Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity

[Display omitted] •Tubular g-C3N4 with carbon vacancy was obtained by pyrolysis under N2 atmosphere.•Carbon vacancy facilitates the adsorption of NO and O2 on the surface of g-C3N4.•Carbon vacancy accelerates the separation and transfer of photo-generated carriers.•g-C3N4 with carbon vacancy exhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Jg. 262; S. 118281
Hauptverfasser: Li, Yuhan, Gu, Miaoli, Shi, Ting, Cui, Wen, Zhang, Xianming, Dong, Fan, Cheng, Jinshui, Fan, Jiajie, Lv, Kangle
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.03.2020
Elsevier BV
Schlagworte:
ISSN:0926-3373, 1873-3883
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Tubular g-C3N4 with carbon vacancy was obtained by pyrolysis under N2 atmosphere.•Carbon vacancy facilitates the adsorption of NO and O2 on the surface of g-C3N4.•Carbon vacancy accelerates the separation and transfer of photo-generated carriers.•g-C3N4 with carbon vacancy exhibits improved visible photocatalytic NO oxidation. We demonstrated that carbon vacancy modified C3N4 nanotubes can be qualified for more efficient and selective oxidation of NO to NO3− under visible light illumination than the pristine counterpart. Tubular C3N4 with carbon vacancy was fabricated by facile pyrolysis of the hydrolyzed melamine-urea mixture under N2 gas. With the particular structural merits for tubular nanostructure and the introduction of suitable carbon vacancy density, richly available surface defect sites, and accelerated separation and transfer of photo-generated charge carriers, the as-prepared carbon vacancy modified C3N4 nanotubes exhibited an excellent photocatalytic NO oxidation performance. Based on ESR measurement and DFT calculation, the electronic structure of carbon vacancy was revealed. The surface carbon vacancy in C3N4 nanotubes can greatly facilitate the adsorption of NO and O2, therefore, leading to its superior photocatalytic selectivity in conversion of NO to NO3−. The present work provides new insights into the understanding of defective semiconductor photocatalysis.
AbstractList We demonstrated that carbon vacancy modified C3N4 nanotubes can be qualified for more efficient and selective oxidation of NO to NO3− under visible light illumination than the pristine counterpart. Tubular C3N4 with carbon vacancy was fabricated by facile pyrolysis of the hydrolyzed melamine-urea mixture under N2 gas. With the particular structural merits for tubular nanostructure and the introduction of suitable carbon vacancy density, richly available surface defect sites, and accelerated separation and transfer of photo-generated charge carriers, the as-prepared carbon vacancy modified C3N4 nanotubes exhibited an excellent photocatalytic NO oxidation performance. Based on ESR measurement and DFT calculation, the electronic structure of carbon vacancy was revealed. The surface carbon vacancy in C3N4 nanotubes can greatly facilitate the adsorption of NO and O2, therefore, leading to its superior photocatalytic selectivity in conversion of NO to NO3−. The present work provides new insights into the understanding of defective semiconductor photocatalysis.
[Display omitted] •Tubular g-C3N4 with carbon vacancy was obtained by pyrolysis under N2 atmosphere.•Carbon vacancy facilitates the adsorption of NO and O2 on the surface of g-C3N4.•Carbon vacancy accelerates the separation and transfer of photo-generated carriers.•g-C3N4 with carbon vacancy exhibits improved visible photocatalytic NO oxidation. We demonstrated that carbon vacancy modified C3N4 nanotubes can be qualified for more efficient and selective oxidation of NO to NO3− under visible light illumination than the pristine counterpart. Tubular C3N4 with carbon vacancy was fabricated by facile pyrolysis of the hydrolyzed melamine-urea mixture under N2 gas. With the particular structural merits for tubular nanostructure and the introduction of suitable carbon vacancy density, richly available surface defect sites, and accelerated separation and transfer of photo-generated charge carriers, the as-prepared carbon vacancy modified C3N4 nanotubes exhibited an excellent photocatalytic NO oxidation performance. Based on ESR measurement and DFT calculation, the electronic structure of carbon vacancy was revealed. The surface carbon vacancy in C3N4 nanotubes can greatly facilitate the adsorption of NO and O2, therefore, leading to its superior photocatalytic selectivity in conversion of NO to NO3−. The present work provides new insights into the understanding of defective semiconductor photocatalysis.
ArticleNumber 118281
Author Fan, Jiajie
Gu, Miaoli
Cui, Wen
Zhang, Xianming
Dong, Fan
Li, Yuhan
Shi, Ting
Cheng, Jinshui
Lv, Kangle
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Li
  fullname: Li, Yuhan
  organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 2
  givenname: Miaoli
  surname: Gu
  fullname: Gu, Miaoli
  organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 3
  givenname: Ting
  surname: Shi
  fullname: Shi, Ting
  organization: Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
– sequence: 4
  givenname: Wen
  orcidid: 0000-0001-9324-4140
  surname: Cui
  fullname: Cui, Wen
  organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 5
  givenname: Xianming
  surname: Zhang
  fullname: Zhang, Xianming
  organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 6
  givenname: Fan
  surname: Dong
  fullname: Dong, Fan
  email: dfctbu@126.com
  organization: Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
– sequence: 7
  givenname: Jinshui
  surname: Cheng
  fullname: Cheng, Jinshui
  organization: Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
– sequence: 8
  givenname: Jiajie
  orcidid: 0000-0002-3661-3306
  surname: Fan
  fullname: Fan, Jiajie
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 9
  givenname: Kangle
  orcidid: 0000-0001-8764-0892
  surname: Lv
  fullname: Lv, Kangle
  email: lvkangle@mail.scuec.edu.cn
  organization: Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
BookMark eNqFkMtq3DAUhkVJoJPLG2QhyLae6GLZchaBMqRJIbSbdi2Oj-WMBo80keQBv309OKss0tWBw3_h_y7ImQ_eEnLD2ZozXt3t1nBAyO1aMN6sOddC8y9kxXUtC6m1PCMr1oiqkLKWX8lFSjvGmJBCr8iwgdgGT4-A4HGiztON_FVSDz7ksbX39HGwmGPwDmnKccQ8RvuNHrYhh7kThim5RPcWt-Bd2lPwHd261-0wUevnH9qOAmZ3dHm6Iuc9DMlev99L8vfH45_Nc_Hy--nn5vtLgaWsc9FwrLu210op2_TYKmFBALCyqUWnmOoVth1DabVCULxvOiF6tGVVtaJqKyEvye2Se4jhbbQpm10Yo58rzby61g1jms-qclFhDClF25tDdHuIk-HMnLianVm4mhNXs3CdbfcfbOgyZBd8juCG_5kfFrOd5x-djSahsydILs6YTRfc5wH_AOKVmak
CitedBy_id crossref_primary_10_1016_j_cej_2021_128802
crossref_primary_10_1039_D0RA05580H
crossref_primary_10_1016_j_jece_2024_114113
crossref_primary_10_1088_1361_6528_abe903
crossref_primary_10_1016_j_apsusc_2024_159701
crossref_primary_10_1016_j_mtener_2022_100966
crossref_primary_10_1002_smll_202505924
crossref_primary_10_1016_j_jece_2024_112971
crossref_primary_10_1016_j_apcatb_2021_120517
crossref_primary_10_1016_j_apcatb_2022_121329
crossref_primary_10_1016_j_jece_2024_113022
crossref_primary_10_1016_j_jece_2024_113427
crossref_primary_10_1016_j_jwpe_2022_103345
crossref_primary_10_1039_D0CY02453H
crossref_primary_10_1016_j_jcis_2023_08_012
crossref_primary_10_1016_j_scitotenv_2021_148946
crossref_primary_10_1016_j_mssp_2021_106134
crossref_primary_10_1016_j_vacuum_2022_111483
crossref_primary_10_1016_j_envres_2021_111844
crossref_primary_10_1016_j_matchemphys_2021_124968
crossref_primary_10_1016_j_jhazmat_2023_132365
crossref_primary_10_3390_catal10101119
crossref_primary_10_1016_j_jcat_2025_116326
crossref_primary_10_1016_j_desal_2022_115905
crossref_primary_10_1016_j_cej_2024_149066
crossref_primary_10_1016_j_scitotenv_2022_153845
crossref_primary_10_1016_j_apcatb_2022_122025
crossref_primary_10_1016_j_apcatb_2023_122387
crossref_primary_10_1016_j_jhazmat_2023_131715
crossref_primary_10_1016_j_jhazmat_2022_129637
crossref_primary_10_1007_s11082_024_07798_2
crossref_primary_10_1016_j_seppur_2022_121221
crossref_primary_10_1016_j_jallcom_2025_180029
crossref_primary_10_1016_j_mssp_2023_107459
crossref_primary_10_1016_j_ijhydene_2024_12_181
crossref_primary_10_1007_s40843_023_2443_0
crossref_primary_10_1016_j_jhazmat_2025_138356
crossref_primary_10_1002_slct_202102478
crossref_primary_10_1016_j_apsusc_2025_164446
crossref_primary_10_1016_j_ijhydene_2023_04_218
crossref_primary_10_1016_j_apsusc_2021_149478
crossref_primary_10_1016_j_ceramint_2024_02_013
crossref_primary_10_1007_s12613_023_2678_6
crossref_primary_10_1016_j_cej_2022_135910
crossref_primary_10_3389_fchem_2021_652762
crossref_primary_10_1016_j_apsusc_2023_157888
crossref_primary_10_1016_j_apcatb_2022_121322
crossref_primary_10_1016_j_seppur_2023_124636
crossref_primary_10_1016_j_jallcom_2022_164028
crossref_primary_10_1016_j_ces_2024_120191
crossref_primary_10_3390_catal14090636
crossref_primary_10_1016_j_cej_2021_131677
crossref_primary_10_53941_ges_2025_100003
crossref_primary_10_1016_j_apsusc_2019_144654
crossref_primary_10_1016_j_apsusc_2020_148427
crossref_primary_10_1016_j_cej_2022_136051
crossref_primary_10_1016_j_jpcs_2021_110270
crossref_primary_10_1016_j_apt_2022_103531
crossref_primary_10_1016_j_cej_2024_150155
crossref_primary_10_1016_j_jhazmat_2022_130040
crossref_primary_10_1002_cssc_202101173
crossref_primary_10_1016_j_scitotenv_2020_139054
crossref_primary_10_1016_j_inoche_2022_110099
crossref_primary_10_3390_ijms232112979
crossref_primary_10_1007_s42247_025_01071_2
crossref_primary_10_1016_j_jcis_2021_11_011
crossref_primary_10_1039_D1CY01776D
crossref_primary_10_1002_aesr_202300090
crossref_primary_10_3390_catal13010192
crossref_primary_10_1016_j_ijhydene_2022_12_212
crossref_primary_10_1016_j_jece_2021_106911
crossref_primary_10_1016_j_renene_2022_08_014
crossref_primary_10_1016_j_seppur_2024_128528
crossref_primary_10_1002_adfm_202213974
crossref_primary_10_1016_j_carbon_2023_118723
crossref_primary_10_1016_j_cej_2021_130877
crossref_primary_10_1016_j_seppur_2022_121124
crossref_primary_10_3390_polym13152568
crossref_primary_10_1016_j_cej_2020_127729
crossref_primary_10_1016_j_mssp_2023_107672
crossref_primary_10_1039_D5GC00353A
crossref_primary_10_1002_smll_202404696
crossref_primary_10_1016_j_cej_2022_137436
crossref_primary_10_1002_smll_202301007
crossref_primary_10_1007_s11356_023_25276_2
crossref_primary_10_1016_j_apcatb_2024_124614
crossref_primary_10_1088_1361_6463_ac782d
crossref_primary_10_1080_02603594_2025_2490643
crossref_primary_10_1016_j_jpowsour_2021_230721
crossref_primary_10_1016_j_ceramint_2023_09_226
crossref_primary_10_1016_j_colsurfa_2024_134339
crossref_primary_10_1002_aenm_202004001
crossref_primary_10_1016_j_surfin_2025_106284
crossref_primary_10_1016_j_apsusc_2023_158259
crossref_primary_10_1016_j_chemosphere_2020_127675
crossref_primary_10_1039_D4EN00715H
crossref_primary_10_1016_j_jssc_2025_125518
crossref_primary_10_1016_j_jece_2024_114153
crossref_primary_10_1039_D0CY02009E
crossref_primary_10_1016_j_rser_2024_114482
crossref_primary_10_1016_j_cplett_2021_138903
crossref_primary_10_1007_s13391_022_00377_1
crossref_primary_10_1016_j_seppur_2021_118424
crossref_primary_10_1007_s10562_021_03674_w
crossref_primary_10_1007_s11665_025_11376_2
crossref_primary_10_1016_j_chemosphere_2021_130171
crossref_primary_10_1016_j_seppur_2023_125193
crossref_primary_10_1016_j_jes_2022_10_036
crossref_primary_10_1016_j_scitotenv_2022_159247
crossref_primary_10_1002_solr_202400804
crossref_primary_10_1002_anie_202218664
crossref_primary_10_1002_smll_202208254
crossref_primary_10_1016_j_trac_2020_116089
crossref_primary_10_1007_s12274_023_6014_2
crossref_primary_10_1016_j_cej_2023_143155
crossref_primary_10_1016_j_cej_2023_142584
crossref_primary_10_1016_j_compositesb_2021_109200
crossref_primary_10_1016_j_surfin_2024_104144
crossref_primary_10_1002_slct_202103884
crossref_primary_10_1007_s10854_021_06960_w
crossref_primary_10_1016_j_jphotochem_2024_115933
crossref_primary_10_1016_j_seppur_2024_129392
crossref_primary_10_3390_nitrogen5020023
crossref_primary_10_1016_j_cej_2022_137053
crossref_primary_10_1002_smll_202102496
crossref_primary_10_1016_j_fuel_2024_132903
crossref_primary_10_1016_j_mcat_2021_111932
crossref_primary_10_3390_catal15090851
crossref_primary_10_1016_j_ccr_2025_216682
crossref_primary_10_1016_j_scitotenv_2020_144139
crossref_primary_10_1016_j_apsusc_2022_155808
crossref_primary_10_1016_j_seppur_2024_128577
crossref_primary_10_1016_j_jcis_2024_02_203
crossref_primary_10_1007_s40820_023_01297_x
crossref_primary_10_1016_j_jece_2022_109235
crossref_primary_10_1016_j_seppur_2023_124670
crossref_primary_10_1016_j_cej_2021_131973
crossref_primary_10_1016_j_ccr_2024_215849
crossref_primary_10_1002_smll_202005149
crossref_primary_10_1016_j_apcatb_2021_120573
crossref_primary_10_1016_j_apsusc_2021_151901
crossref_primary_10_1016_j_ceramint_2024_01_381
crossref_primary_10_1016_j_jhazmat_2019_121947
crossref_primary_10_1016_j_cej_2020_124421
crossref_primary_10_3390_su17104358
crossref_primary_10_1016_j_jece_2024_112271
crossref_primary_10_1142_S1793604724510433
crossref_primary_10_1016_j_fuproc_2022_107617
crossref_primary_10_1016_j_jssc_2022_123670
crossref_primary_10_1016_j_fuel_2024_133329
crossref_primary_10_1016_j_vacuum_2022_111342
crossref_primary_10_1016_j_cis_2021_102523
crossref_primary_10_1002_aenm_202400742
crossref_primary_10_1016_j_apcatb_2022_122042
crossref_primary_10_1016_j_cattod_2020_12_037
crossref_primary_10_1016_j_apcatb_2022_121119
crossref_primary_10_1016_j_fuel_2023_130575
crossref_primary_10_1016_j_nanoms_2024_10_014
crossref_primary_10_1039_D1CY02181H
crossref_primary_10_1002_aenm_202301047
crossref_primary_10_1039_D2QM00604A
crossref_primary_10_1016_j_apcatb_2025_125477
crossref_primary_10_1016_j_cjsc_2024_100416
crossref_primary_10_1016_j_mssp_2023_107478
crossref_primary_10_1016_j_apsusc_2021_152064
crossref_primary_10_1016_j_apsusc_2022_153211
crossref_primary_10_1016_j_jcis_2023_03_209
crossref_primary_10_3390_nano13162300
crossref_primary_10_1016_j_apcata_2020_117618
crossref_primary_10_1016_j_seppur_2024_130515
crossref_primary_10_1021_acsami_5c10120
crossref_primary_10_1002_adfm_202210265
crossref_primary_10_1002_adsu_202100498
crossref_primary_10_1016_j_mtphys_2023_101080
crossref_primary_10_1002_adfm_202010763
crossref_primary_10_1002_ange_202218664
crossref_primary_10_1016_j_cej_2021_134105
crossref_primary_10_1039_D4CY00575A
crossref_primary_10_1016_j_apcatb_2022_121864
crossref_primary_10_1016_j_apcatb_2022_121863
crossref_primary_10_1039_D2CY00474G
crossref_primary_10_1088_1361_6528_ac4b30
crossref_primary_10_1016_j_seppur_2022_122778
Cites_doi 10.1016/j.nanoen.2017.05.038
10.1016/j.apcatb.2004.07.009
10.1016/j.apcatb.2016.09.055
10.1007/s12274-018-2003-2
10.1006/jcat.2002.3654
10.1016/j.apsusc.2018.08.189
10.1039/C5TA06540B
10.1016/j.apsusc.2018.06.014
10.1016/j.apcatb.2018.11.056
10.1016/0927-0256(96)00008-0
10.1021/acssuschemeng.8b02710
10.1016/j.apsusc.2018.06.156
10.1002/chem.201501183
10.1002/anie.201705628
10.1002/jcc.20495
10.1103/PhysRevB.54.11169
10.1039/c3ta13291a
10.1016/j.apsusc.2018.08.209
10.1103/PhysRevLett.77.3865
10.1016/j.cej.2019.06.029
10.1021/la0110895
10.1021/jp020257e
10.1021/acsami.9b00111
10.1016/j.apcatb.2018.03.014
10.1038/srep12389
10.1002/smll.201601660
10.1016/j.apcatb.2017.07.010
10.1016/j.apsusc.2019.05.056
10.1039/C9NR00887J
10.1016/j.apcatb.2017.03.064
10.1002/adfm.201900093
10.1016/j.apcatb.2019.02.020
10.1016/S1872-2067(19)63343-7
10.1016/j.apcatb.2019.01.013
10.1016/j.apcatb.2011.03.019
10.1016/j.apcatb.2017.07.022
10.1016/j.apcatb.2019.117825
10.1016/j.apcatb.2019.117867
10.1016/j.jhazmat.2015.12.072
10.1016/S0926-3373(99)00003-X
10.1038/ncomms2152
10.1016/j.cej.2017.11.045
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2019.118281
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2019_118281
S0926337319310276
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
7SR
7ST
7U5
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c437t-91c7dbf8555e9fcb52ea2aa04972d505f5cbd0c3e85ca51f9d22fce466b26b623
ISICitedReferencesCount 248
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501613700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-3373
IngestDate Wed Aug 13 06:35:30 EDT 2025
Tue Nov 18 22:16:03 EST 2025
Sat Nov 29 07:08:47 EST 2025
Sat Mar 02 16:00:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reaction mechanism
C3N4 nanotubes
Carbon vacancy
Photocatalytic oxidation
Surface defect sites
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-91c7dbf8555e9fcb52ea2aa04972d505f5cbd0c3e85ca51f9d22fce466b26b623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9324-4140
0000-0002-3661-3306
0000-0001-8764-0892
PQID 2327890081
PQPubID 2045281
ParticipantIDs proquest_journals_2327890081
crossref_primary_10_1016_j_apcatb_2019_118281
crossref_citationtrail_10_1016_j_apcatb_2019_118281
elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118281
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Li, Wu, Ho, Lv, Li, Li, Lee (bib0160) 2018; 336
Tian, Yang, Liu, Qu, Tang (bib0140) 2018; 455
Guo, Tang, Xie, Tian, Feng, Zhou, Jiang (bib0110) 2017; 218
Liu, Shen, Liu, Yang, Tang (bib0130) 2018; 462
Grimme (bib0165) 2006; 27
Dong, Zhao, Wu, Zhu, Wang (bib0065) 2019; 245
Tian, Yang, Cui, Liu, Tang (bib0120) 2019; 463
Xu, Zhang, Cheng, Yu (bib0030) 2018; 6
Tahir, Cao, Butt, Idrees, Mahmood, Mahmood, Ali, Aslam, Tanveer, Rizwan, Mahmood (bib0090) 2013; 1
Tang, Wang, Zhao, Chen, Yang, Bukhvalov, Lin, Liu (bib0050) 2019; 374
Kresse, Furthmüller (bib0180) 1996; 6
Kuang, Ran, Liu, Wang, Li, Su, Jin, Qiao (bib0010) 2015; 21
Hadjiivanov, Avreyska, Klissurski, Marinova (bib0200) 2002; 18
Yang, Cai, Lv, Wu, Wang, Xu, Li, Li, Xu (bib0020) 2017; 210
Kresse, Furthmüller (bib0170) 1996; 54
Tong, Yang, Sun, Nan, Jiang (bib0060) 2016; 12
Tahir, Mahmood, Zhu, Mahmood, Butt, Rizwan, Aslam, Idrees, Shakir, Cao, Hou (bib0085) 2015; 5
Xia, Antonietti, Zhu, Heil, Yu, Cao (bib0125) 2019; 29
Zhao, Dong, Zhang, Lu, Huang (bib0005) 2019; 11
Li, Lv, Ho, Dong, Wu, Xia (bib0045) 2017; 202
Delahay, Valade, Guzman-Vargas, Coq (bib0215) 2005; 55
Tian, Zhang, Li, Xiao, Du, Dong, Waterhouse, Zhang, Huang (bib0055) 2017; 38
Li, Li, Ai, Jia, Zhang (bib0175) 2018; 57
Perdew, Burke, Ernzerhof (bib0190) 1996; 77
Wei, Huang, Gu, Wang, Zeng, Chen, Liu (bib0015) 2018; 231
Liu, Shen, Yu, Yang, Liu, Yang, Tang, Xu, Li, Li, Xu (bib0115) 2019; 248
Zhou, Zhao, Wang (bib0155) 2016; 307
Yang, Tian, Zhao, Tang, Liu, Li (bib0105) 2019; 244
Zhao, Chen, Xu, Liu, Xu, Tang, Li, Jiang, Qu, Lin, Yang (bib0095) 2019; 256
Lv, Xiang, Yu (bib0025) 2011; 104
Klingenberg, Vannice (bib0185) 1999; 21
Wu, Gao, Yu, Yu (bib0070) 2019; 11
McCurdy, Hess, Sotiris (bib0210) 2002; 106
Liu, Shen, Yang, Liu, Tang (bib0150) 2018; 456
Weingand, Kuba, Hadjiivanov, Knzinger (bib0205) 2002; 209
Jiang, Qu, Tian, Yang, Zou, Lin (bib0040) 2019; 487
Zhou, Shi, Shang, Wu, Tung, Zhang (bib0080) 2018; 11
Stephen, Laane, Ohlsen (bib0195) 2007; 27
Sun, Zhang, Zhang, Antonietti, Fu, Wang (bib0075) 2012; 3
Zhou, Dong, Yu, Huang (bib0035) 2019; 256
Dong, Ho, Wang (bib0135) 2015; 3
Dong, Jacobs, Zang, Wang (bib0100) 2017; 218
Wang, Li, Cao, Yu (bib0145) 2019; 40
Kresse (10.1016/j.apcatb.2019.118281_bib0170) 1996; 54
Perdew (10.1016/j.apcatb.2019.118281_bib0190) 1996; 77
Kresse (10.1016/j.apcatb.2019.118281_bib0180) 1996; 6
Tang (10.1016/j.apcatb.2019.118281_bib0050) 2019; 374
Tian (10.1016/j.apcatb.2019.118281_bib0055) 2017; 38
Zhou (10.1016/j.apcatb.2019.118281_bib0155) 2016; 307
Tahir (10.1016/j.apcatb.2019.118281_bib0085) 2015; 5
Zhou (10.1016/j.apcatb.2019.118281_bib0080) 2018; 11
Xu (10.1016/j.apcatb.2019.118281_bib0030) 2018; 6
Sun (10.1016/j.apcatb.2019.118281_bib0075) 2012; 3
Tian (10.1016/j.apcatb.2019.118281_bib0140) 2018; 455
Lv (10.1016/j.apcatb.2019.118281_bib0025) 2011; 104
Wei (10.1016/j.apcatb.2019.118281_bib0015) 2018; 231
Dong (10.1016/j.apcatb.2019.118281_bib0065) 2019; 245
Dong (10.1016/j.apcatb.2019.118281_bib0100) 2017; 218
Hadjiivanov (10.1016/j.apcatb.2019.118281_bib0200) 2002; 18
Xia (10.1016/j.apcatb.2019.118281_bib0125) 2019; 29
Delahay (10.1016/j.apcatb.2019.118281_bib0215) 2005; 55
Wu (10.1016/j.apcatb.2019.118281_bib0070) 2019; 11
McCurdy (10.1016/j.apcatb.2019.118281_bib0210) 2002; 106
Tahir (10.1016/j.apcatb.2019.118281_bib0090) 2013; 1
Li (10.1016/j.apcatb.2019.118281_bib0045) 2017; 202
Liu (10.1016/j.apcatb.2019.118281_bib0130) 2018; 462
Stephen (10.1016/j.apcatb.2019.118281_bib0195) 2007; 27
Li (10.1016/j.apcatb.2019.118281_bib0175) 2018; 57
Kuang (10.1016/j.apcatb.2019.118281_bib0010) 2015; 21
Wang (10.1016/j.apcatb.2019.118281_bib0145) 2019; 40
Guo (10.1016/j.apcatb.2019.118281_bib0110) 2017; 218
Zhao (10.1016/j.apcatb.2019.118281_bib0005) 2019; 11
Klingenberg (10.1016/j.apcatb.2019.118281_bib0185) 1999; 21
Jiang (10.1016/j.apcatb.2019.118281_bib0040) 2019; 487
Dong (10.1016/j.apcatb.2019.118281_bib0135) 2015; 3
Tong (10.1016/j.apcatb.2019.118281_bib0060) 2016; 12
Yang (10.1016/j.apcatb.2019.118281_bib0105) 2019; 244
Li (10.1016/j.apcatb.2019.118281_bib0160) 2018; 336
Liu (10.1016/j.apcatb.2019.118281_bib0150) 2018; 456
Grimme (10.1016/j.apcatb.2019.118281_bib0165) 2006; 27
Liu (10.1016/j.apcatb.2019.118281_bib0115) 2019; 248
Tian (10.1016/j.apcatb.2019.118281_bib0120) 2019; 463
Zhou (10.1016/j.apcatb.2019.118281_bib0035) 2019; 256
Zhao (10.1016/j.apcatb.2019.118281_bib0095) 2019; 256
Yang (10.1016/j.apcatb.2019.118281_bib0020) 2017; 210
Weingand (10.1016/j.apcatb.2019.118281_bib0205) 2002; 209
References_xml – volume: 57
  start-page: 122
  year: 2018
  end-page: 138
  ident: bib0175
  article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives
  publication-title: Angew. Chem. Int. Ed.
– volume: 487
  start-page: 59
  year: 2019
  end-page: 67
  ident: bib0040
  article-title: Self-assembled g-C
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 13949
  year: 2013
  end-page: 13955
  ident: bib0090
  article-title: Tubular graphitic-C
  publication-title: J. Mater. Chem. A
– volume: 463
  start-page: 9
  year: 2019
  end-page: 17
  ident: bib0120
  article-title: Fabrication of dual direct Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: bib0180
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 6
  start-page: 12291
  year: 2018
  end-page: 12298
  ident: bib0030
  article-title: Direct Z-scheme TiO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 374
  start-page: 1064
  year: 2019
  end-page: 1075
  ident: bib0050
  article-title: Oxamide-modified g-C
  publication-title: Chem. Eng. J.
– volume: 38
  start-page: 72
  year: 2017
  end-page: 81
  ident: bib0055
  article-title: Precursor-reforming protocol to 3D mesoporous g-C
  publication-title: Nano Energy
– volume: 11
  start-page: 10042
  year: 2019
  end-page: 10051
  ident: bib0005
  article-title: Photocatalytic nitrogen oxide removal activity improved step-by-step through serial multistep Cu modifications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 465
  year: 2007
  end-page: 513
  ident: bib0195
  article-title: Characterization of nitrogen oxides by vibrational spectroscopy
  publication-title: Prog. Inorg. Chem.
– volume: 336
  start-page: 200
  year: 2018
  end-page: 210
  ident: bib0160
  article-title: Graphene-induced formation of visible-light-responsive SnO
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 1619
  year: 2002
  end-page: 1625
  ident: bib0200
  article-title: Surface species formed after NO adsorption and NO + O
  publication-title: Langmuir
– volume: 456
  start-page: 369
  year: 2018
  end-page: 378
  ident: bib0150
  article-title: Dual Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 19
  year: 1999
  end-page: 33
  ident: bib0185
  article-title: NO adsorption and decomposition on La
  publication-title: Appl. Catal. B
– volume: 106
  start-page: 7628
  year: 2002
  end-page: 7635
  ident: bib0210
  article-title: Nitric acid-water complexes: theoretical calculations and comparison to experiment
  publication-title: J. Phys. Chem. A
– volume: 55
  start-page: 149
  year: 2005
  end-page: 155
  ident: bib0215
  article-title: Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods
  publication-title: Appl. Catal. B
– volume: 218
  start-page: 515
  year: 2017
  end-page: 524
  ident: bib0100
  article-title: Carbon vacancy regulated photoreduction of NO to N
  publication-title: Appl. Catal. B
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: bib0165
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 21
  start-page: 15360
  year: 2015
  end-page: 15368
  ident: bib0010
  article-title: Enhanced photoelectrocatalytic activity of BiOI plant-zinc oxide nanorod p-n heterojunction
  publication-title: Chem. Eur. J.
– volume: 3
  start-page: 1139
  year: 2012
  end-page: 1145
  ident: bib0075
  article-title: Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles
  publication-title: Nat. Commun.
– volume: 231
  start-page: 101
  year: 2018
  end-page: 107
  ident: bib0015
  article-title: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production
  publication-title: Appl. Catal. B
– volume: 462
  start-page: 822
  year: 2018
  end-page: 830
  ident: bib0130
  article-title: Porous MoP network structure as co-catalyst for H
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 3462
  year: 2018
  end-page: 3468
  ident: bib0080
  article-title: Template-free large-scale synthesis of g-C
  publication-title: Nano Res.
– volume: 210
  start-page: 184
  year: 2017
  end-page: 193
  ident: bib0020
  article-title: Fabrication of TiO
  publication-title: Appl. Catal. B
– volume: 307
  start-page: 163
  year: 2016
  end-page: 172
  ident: bib0155
  article-title: Facile synthesis of surface N-doped Bi
  publication-title: J. Hazard. Mater.
– volume: 209
  start-page: 539
  year: 2002
  end-page: 546
  ident: bib0205
  article-title: Nature and reactivity of the surface species formed after NO adsorption and NO + O2 coadsorption on a WO3-ZrO2 catalyst
  publication-title: J. Catal.
– volume: 256
  year: 2019
  ident: bib0095
  article-title: Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets
  publication-title: Appl. Catal. B
– volume: 218
  start-page: 664
  year: 2017
  end-page: 671
  ident: bib0110
  article-title: P-doped tubular g-C
  publication-title: Appl. Catal. B
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib0170
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib0190
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 4093
  year: 2016
  end-page: 4101
  ident: bib0060
  article-title: Tubular g-C
  publication-title: Small
– volume: 11
  start-page: 9608
  year: 2019
  end-page: 9616
  ident: bib0070
  article-title: High-yield lactic acid-mediated route for a g-C
  publication-title: Nanoscale
– volume: 455
  start-page: 403
  year: 2018
  end-page: 409
  ident: bib0140
  article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 23435
  year: 2015
  end-page: 23441
  ident: bib0135
  article-title: Selective photocatalytic N
  publication-title: J. Mater. Chem. A
– volume: 104
  start-page: 275
  year: 2011
  end-page: 281
  ident: bib0025
  article-title: Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO
  publication-title: Appl. Catal. B
– volume: 202
  start-page: 611
  year: 2017
  end-page: 619
  ident: bib0045
  article-title: Hybridization of rutile TiO
  publication-title: Appl. Catal. B
– volume: 244
  start-page: 240
  year: 2019
  end-page: 249
  ident: bib0105
  article-title: Interfacial optimization of g-C
  publication-title: Appl. Catal. B
– volume: 29
  year: 2019
  ident: bib0125
  article-title: Designing defective crystalline carbon nitride to enable selective CO
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 867
  year: 2019
  end-page: 874
  ident: bib0145
  article-title: Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production
  publication-title: Chin. J. Catal.
– volume: 245
  start-page: 459
  year: 2019
  end-page: 468
  ident: bib0065
  article-title: Photocatalysis removing of NO based on modified carbon nitride: the effect of celestite mineral particles
  publication-title: Appl. Catal. B
– volume: 256
  start-page: 117825
  year: 2019
  end-page: 117836
  ident: bib0035
  article-title: The deep oxidation of NO was realized by Sr multi-site doped g-C
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 12389
  year: 2015
  end-page: 12399
  ident: bib0085
  article-title: One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts
  publication-title: Sci. Rep.
– volume: 248
  start-page: 84
  year: 2019
  end-page: 94
  ident: bib0115
  article-title: Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C
  publication-title: Appl. Catal. B
– volume: 38
  start-page: 72
  year: 2017
  ident: 10.1016/j.apcatb.2019.118281_bib0055
  article-title: Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.038
– volume: 55
  start-page: 149
  year: 2005
  ident: 10.1016/j.apcatb.2019.118281_bib0215
  article-title: Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2004.07.009
– volume: 202
  start-page: 611
  year: 2017
  ident: 10.1016/j.apcatb.2019.118281_bib0045
  article-title: Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.09.055
– volume: 11
  start-page: 3462
  year: 2018
  ident: 10.1016/j.apcatb.2019.118281_bib0080
  article-title: Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2003-2
– volume: 209
  start-page: 539
  year: 2002
  ident: 10.1016/j.apcatb.2019.118281_bib0205
  article-title: Nature and reactivity of the surface species formed after NO adsorption and NO + O2 coadsorption on a WO3-ZrO2 catalyst
  publication-title: J. Catal.
  doi: 10.1006/jcat.2002.3654
– volume: 462
  start-page: 822
  year: 2018
  ident: 10.1016/j.apcatb.2019.118281_bib0130
  article-title: Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.189
– volume: 3
  start-page: 23435
  year: 2015
  ident: 10.1016/j.apcatb.2019.118281_bib0135
  article-title: Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06540B
– volume: 455
  start-page: 403
  year: 2018
  ident: 10.1016/j.apcatb.2019.118281_bib0140
  article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.014
– volume: 244
  start-page: 240
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0105
  article-title: Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.11.056
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.apcatb.2019.118281_bib0180
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 6
  start-page: 12291
  year: 2018
  ident: 10.1016/j.apcatb.2019.118281_bib0030
  article-title: Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02710
– volume: 456
  start-page: 369
  year: 2018
  ident: 10.1016/j.apcatb.2019.118281_bib0150
  article-title: Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.156
– volume: 21
  start-page: 15360
  year: 2015
  ident: 10.1016/j.apcatb.2019.118281_bib0010
  article-title: Enhanced photoelectrocatalytic activity of BiOI plant-zinc oxide nanorod p-n heterojunction
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201501183
– volume: 57
  start-page: 122
  year: 2018
  ident: 10.1016/j.apcatb.2019.118281_bib0175
  article-title: Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705628
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.apcatb.2019.118281_bib0165
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.apcatb.2019.118281_bib0170
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 1
  start-page: 13949
  year: 2013
  ident: 10.1016/j.apcatb.2019.118281_bib0090
  article-title: Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13291a
– volume: 463
  start-page: 9
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0120
  article-title: Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.209
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.apcatb.2019.118281_bib0190
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 374
  start-page: 1064
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0050
  article-title: Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.06.029
– volume: 18
  start-page: 1619
  year: 2002
  ident: 10.1016/j.apcatb.2019.118281_bib0200
  article-title: Surface species formed after NO adsorption and NO + O2 coadsorption on ZrO2 and sulfated ZrO2: an FTIR spectroscopic study
  publication-title: Langmuir
  doi: 10.1021/la0110895
– volume: 106
  start-page: 7628
  year: 2002
  ident: 10.1016/j.apcatb.2019.118281_bib0210
  article-title: Nitric acid-water complexes: theoretical calculations and comparison to experiment
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp020257e
– volume: 11
  start-page: 10042
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0005
  article-title: Photocatalytic nitrogen oxide removal activity improved step-by-step through serial multistep Cu modifications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00111
– volume: 231
  start-page: 101
  year: 2018
  ident: 10.1016/j.apcatb.2019.118281_bib0015
  article-title: Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.03.014
– volume: 5
  start-page: 12389
  year: 2015
  ident: 10.1016/j.apcatb.2019.118281_bib0085
  article-title: One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts
  publication-title: Sci. Rep.
  doi: 10.1038/srep12389
– volume: 12
  start-page: 4093
  year: 2016
  ident: 10.1016/j.apcatb.2019.118281_bib0060
  article-title: Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer
  publication-title: Small
  doi: 10.1002/smll.201601660
– volume: 218
  start-page: 515
  year: 2017
  ident: 10.1016/j.apcatb.2019.118281_bib0100
  article-title: Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.07.010
– volume: 487
  start-page: 59
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0040
  article-title: Self-assembled g-C3N4 nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.05.056
– volume: 27
  start-page: 465
  year: 2007
  ident: 10.1016/j.apcatb.2019.118281_bib0195
  article-title: Characterization of nitrogen oxides by vibrational spectroscopy
  publication-title: Prog. Inorg. Chem.
– volume: 11
  start-page: 9608
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0070
  article-title: High-yield lactic acid-mediated route for a g-C3N4 nanosheet photocatalyst with enhanced H2-evolution performance
  publication-title: Nanoscale
  doi: 10.1039/C9NR00887J
– volume: 210
  start-page: 184
  year: 2017
  ident: 10.1016/j.apcatb.2019.118281_bib0020
  article-title: Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.03.064
– volume: 29
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0125
  article-title: Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900093
– volume: 248
  start-page: 84
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0115
  article-title: Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.02.020
– volume: 40
  start-page: 867
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0145
  article-title: Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63343-7
– volume: 245
  start-page: 459
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0065
  article-title: Photocatalysis removing of NO based on modified carbon nitride: the effect of celestite mineral particles
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.01.013
– volume: 104
  start-page: 275
  year: 2011
  ident: 10.1016/j.apcatb.2019.118281_bib0025
  article-title: Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed 001 facets
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2011.03.019
– volume: 218
  start-page: 664
  year: 2017
  ident: 10.1016/j.apcatb.2019.118281_bib0110
  article-title: P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.07.022
– volume: 256
  start-page: 117825
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0035
  article-title: The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.117825
– volume: 256
  year: 2019
  ident: 10.1016/j.apcatb.2019.118281_bib0095
  article-title: Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.117867
– volume: 307
  start-page: 163
  year: 2016
  ident: 10.1016/j.apcatb.2019.118281_bib0155
  article-title: Facile synthesis of surface N-doped Bi2O2CO3: origin of visible light photocatalytic activity and in situ DRIFTS studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.12.072
– volume: 21
  start-page: 19
  year: 1999
  ident: 10.1016/j.apcatb.2019.118281_bib0185
  article-title: NO adsorption and decomposition on La2O3 studied by DRIFTS
  publication-title: Appl. Catal. B
  doi: 10.1016/S0926-3373(99)00003-X
– volume: 3
  start-page: 1139
  year: 2012
  ident: 10.1016/j.apcatb.2019.118281_bib0075
  article-title: Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2152
– volume: 336
  start-page: 200
  year: 2018
  ident: 10.1016/j.apcatb.2019.118281_bib0160
  article-title: Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Zscheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.045
SSID ssj0002328
Score 2.674153
Snippet [Display omitted] •Tubular g-C3N4 with carbon vacancy was obtained by pyrolysis under N2 atmosphere.•Carbon vacancy facilitates the adsorption of NO and O2 on...
We demonstrated that carbon vacancy modified C3N4 nanotubes can be qualified for more efficient and selective oxidation of NO to NO3− under visible light...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118281
SubjectTerms C3N4 nanotubes
Carbon
Carbon nitride
Carbon vacancy
Charge transfer
Current carriers
Electronic structure
Melamine
Nanotechnology
Nanotubes
Oxidation
Photocatalysis
Photocatalytic oxidation
Pyrolysis
Reaction mechanism
Selectivity
Surface defect sites
Surface defects
Urea
Vacancies
Title Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity
URI https://dx.doi.org/10.1016/j.apcatb.2019.118281
https://www.proquest.com/docview/2327890081
Volume 262
WOSCitedRecordID wos000501613700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002328
  issn: 0926-3373
  databaseCode: AIEXJ
  dateStart: 19950211
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQ8IChMDAbyA28lVefYccLbqMpNU4XEgPIU2Y6jduqSar1oPPPHOb4l2yo0QOIlqqzabvt9Pf58dC4IvRSgQQ-JoJGUhEe0SEgkKaPRoEhLqlNOMxvl-_WYj8fpZJJ96nR-hlyYzZxXVXpxkS3-K9QwBmCb1Nm_gLtZFAbgNYAOT4Adnn8E_FCcS4B0I5QxnDarLx7TXiWqerWWNhV91Pa-cfVj184TvZjWq9o6dGydkjNt0oJDFw1T2Hj-o6erqQsaMBkRpvHEZXkbNG2zRr_3xlrbNp1ONCEdxzaQ4Pt62hL03dqF8ot6Pmt8P7btMJDKn7E2ntsOffNpbN5pATfUJmrLedK2smmcS5IkURy71iZ97QxyyuMoTl2zm2CxiTPgW9bfOSJO-2IBX1OauL2sby5QrinMtbran812ZjeQsKCyeHIL7RLOMjCNu0cfRpOPzYEOotMe6OHjhQxMGya4vdfvFM61s94KmJMH6L6_eeAjx5iHqKOrLrozDA3_uujepdqUXbR3BTPsz4DlIzR3BMOeYHhWYUMwHAj2Grf0wg29XuGr5MINuTCQCzty4UAuHMj1GH15OzoZvo98z45I0Ziv4OxUvJBlyhjTWakkI1oQIeAeykkBartkShYDFeuUKcEOy6wgpFSaJokkiQQtvod2qrrSTxCmOtFlOShEognIXCmSDOYNZMZMvxjF91Ecfudc-YL2pq_KPA-Ri6e5Qyc36OQOnX0UNbMWrqDLDe_nAcLci1InNnNg3Q0zDwLiubcPyxy4ZFLPQYg__eeFn6G77X_qAO0Akvo5uq02q9ny_IVn7y9OSb4A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+vacancy+in+C3N4+nanotube%3A+Electronic+structure%2C+photocatalysis+mechanism+and+highly+enhanced+activity&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Li%2C+Yuhan&rft.au=Gu%2C+Miaoli&rft.au=Shi%2C+Ting&rft.au=Cui%2C+Wen&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=262&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118281&rft.externalDocID=S0926337319310276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon