident: bib0195 article-title: Characterization of nitrogen oxides by vibrational spectroscopy publication-title: Prog. Inorg. Chem. – volume: 336 start-page: 200 year: 2018 end-page: 210 ident: bib0160 article-title: Graphene-induced formation of visible-light-responsive SnO publication-title: Chem. Eng. J. – volume: 18 start-page: 1619 year: 2002 end-page: 1625 ident: bib0200 article-title: Surface species formed after NO adsorption and NO + O publication-title: Langmuir – volume: 456 start-page: 369 year: 2018 end-page: 378 ident: bib0150 article-title: Dual Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 21 start-page: 19 year: 1999 end-page: 33 ident: bib0185 article-title: NO adsorption and decomposition on La publication-title: Appl. Catal. B – volume: 106 start-page: 7628 year: 2002 end-page: 7635 ident: bib0210 article-title: Nitric acid-water complexes: theoretical calculations and comparison to experiment publication-title: J. Phys. Chem. A – volume: 55 start-page: 149 year: 2005 end-page: 155 ident: bib0215 article-title: Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods publication-title: Appl. Catal. B – volume: 218 start-page: 515 year: 2017 end-page: 524 ident: bib0100 article-title: Carbon vacancy regulated photoreduction of NO to N publication-title: Appl. Catal. B – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: bib0165 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. – volume: 21 start-page: 15360 year: 2015 end-page: 15368 ident: bib0010 article-title: Enhanced photoelectrocatalytic activity of BiOI plant-zinc oxide nanorod p-n heterojunction publication-title: Chem. Eur. J. – volume: 3 start-page: 1139 year: 2012 end-page: 1145 ident: bib0075 article-title: Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles publication-title: Nat. Commun. – volume: 231 start-page: 101 year: 2018 end-page: 107 ident: bib0015 article-title: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production publication-title: Appl. Catal. B – volume: 462 start-page: 822 year: 2018 end-page: 830 ident: bib0130 article-title: Porous MoP network structure as co-catalyst for H publication-title: Appl. Surf. Sci. – volume: 11 start-page: 3462 year: 2018 end-page: 3468 ident: bib0080 article-title: Template-free large-scale synthesis of g-C publication-title: Nano Res. – volume: 210 start-page: 184 year: 2017 end-page: 193 ident: bib0020 article-title: Fabrication of TiO publication-title: Appl. Catal. B – volume: 307 start-page: 163 year: 2016 end-page: 172 ident: bib0155 article-title: Facile synthesis of surface N-doped Bi publication-title: J. Hazard. Mater. – volume: 209 start-page: 539 year: 2002 end-page: 546 ident: bib0205 article-title: Nature and reactivity of the surface species formed after NO adsorption and NO + O2 coadsorption on a WO3-ZrO2 catalyst publication-title: J. Catal. – volume: 256 year: 2019 ident: bib0095 article-title: Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets publication-title: Appl. Catal. B – volume: 218 start-page: 664 year: 2017 end-page: 671 ident: bib0110 article-title: P-doped tubular g-C publication-title: Appl. Catal. B – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib0170 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib0190 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 12 start-page: 4093 year: 2016 end-page: 4101 ident: bib0060 article-title: Tubular g-C publication-title: Small – volume: 11 start-page: 9608 year: 2019 end-page: 9616 ident: bib0070 article-title: High-yield lactic acid-mediated route for a g-C publication-title: Nanoscale – volume: 455 start-page: 403 year: 2018 end-page: 409 ident: bib0140 article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. – volume: 3 start-page: 23435 year: 2015 end-page: 23441 ident: bib0135 article-title: Selective photocatalytic N publication-title: J. Mater. Chem. A – volume: 104 start-page: 275 year: 2011 end-page: 281 ident: bib0025 article-title: Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO publication-title: Appl. Catal. B – volume: 202 start-page: 611 year: 2017 end-page: 619 ident: bib0045 article-title: Hybridization of rutile TiO publication-title: Appl. Catal. B – volume: 244 start-page: 240 year: 2019 end-page: 249 ident: bib0105 article-title: Interfacial optimization of g-C publication-title: Appl. Catal. B – volume: 29 year: 2019 ident: bib0125 article-title: Designing defective crystalline carbon nitride to enable selective CO publication-title: Adv. Funct. Mater. – volume: 40 start-page: 867 year: 2019 end-page: 874 ident: bib0145 article-title: Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production publication-title: Chin. J. Catal. – volume: 245 start-page: 459 year: 2019 end-page: 468 ident: bib0065 article-title: Photocatalysis removing of NO based on modified carbon nitride: the effect of celestite mineral particles publication-title: Appl. Catal. B – volume: 256 start-page: 117825 year: 2019 end-page: 117836 ident: bib0035 article-title: The deep oxidation of NO was realized by Sr multi-site doped g-C publication-title: Appl. Catal. B – volume: 5 start-page: 12389 year: 2015 end-page: 12399 ident: bib0085 article-title: One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts publication-title: Sci. Rep. – volume: 248 start-page: 84 year: 2019 end-page: 94 ident: bib0115 article-title: Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C publication-title: Appl. Catal. B – volume: 38 start-page: 72 year: 2017 ident: 10.1016/j.apcatb.2019.118281_bib0055 article-title: Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.038 – volume: 55 start-page: 149 year: 2005 ident: 10.1016/j.apcatb.2019.118281_bib0215 article-title: Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2004.07.009 – volume: 202 start-page: 611 year: 2017 ident: 10.1016/j.apcatb.2019.118281_bib0045 article-title: Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.09.055 – volume: 11 start-page: 3462 year: 2018 ident: 10.1016/j.apcatb.2019.118281_bib0080 article-title: Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production publication-title: Nano Res. doi: 10.1007/s12274-018-2003-2 – volume: 209 start-page: 539 year: 2002 ident: 10.1016/j.apcatb.2019.118281_bib0205 article-title: Nature and reactivity of the surface species formed after NO adsorption and NO + O2 coadsorption on a WO3-ZrO2 catalyst publication-title: J. Catal. doi: 10.1006/jcat.2002.3654 – volume: 462 start-page: 822 year: 2018 ident: 10.1016/j.apcatb.2019.118281_bib0130 article-title: Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.189 – volume: 3 start-page: 23435 year: 2015 ident: 10.1016/j.apcatb.2019.118281_bib0135 article-title: Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06540B – volume: 455 start-page: 403 year: 2018 ident: 10.1016/j.apcatb.2019.118281_bib0140 article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.014 – volume: 244 start-page: 240 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0105 article-title: Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.11.056 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.apcatb.2019.118281_bib0180 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 6 start-page: 12291 year: 2018 ident: 10.1016/j.apcatb.2019.118281_bib0030 article-title: Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02710 – volume: 456 start-page: 369 year: 2018 ident: 10.1016/j.apcatb.2019.118281_bib0150 article-title: Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.156 – volume: 21 start-page: 15360 year: 2015 ident: 10.1016/j.apcatb.2019.118281_bib0010 article-title: Enhanced photoelectrocatalytic activity of BiOI plant-zinc oxide nanorod p-n heterojunction publication-title: Chem. Eur. J. doi: 10.1002/chem.201501183 – volume: 57 start-page: 122 year: 2018 ident: 10.1016/j.apcatb.2019.118281_bib0175 article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201705628 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.apcatb.2019.118281_bib0165 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.apcatb.2019.118281_bib0170 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 1 start-page: 13949 year: 2013 ident: 10.1016/j.apcatb.2019.118281_bib0090 article-title: Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13291a – volume: 463 start-page: 9 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0120 article-title: Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.209 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.apcatb.2019.118281_bib0190 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 374 start-page: 1064 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0050 article-title: Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.06.029 – volume: 18 start-page: 1619 year: 2002 ident: 10.1016/j.apcatb.2019.118281_bib0200 article-title: Surface species formed after NO adsorption and NO + O2 coadsorption on ZrO2 and sulfated ZrO2: an FTIR spectroscopic study publication-title: Langmuir doi: 10.1021/la0110895 – volume: 106 start-page: 7628 year: 2002 ident: 10.1016/j.apcatb.2019.118281_bib0210 article-title: Nitric acid-water complexes: theoretical calculations and comparison to experiment publication-title: J. Phys. Chem. A doi: 10.1021/jp020257e – volume: 11 start-page: 10042 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0005 article-title: Photocatalytic nitrogen oxide removal activity improved step-by-step through serial multistep Cu modifications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00111 – volume: 231 start-page: 101 year: 2018 ident: 10.1016/j.apcatb.2019.118281_bib0015 article-title: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.03.014 – volume: 5 start-page: 12389 year: 2015 ident: 10.1016/j.apcatb.2019.118281_bib0085 article-title: One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts publication-title: Sci. Rep. doi: 10.1038/srep12389 – volume: 12 start-page: 4093 year: 2016 ident: 10.1016/j.apcatb.2019.118281_bib0060 article-title: Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer publication-title: Small doi: 10.1002/smll.201601660 – volume: 218 start-page: 515 year: 2017 ident: 10.1016/j.apcatb.2019.118281_bib0100 article-title: Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.07.010 – volume: 487 start-page: 59 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0040 article-title: Self-assembled g-C3N4 nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.05.056 – volume: 27 start-page: 465 year: 2007 ident: 10.1016/j.apcatb.2019.118281_bib0195 article-title: Characterization of nitrogen oxides by vibrational spectroscopy publication-title: Prog. Inorg. Chem. – volume: 11 start-page: 9608 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0070 article-title: High-yield lactic acid-mediated route for a g-C3N4 nanosheet photocatalyst with enhanced H2-evolution performance publication-title: Nanoscale doi: 10.1039/C9NR00887J – volume: 210 start-page: 184 year: 2017 ident: 10.1016/j.apcatb.2019.118281_bib0020 article-title: Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.03.064 – volume: 29 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0125 article-title: Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900093 – volume: 248 start-page: 84 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0115 article-title: Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.02.020 – volume: 40 start-page: 867 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0145 article-title: Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63343-7 – volume: 245 start-page: 459 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0065 article-title: Photocatalysis removing of NO based on modified carbon nitride: the effect of celestite mineral particles publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.01.013 – volume: 104 start-page: 275 year: 2011 ident: 10.1016/j.apcatb.2019.118281_bib0025 article-title: Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed 001 facets publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2011.03.019 – volume: 218 start-page: 664 year: 2017 ident: 10.1016/j.apcatb.2019.118281_bib0110 article-title: P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.07.022 – volume: 256 start-page: 117825 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0035 article-title: The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.117825 – volume: 256 year: 2019 ident: 10.1016/j.apcatb.2019.118281_bib0095 article-title: Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.117867 – volume: 307 start-page: 163 year: 2016 ident: 10.1016/j.apcatb.2019.118281_bib0155 article-title: Facile synthesis of surface N-doped Bi2O2CO3: origin of visible light photocatalytic activity and in situ DRIFTS studies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.12.072 – volume: 21 start-page: 19 year: 1999 ident: 10.1016/j.apcatb.2019.118281_bib0185 article-title: NO adsorption and decomposition on La2O3 studied by DRIFTS publication-title: Appl. Catal. B doi: 10.1016/S0926-3373(99)00003-X – volume: 3 start-page: 1139 year: 2012 ident: 10.1016/j.apcatb.2019.118281_bib0075 article-title: Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles publication-title: Nat. Commun. doi: 10.1038/ncomms2152 – volume: 336 start-page: 200 year: 2018 ident: 10.1016/j.apcatb.2019.118281_bib0160 article-title: Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Zscheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.045 |
| SSID | ssj0002328 |
| Score | 2.674153 |
| Snippet | [Display omitted]
•Tubular g-C3N4 with carbon vacancy was obtained by pyrolysis under N2 atmosphere.•Carbon vacancy facilitates the adsorption of NO and O2 on... We demonstrated that carbon vacancy modified C3N4 nanotubes can be qualified for more efficient and selective oxidation of NO to NO3− under visible light... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118281 |
| SubjectTerms | C3N4 nanotubes Carbon Carbon nitride Carbon vacancy Charge transfer Current carriers Electronic structure Melamine Nanotechnology Nanotubes Oxidation Photocatalysis Photocatalytic oxidation Pyrolysis Reaction mechanism Selectivity Surface defect sites Surface defects Urea Vacancies |
| Title | Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity |
| URI | https://dx.doi.org/10.1016/j.apcatb.2019.118281 https://www.proquest.com/docview/2327890081 |
| Volume | 262 |
| WOSCitedRecordID | wos000501613700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002328 issn: 0926-3373 databaseCode: AIEXJ dateStart: 19950211 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgl6QBCoaCloD4hLcJR47djLrUQpD0WBQwrhtFqv10oqY5vmofJb-LPMvuyEV-HAxYqc-JF8n2dmJzPzIfSU9BKiYntP0Ih7QeaH8MwJ30uzQRALnlIqNdLjaDKJZzP6vtX65nphNnlUFPHVFa3-K9SwD8BWrbP_AHd9UtgBrwF02ALssP0r4If8MgFIN1wow6m7-sgk6BS8KFfrRLeijxrtGzM_dm0y0dW8XJU6oaPnlHyWqi3YqWiowcb5144s5qZoQHVEKOGJ7fDWxbT1Obqdl9raNu10vC7pGOtCgk_reUPQV2tTys_LfFHnfrTsMJDK-lhdz613fbRtbDZpASvUumrLZNLqbpoP2xlJoAwhRtmkK409jiPikdho3TiD7Vv7bUxu_5eOwOQkLrq8gm-cqBI-2lVrKaMPszt3e_KOnZ2Px2w6mk2fVV88JUmm_rq3-iw30L4fhRRM5v7pm9Hsbe3oIRjVjt7dt-vM1OWDP1_4d5HPDzGADmymd9EduyLBp4ZJ91BLFm10a-iEANvoYGtmZRsd7mCJrW9Y3ke5IR62xMOLAiviYUe8F7ihHa5p9xzvkg7XpMNAOmxIhx3psCPdA3R-NpoOX3tWy8MTAYlW4FNFlCZZHIahpJlIQl9yn3NYn0Z-ClF4Fook7Qki41DwsJ_R1PczIYPBIPEHCcToh2ivKAv5EGFK-hA1p-DiSS_IpKAJXIHHaT9TYgm93hEi7ndmwg66V3orOXMVjRfMoMMUOsygc4S8-qjKDHq55vORg5DZYNUEoQwoeM2RJw5xZu3GkgGXVEs6BOjHf377EbrdPFAnaA_gko_RTbFZLZaXTyxFvwMnv79k |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+vacancy+in+C3N4+nanotube%3A+Electronic+structure%2C+photocatalysis+mechanism+and+highly+enhanced+activity&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Li%2C+Yuhan&rft.au=Gu%2C+Miaoli&rft.au=Shi%2C+Ting&rft.au=Cui%2C+Wen&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=262&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118281&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |