Machine learning on big data: Opportunities and challenges

Machine learning (ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the forefront in recent years partly owing to the advent of big data. ML algorithms have never been better promised while challenged by big data. Big data enables ML algorithms to uncove...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 237; s. 350 - 361
Hlavní autori: Zhou, Lina, Pan, Shimei, Wang, Jianwu, Vasilakos, Athanasios V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 10.05.2017
Predmet:
ISSN:0925-2312, 1872-8286, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine learning (ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the forefront in recent years partly owing to the advent of big data. ML algorithms have never been better promised while challenged by big data. Big data enables ML algorithms to uncover more fine-grained patterns and make more timely and accurate predictions than ever before; on the other hand, it presents major challenges to ML such as model scalability and distributed computing. In this paper, we introduce a framework of ML on big data (MLBiD) to guide the discussion of its opportunities and challenges. The framework is centered on ML which follows the phases of preprocessing, learning, and evaluation. In addition, the framework is also comprised of four other components, namely big data, user, domain, and system. The phases of ML and the components of MLBiD provide directions for identification of associated opportunities and challenges and open up future work in many unexplored or under explored research areas.
AbstractList Machine learning (ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the forefront in recent years partly owing to the advert of big data. ML algorithms have never been better promised while challenged by big data. Big data enables ML algorithms to uncover more fine-grained patterns and make more timely and accurate predictions than ever before; on the other hand, it presents major challenges to ML such as model scalability and distributed computing. In this paper, we introduce a framework of ML on big data (MLBiD) to guide the discussion of its opportunities and challenges. The framework is centered on ML which follows the phases of preprocessing, learning, and evaluation. In addition, the framework is also comprised of four other components, namely big data, user, domain, and system. The phases of ML and the components of MLBiD provide directions for the identification of associated opportunities and challenges and open up future work in many unexplored or under explored research areas.
Machine learning (ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the forefront in recent years partly owing to the advent of big data. ML algorithms have never been better promised while challenged by big data. Big data enables ML algorithms to uncover more fine-grained patterns and make more timely and accurate predictions than ever before; on the other hand, it presents major challenges to ML such as model scalability and distributed computing. In this paper, we introduce a framework of ML on big data (MLBiD) to guide the discussion of its opportunities and challenges. The framework is centered on ML which follows the phases of preprocessing, learning, and evaluation. In addition, the framework is also comprised of four other components, namely big data, user, domain, and system. The phases of ML and the components of MLBiD provide directions for identification of associated opportunities and challenges and open up future work in many unexplored or under explored research areas.
Author Vasilakos, Athanasios V.
Wang, Jianwu
Pan, Shimei
Zhou, Lina
Author_xml – sequence: 1
  givenname: Lina
  surname: Zhou
  fullname: Zhou, Lina
  email: zhoul@umbc.edu
  organization: Information Systems Department, UMBC, Baltimore, MD 21250, United States
– sequence: 2
  givenname: Shimei
  surname: Pan
  fullname: Pan, Shimei
  email: shimei@umbc.edu
  organization: Information Systems Department, UMBC, Baltimore, MD 21250, United States
– sequence: 3
  givenname: Jianwu
  surname: Wang
  fullname: Wang, Jianwu
  email: jianwu@umbc.edu
  organization: Information Systems Department, UMBC, Baltimore, MD 21250, United States
– sequence: 4
  givenname: Athanasios V.
  surname: Vasilakos
  fullname: Vasilakos, Athanasios V.
  email: athanasios.vasilakos@ltu.se
  organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-931 87 Skellefteå, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61412$$DView record from Swedish Publication Index
BookMark eNqFkL1OwzAURi1UJNrCGzDkAUjwT-IkHZCq8isVdQFWy3FuUlepHdkuiLcnVRADA0xXujrnG84MTYw1gNAlwQnBhF_vEgMHZfcJxSRPMEkw5SdoSoqcxgUt-ARNcUmzmDJCz9DM-x0eQELLKVo8S7XVBqIOpDPatJE1UaXbqJZBLqJN31sXDkYHDT6Spo7UVnYdmBb8OTptZOfh4vvO0ev93cvqMV5vHp5Wy3WsUpaHOKsVa6SSBAOmhBYSQ57VBOfAMU2zlDEuCauLqqlYRcuSAucNlsMjK_Km4WyOrsZd_wH9oRK903vpPoWVWtzqt6WwrhVdOAhOUkIHPB1x5az3DpofgWBxzCV2YswljrkEJmLINWiLX5rSQQZtTXBSd__JN6MMQ4d3DU54pcEoqLUDFURt9d8DX0B4iu8
CitedBy_id crossref_primary_10_1088_1742_6596_2386_1_012031
crossref_primary_10_1016_j_future_2020_07_020
crossref_primary_10_1186_s13673_019_0190_9
crossref_primary_10_1109_ACCESS_2023_3316508
crossref_primary_10_1088_1742_6596_1648_4_042100
crossref_primary_10_1007_s13132_020_00703_8
crossref_primary_10_1016_j_bdr_2021_100252
crossref_primary_10_1007_s11356_023_28507_8
crossref_primary_10_2478_amns_2023_2_01402
crossref_primary_10_1007_s44210_025_00055_5
crossref_primary_10_1155_2022_8200907
crossref_primary_10_1016_j_jspr_2025_102588
crossref_primary_10_1007_s40747_021_00583_8
crossref_primary_10_1051_e3sconf_202560501007
crossref_primary_10_3390_biomedicines13051073
crossref_primary_10_3390_s23041935
crossref_primary_10_3390_su17051924
crossref_primary_10_1080_09512748_2025_2462239
crossref_primary_10_1016_j_atech_2025_100848
crossref_primary_10_1177_1460458219900452
crossref_primary_10_1007_s10462_024_10816_0
crossref_primary_10_1016_j_cosrev_2023_100535
crossref_primary_10_3390_brainsci13081148
crossref_primary_10_1039_D4MO00008K
crossref_primary_10_3390_ijgi10080561
crossref_primary_10_4018_IJDSST_292449
crossref_primary_10_1109_TIM_2025_3552383
crossref_primary_10_1007_s00607_021_00999_7
crossref_primary_10_3390_math11081767
crossref_primary_10_1007_s11269_024_03940_7
crossref_primary_10_1007_s42979_023_01838_6
crossref_primary_10_1016_j_envsoft_2024_106051
crossref_primary_10_1038_s41598_024_80648_z
crossref_primary_10_1155_2022_5708652
crossref_primary_10_1002_ett_3272
crossref_primary_10_1016_j_ocecoaman_2024_107190
crossref_primary_10_1155_2022_3878072
crossref_primary_10_1016_j_eti_2023_103314
crossref_primary_10_1109_ACCESS_2024_3370911
crossref_primary_10_1016_j_jocs_2024_102523
crossref_primary_10_3233_IDT_180347
crossref_primary_10_3389_fpsyg_2022_1066317
crossref_primary_10_1049_ntw2_12077
crossref_primary_10_1016_j_future_2022_12_035
crossref_primary_10_1007_s12152_018_9371_x
crossref_primary_10_1002_anbr_202400052
crossref_primary_10_1016_j_enconman_2019_112265
crossref_primary_10_1007_s44195_022_00026_y
crossref_primary_10_1016_j_chemgeo_2025_122746
crossref_primary_10_1016_j_future_2024_107499
crossref_primary_10_1145_3686990
crossref_primary_10_1109_ACCESS_2025_3558091
crossref_primary_10_1007_s00784_025_06216_5
crossref_primary_10_3389_fams_2020_00030
crossref_primary_10_1007_s10462_022_10143_2
crossref_primary_10_1016_j_envpol_2025_126361
crossref_primary_10_1109_TRPMS_2022_3231702
crossref_primary_10_1007_s11227_023_05711_4
crossref_primary_10_1016_j_jii_2025_100904
crossref_primary_10_1145_3676961
crossref_primary_10_1007_s11220_019_0249_8
crossref_primary_10_3390_f14020317
crossref_primary_10_1016_j_procs_2025_04_642
crossref_primary_10_1093_plphys_kiaf132
crossref_primary_10_1109_ACCESS_2020_2990765
crossref_primary_10_4014_jmb_2411_11010
crossref_primary_10_1080_01431161_2025_2465916
crossref_primary_10_1016_j_bdr_2017_10_002
crossref_primary_10_1155_2022_1645204
crossref_primary_10_3847_1538_4357_ad0e6c
crossref_primary_10_1007_s11356_024_35662_z
crossref_primary_10_1007_s10664_024_10467_3
crossref_primary_10_1016_j_jhazmat_2024_136241
crossref_primary_10_1186_s43094_025_00794_7
crossref_primary_10_1016_j_jbusres_2019_10_053
crossref_primary_10_1109_ACCESS_2020_3046078
crossref_primary_10_3390_electronics13224405
crossref_primary_10_3390_sym14112344
crossref_primary_10_3390_app112110442
crossref_primary_10_1002_adom_202402405
crossref_primary_10_1186_s40537_019_0278_0
crossref_primary_10_12688_f1000research_165342_1
crossref_primary_10_7769_gesec_v14i7_1670
crossref_primary_10_1109_TNSM_2020_2980289
crossref_primary_10_1007_s11227_021_03865_7
crossref_primary_10_1016_j_phycom_2022_101643
crossref_primary_10_1186_s40537_021_00485_z
crossref_primary_10_2478_amns_2023_2_00588
crossref_primary_10_1016_j_adhoc_2019_101881
crossref_primary_10_1016_j_rineng_2025_106002
crossref_primary_10_1155_2022_8344791
crossref_primary_10_1007_s10639_022_11068_7
crossref_primary_10_1016_j_jenvman_2025_127210
crossref_primary_10_1016_j_neunet_2020_05_009
crossref_primary_10_1109_ACCESS_2020_3007727
crossref_primary_10_1016_j_asoc_2021_108295
crossref_primary_10_1016_j_engappai_2023_107670
crossref_primary_10_32604_cmc_2023_030818
crossref_primary_10_1155_2021_2955215
crossref_primary_10_1038_s41566_023_01313_x
crossref_primary_10_3390_rs17132280
crossref_primary_10_3390_electronics12071558
crossref_primary_10_1109_TETC_2021_3054761
crossref_primary_10_3389_fpsyg_2022_943071
crossref_primary_10_3390_electronics10050552
crossref_primary_10_1080_01621459_2023_2282644
crossref_primary_10_1080_10618600_2022_2084404
crossref_primary_10_1002_npp2_16
crossref_primary_10_1016_j_tourman_2020_104129
crossref_primary_10_3390_rs16142561
crossref_primary_10_1155_2022_9680205
crossref_primary_10_1016_j_nicl_2021_102694
crossref_primary_10_32604_cmc_2024_048528
crossref_primary_10_3390_s22124409
crossref_primary_10_1007_s00530_020_00733_x
crossref_primary_10_1088_1742_6596_1345_2_022049
crossref_primary_10_1093_bib_bbaa257
crossref_primary_10_1016_j_heliyon_2023_e13368
crossref_primary_10_1155_2022_8100495
crossref_primary_10_1016_j_ijbiomac_2025_146666
crossref_primary_10_3390_app15105266
crossref_primary_10_3390_rs11151741
crossref_primary_10_1016_j_egyr_2024_02_036
crossref_primary_10_1057_s41270_023_00256_0
crossref_primary_10_3390_bdcc2030023
crossref_primary_10_1007_s11277_021_09362_7
crossref_primary_10_1680_jenge_24_00002
crossref_primary_10_1186_s13690_024_01386_2
crossref_primary_10_1016_j_cities_2019_05_024
crossref_primary_10_1007_s10953_024_01417_0
crossref_primary_10_1155_2022_8439888
crossref_primary_10_1088_1402_4896_ac098b
crossref_primary_10_1186_s40537_019_0254_8
crossref_primary_10_3390_w16131904
crossref_primary_10_1016_j_tourman_2018_12_007
crossref_primary_10_1088_1742_6596_1533_4_042015
crossref_primary_10_3390_coatings15010049
crossref_primary_10_1007_s11053_025_10491_0
crossref_primary_10_1007_s12393_024_09386_2
crossref_primary_10_1109_TCE_2023_3329545
crossref_primary_10_1016_j_procs_2023_10_114
crossref_primary_10_1016_j_jhydrol_2020_125324
crossref_primary_10_1109_TSC_2019_2916416
crossref_primary_10_1002_dac_3772
crossref_primary_10_1364_OPTCON_566725
crossref_primary_10_3390_en18195066
crossref_primary_10_1021_acs_jcim_5c00159
crossref_primary_10_1063_5_0226435
crossref_primary_10_1007_s00521_020_05178_x
crossref_primary_10_1109_JIOT_2022_3157552
crossref_primary_10_1002_ldr_5635
crossref_primary_10_3390_informatics12030061
crossref_primary_10_1007_s40725_024_00231_7
crossref_primary_10_1016_j_knosys_2023_110420
crossref_primary_10_1016_j_future_2018_04_032
crossref_primary_10_1016_j_commatsci_2020_110244
crossref_primary_10_1016_j_compag_2023_107994
crossref_primary_10_1016_j_envc_2025_101123
crossref_primary_10_1155_2021_5598001
crossref_primary_10_3390_app112411910
crossref_primary_10_1016_j_rineng_2024_102215
crossref_primary_10_1007_s00521_021_06443_3
crossref_primary_10_1016_j_seta_2022_102674
crossref_primary_10_1016_j_neucom_2022_04_083
crossref_primary_10_1109_JIOT_2023_3238038
crossref_primary_10_1145_3708497
crossref_primary_10_1016_j_ijmedinf_2022_104758
crossref_primary_10_5498_wjp_v12_i2_204
crossref_primary_10_1186_s40537_024_00914_9
crossref_primary_10_1186_s42400_023_00172_x
crossref_primary_10_37745_ejcsit_2013_vol13n478694
crossref_primary_10_57020_ject_1475566
crossref_primary_10_1088_1742_6596_1302_3_032054
crossref_primary_10_1016_j_bas_2024_102835
crossref_primary_10_1016_j_inffus_2025_103221
crossref_primary_10_3390_app13063997
crossref_primary_10_1088_1742_6596_1168_3_032132
crossref_primary_10_1088_1742_6596_1911_1_012026
crossref_primary_10_3390_electronics13183716
crossref_primary_10_1016_j_autcon_2025_106294
crossref_primary_10_1007_s43681_024_00601_8
crossref_primary_10_3390_soc15030054
crossref_primary_10_3390_jpm14090981
crossref_primary_10_3390_math12020182
crossref_primary_10_1007_s11269_023_03690_y
crossref_primary_10_1016_j_physleta_2024_130065
crossref_primary_10_3390_ma15207187
crossref_primary_10_1007_s12065_024_00934_7
crossref_primary_10_2478_fiqf_2025_0004
crossref_primary_10_1007_s41870_022_01141_2
crossref_primary_10_1155_2021_5554444
crossref_primary_10_1097_CIN_0000000000000463
crossref_primary_10_3390_jpm12060908
crossref_primary_10_3390_rs17101679
crossref_primary_10_3390_buildings15060865
crossref_primary_10_1002_gch2_202100084
crossref_primary_10_1016_j_nucengdes_2024_113307
crossref_primary_10_1002_sys3_4
crossref_primary_10_1155_2022_6922554
crossref_primary_10_3390_math12152376
crossref_primary_10_1002_agj2_21358
crossref_primary_10_1016_j_procs_2023_01_381
crossref_primary_10_1016_j_ijinfomgt_2018_08_006
crossref_primary_10_1109_ACCESS_2020_2984778
crossref_primary_10_1108_MEDAR_04_2018_0325
crossref_primary_10_1007_s10845_024_02482_4
crossref_primary_10_1016_j_cageo_2022_105248
crossref_primary_10_1155_2022_8697421
crossref_primary_10_1109_ACCESS_2019_2962525
crossref_primary_10_1016_j_watres_2024_123041
crossref_primary_10_1007_s42484_024_00194_9
crossref_primary_10_1109_ACCESS_2020_2970143
crossref_primary_10_3390_agronomy15010200
crossref_primary_10_1016_j_chemosphere_2024_141462
crossref_primary_10_2478_amns_2024_2419
crossref_primary_10_1155_2021_3870147
crossref_primary_10_1080_15389588_2025_2527849
crossref_primary_10_1109_ACCESS_2022_3195338
crossref_primary_10_3390_app14135845
crossref_primary_10_1016_j_ecoser_2022_101478
crossref_primary_10_1109_TPS_2019_2918157
crossref_primary_10_1109_TG_2024_3411154
crossref_primary_10_1007_s41748_025_00582_6
crossref_primary_10_26599_BDMA_2023_9020028
crossref_primary_10_1016_j_engappai_2025_110664
crossref_primary_10_1007_s11071_021_06416_0
crossref_primary_10_1155_2021_7998417
crossref_primary_10_3390_a17070316
crossref_primary_10_1016_j_esi_2025_06_001
crossref_primary_10_1016_j_compbiomed_2024_109281
crossref_primary_10_3233_JIFS_220017
crossref_primary_10_3390_s25061642
crossref_primary_10_1016_j_measurement_2025_116857
crossref_primary_10_1016_j_seta_2024_104097
crossref_primary_10_1007_s10639_023_12267_6
crossref_primary_10_3390_rs16163095
crossref_primary_10_1155_2022_2907393
crossref_primary_10_3390_informatics4030016
crossref_primary_10_1016_j_ifacol_2024_07_288
crossref_primary_10_1016_j_jhydrol_2024_131220
crossref_primary_10_1016_j_enbuild_2024_115061
crossref_primary_10_1142_S0219649219500096
crossref_primary_10_1007_s00521_023_09194_5
crossref_primary_10_1093_biostatistics_kxad032
crossref_primary_10_5668_JEHS_2025_51_3_137
crossref_primary_10_1145_3718364
crossref_primary_10_3390_d14090706
crossref_primary_10_1016_j_apmate_2025_100333
crossref_primary_10_1016_j_patcog_2018_09_018
crossref_primary_10_3389_fmars_2024_1492572
crossref_primary_10_1145_3427476
crossref_primary_10_3390_ijerph19138111
crossref_primary_10_1016_j_compbiomed_2023_107825
crossref_primary_10_1109_ACCESS_2019_2930410
crossref_primary_10_1038_s41598_025_96112_5
crossref_primary_10_1186_s13673_020_00231_z
crossref_primary_10_3390_en16207093
crossref_primary_10_3390_make6020059
crossref_primary_10_1007_s10681_025_03522_7
crossref_primary_10_26634_jfet_19_4_20913
crossref_primary_10_1080_15481603_2025_2514330
crossref_primary_10_1109_ACCESS_2020_3017135
crossref_primary_10_4018_IJFC_2018070102
crossref_primary_10_1016_j_watres_2022_118494
crossref_primary_10_1016_j_matt_2022_10_007
crossref_primary_10_1007_s11227_020_03533_2
crossref_primary_10_1049_ipr2_70107
crossref_primary_10_1186_s12913_024_11932_x
crossref_primary_10_3847_1538_3881_ad4da5
crossref_primary_10_1177_1094342020957393
crossref_primary_10_1007_s10489_022_03826_4
crossref_primary_10_1007_s11831_025_10324_6
crossref_primary_10_1155_2022_5604032
crossref_primary_10_7717_peerj_cs_2418
crossref_primary_10_1016_j_buildenv_2024_111553
crossref_primary_10_1155_2022_3499799
crossref_primary_10_7717_peerj_cs_1567
crossref_primary_10_1109_ACCESS_2022_3207173
crossref_primary_10_1016_j_watres_2022_119349
crossref_primary_10_1016_j_enbuild_2024_114072
crossref_primary_10_3390_app14062556
crossref_primary_10_3390_socsci12030118
crossref_primary_10_1016_j_fuel_2025_136065
crossref_primary_10_1016_j_neucom_2019_01_087
crossref_primary_10_3390_make7010013
crossref_primary_10_1016_j_neunet_2024_107016
crossref_primary_10_1108_EMJB_11_2021_0168
crossref_primary_10_1016_j_hcc_2023_100124
crossref_primary_10_1097_QAD_0000000000004193
crossref_primary_10_1007_s11053_017_9345_4
crossref_primary_10_1016_j_knosys_2018_10_009
crossref_primary_10_1016_j_ipm_2018_01_010
crossref_primary_10_1038_s41598_024_84550_6
crossref_primary_10_1109_MNET_001_1800540
crossref_primary_10_1109_TSMC_2022_3198833
crossref_primary_10_1109_TQE_2022_3169987
crossref_primary_10_1007_s12559_018_9613_6
crossref_primary_10_1016_j_ijpvp_2021_104471
crossref_primary_10_1016_j_neucom_2022_01_015
crossref_primary_10_1007_s11831_023_09996_9
crossref_primary_10_1016_j_jhazmat_2024_134666
crossref_primary_10_1038_s41746_024_01383_3
crossref_primary_10_3390_pharmaceutics16121559
crossref_primary_10_1016_j_technovation_2023_102713
crossref_primary_10_1115_1_4067270
crossref_primary_10_2139_ssrn_5256050
crossref_primary_10_1109_ACCESS_2018_2805680
crossref_primary_10_1007_s10489_019_01450_3
crossref_primary_10_1111_ffe_13816
crossref_primary_10_2166_hydro_2025_258
crossref_primary_10_1016_j_ins_2018_02_011
crossref_primary_10_1093_pnasnexus_pgae186
crossref_primary_10_1007_s11831_025_10342_4
crossref_primary_10_1007_s10334_024_01157_8
crossref_primary_10_1007_s11276_022_03177_5
crossref_primary_10_1016_j_eswa_2024_124936
crossref_primary_10_1016_j_tourman_2022_104689
crossref_primary_10_3390_electronics11193177
crossref_primary_10_1007_s42979_024_03046_2
crossref_primary_10_3389_fnagi_2025_1542514
crossref_primary_10_1038_s44172_023_00079_y
crossref_primary_10_1088_2632_2153_acefaa
crossref_primary_10_1016_j_eti_2021_101390
crossref_primary_10_1016_j_cclet_2024_110722
crossref_primary_10_3390_electronics14071357
crossref_primary_10_1186_s40537_020_00298_6
crossref_primary_10_1016_j_est_2023_107232
crossref_primary_10_1155_2022_9152605
crossref_primary_10_1007_s13218_017_0517_5
crossref_primary_10_1080_17517575_2020_1790043
crossref_primary_10_1016_j_applthermaleng_2025_125694
crossref_primary_10_3390_infrastructures9050078
crossref_primary_10_1007_s10651_024_00642_6
crossref_primary_10_1007_s41870_024_01991_y
crossref_primary_10_3233_IDT_230247
crossref_primary_10_1109_ACCESS_2025_3569559
crossref_primary_10_1016_j_cageo_2023_105434
crossref_primary_10_3390_data6070077
crossref_primary_10_1016_j_rser_2022_112128
crossref_primary_10_3390_app11062726
crossref_primary_10_3390_electronics13183675
crossref_primary_10_1587_transinf_2020BDP0002
crossref_primary_10_1016_j_wasman_2024_12_023
crossref_primary_10_1016_j_jhydrol_2025_132883
crossref_primary_10_3390_cancers13153662
crossref_primary_10_1007_s11042_017_5045_7
crossref_primary_10_1016_j_scitotenv_2025_179678
crossref_primary_10_1080_00207543_2025_2532147
crossref_primary_10_32604_jbd_2022_028363
crossref_primary_10_1016_j_cej_2025_161299
crossref_primary_10_1108_JIMA_07_2021_0234
crossref_primary_10_1016_j_scitotenv_2024_170209
crossref_primary_10_1016_j_psep_2022_12_054
crossref_primary_10_1016_j_isatra_2024_10_002
crossref_primary_10_1093_rpd_ncaf064
crossref_primary_10_1007_s11053_017_9357_0
crossref_primary_10_3390_healthcare12070706
crossref_primary_10_3390_biomedicines10102472
crossref_primary_10_1007_s10639_022_11280_5
crossref_primary_10_1016_j_lwt_2021_112701
crossref_primary_10_1016_j_enconman_2019_111975
crossref_primary_10_1016_j_knosys_2018_10_033
crossref_primary_10_1016_j_cofs_2022_100873
crossref_primary_10_1080_10447318_2023_2262270
crossref_primary_10_3390_agronomy12030748
crossref_primary_10_1186_s40537_023_00703_w
crossref_primary_10_1016_j_rineng_2025_105412
crossref_primary_10_1002_widm_70043
crossref_primary_10_1016_j_compeleceng_2024_109565
crossref_primary_10_1016_j_ecoenv_2022_113874
crossref_primary_10_1155_2018_6326049
crossref_primary_10_3390_jmse12091656
crossref_primary_10_1108_QRAM_04_2021_0063
crossref_primary_10_3390_rs15174168
crossref_primary_10_3390_su151310543
crossref_primary_10_3390_electronics12040871
crossref_primary_10_1371_journal_pone_0324644
crossref_primary_10_1210_clinem_dgae628
crossref_primary_10_3390_su131910743
crossref_primary_10_1155_2020_1357853
crossref_primary_10_3390_aerospace12070602
crossref_primary_10_1038_s41597_022_01639_1
crossref_primary_10_2196_18585
crossref_primary_10_1007_s13347_024_00782_4
crossref_primary_10_1080_17445760_2023_2225854
crossref_primary_10_3233_JIFS_169596
crossref_primary_10_1007_s11227_020_03328_5
crossref_primary_10_1016_j_neunet_2024_106699
crossref_primary_10_1089_hs_2019_0020
crossref_primary_10_17816_DD634885
crossref_primary_10_1155_2022_4116659
crossref_primary_10_1007_s11270_025_07954_8
crossref_primary_10_1145_3469028
crossref_primary_10_3390_rs13193906
crossref_primary_10_1016_j_procs_2024_08_075
crossref_primary_10_1038_s41598_025_09856_5
crossref_primary_10_1007_s12152_022_09498_8
crossref_primary_10_3389_fsoc_2022_886498
crossref_primary_10_1007_s00521_020_04861_3
crossref_primary_10_1016_j_elerap_2017_12_003
crossref_primary_10_3390_math12101601
crossref_primary_10_3390_math11132804
crossref_primary_10_1016_j_agwat_2024_108710
crossref_primary_10_1007_s40996_025_01956_6
crossref_primary_10_1016_j_ins_2019_12_054
crossref_primary_10_1016_j_apenergy_2019_114367
crossref_primary_10_3390_electronics14010066
crossref_primary_10_3389_fpsyg_2024_1479269
crossref_primary_10_3390_met11050690
crossref_primary_10_1016_j_ecoinf_2024_102950
crossref_primary_10_1177_14780771231181237
crossref_primary_10_3390_electronics10192350
crossref_primary_10_1155_2022_4945918
crossref_primary_10_3390_en13164158
crossref_primary_10_1080_14765284_2025_2549237
crossref_primary_10_1155_2022_8213895
crossref_primary_10_3390_s21196688
crossref_primary_10_3389_fpsyt_2025_1548287
crossref_primary_10_1007_s11227_025_07563_6
crossref_primary_10_3390_cryst15060538
crossref_primary_10_1080_19349637_2025_2454427
crossref_primary_10_1016_j_eswa_2025_129014
crossref_primary_10_1109_ACCESS_2022_3161511
crossref_primary_10_1109_ACCESS_2023_3308698
crossref_primary_10_1155_2022_5191929
crossref_primary_10_1002_cmtd_202500069
crossref_primary_10_1155_2022_4879361
crossref_primary_10_3390_electronics11040610
crossref_primary_10_3390_sym12040495
crossref_primary_10_1016_j_imu_2023_101428
crossref_primary_10_1155_2022_9513357
crossref_primary_10_1007_s10844_022_00775_9
crossref_primary_10_1016_j_earscirev_2025_105209
crossref_primary_10_1186_s42162_025_00524_6
crossref_primary_10_3390_drones7030214
crossref_primary_10_3390_jmse13010032
crossref_primary_10_1007_s00500_023_08041_y
crossref_primary_10_3390_electronics12102287
crossref_primary_10_1016_j_ecoinf_2025_103187
crossref_primary_10_3390_ijerph17207650
crossref_primary_10_3390_jrfm18020103
crossref_primary_10_1007_s12145_025_01794_0
crossref_primary_10_1109_ACCESS_2020_2988120
crossref_primary_10_1145_3652596
crossref_primary_10_1109_ACCESS_2024_3393856
crossref_primary_10_1016_j_rser_2025_115895
crossref_primary_10_1145_3701041
crossref_primary_10_1016_j_rser_2020_110114
crossref_primary_10_1016_j_trd_2024_104067
crossref_primary_10_1016_j_oceaneng_2022_110689
crossref_primary_10_3390_rs16060956
crossref_primary_10_1007_s10845_019_01531_7
crossref_primary_10_1111_gec3_12563
crossref_primary_10_3390_bdcc4040034
crossref_primary_10_1109_ACCESS_2020_3039508
crossref_primary_10_1093_nar_gkz1208
crossref_primary_10_1088_1742_6596_1477_2_022038
crossref_primary_10_1038_s41598_023_37129_6
crossref_primary_10_1007_s42979_023_01809_x
crossref_primary_10_3390_app11031173
crossref_primary_10_1007_s00521_025_11385_1
crossref_primary_10_1016_j_compbiolchem_2025_108680
crossref_primary_10_1093_comjnl_bxab135
crossref_primary_10_1016_j_cherd_2021_08_013
crossref_primary_10_1080_08839514_2021_1935591
crossref_primary_10_3390_ani15050687
crossref_primary_10_1108_JEIM_08_2019_0222
crossref_primary_10_1016_j_engappai_2024_108783
crossref_primary_10_1016_j_ijepes_2025_111065
crossref_primary_10_1007_s11760_019_01527_z
crossref_primary_10_1038_s44172_024_00201_8
crossref_primary_10_1007_s00521_023_08960_9
crossref_primary_10_1080_10589759_2024_2375565
crossref_primary_10_1038_s41467_020_15734_7
crossref_primary_10_1016_j_inffus_2023_102217
crossref_primary_10_1016_j_ijinfomgt_2020_102231
crossref_primary_10_1080_09537325_2020_1732912
crossref_primary_10_1109_JRFID_2025_3575098
crossref_primary_10_1007_s10489_018_1235_x
crossref_primary_10_1016_j_compeleceng_2023_108601
crossref_primary_10_1007_s41870_024_02028_0
crossref_primary_10_1016_j_cmpb_2021_106590
crossref_primary_10_1016_j_optmat_2025_116783
crossref_primary_10_1109_OJCS_2025_3579522
crossref_primary_10_3390_infrastructures9120213
crossref_primary_10_1109_TAI_2021_3100456
crossref_primary_10_1155_2022_4017151
crossref_primary_10_1155_2022_1172405
crossref_primary_10_1109_ACCESS_2025_3553934
crossref_primary_10_1002_cpe_6661
crossref_primary_10_1016_j_jechem_2023_02_028
crossref_primary_10_1155_2022_5346995
crossref_primary_10_3390_rs13224712
crossref_primary_10_1007_s10489_020_01952_5
crossref_primary_10_1038_s41598_025_00167_3
crossref_primary_10_1155_2022_8178963
crossref_primary_10_1016_j_ijhydene_2024_02_309
crossref_primary_10_1140_epjs_s11734_021_00207_9
crossref_primary_10_1177_01655515221133528
crossref_primary_10_1016_j_procs_2020_04_061
crossref_primary_10_1186_s42400_024_00341_6
crossref_primary_10_3390_computation8030080
crossref_primary_10_1016_j_jdent_2024_105260
crossref_primary_10_1016_j_jbiotec_2023_10_005
crossref_primary_10_1155_2022_2389636
crossref_primary_10_1007_s13042_019_01055_9
crossref_primary_10_3390_rs16213989
crossref_primary_10_1007_s10894_025_00495_2
crossref_primary_10_1016_j_neucom_2018_10_088
crossref_primary_10_1016_j_engappai_2025_111082
crossref_primary_10_1016_j_humov_2025_103381
crossref_primary_10_1007_s10270_025_01306_0
crossref_primary_10_1016_j_jclepro_2024_144171
crossref_primary_10_3390_sym12091526
crossref_primary_10_1080_21693277_2022_2155263
crossref_primary_10_3390_a18050253
crossref_primary_10_1002_adma_202104113
crossref_primary_10_1109_ACCESS_2023_3287861
crossref_primary_10_1038_s41598_024_58241_1
crossref_primary_10_3390_esa2030011
crossref_primary_10_1016_j_cmpb_2024_108294
crossref_primary_10_1016_j_compbiomed_2021_104305
crossref_primary_10_1007_s11227_018_2618_9
crossref_primary_10_1016_j_jhazmat_2025_137102
crossref_primary_10_1016_j_rser_2025_115980
crossref_primary_10_1145_3603707
crossref_primary_10_1111_add_70132
crossref_primary_10_3390_computers14070294
crossref_primary_10_1016_j_atech_2025_101219
crossref_primary_10_1016_j_datak_2019_06_004
crossref_primary_10_1109_ACCESS_2019_2910224
crossref_primary_10_3390_s22218371
crossref_primary_10_3389_fpls_2025_1579355
crossref_primary_10_1007_s00253_022_11963_6
crossref_primary_10_1109_ACCESS_2020_3001275
crossref_primary_10_2196_73212
crossref_primary_10_1002_cpe_6968
crossref_primary_10_1007_s00521_020_05102_3
crossref_primary_10_1007_s10586_018_2385_7
crossref_primary_10_3390_app10144901
crossref_primary_10_1016_j_desal_2024_118322
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_36660_abc_20200596
crossref_primary_10_1016_j_kscej_2025_100250
crossref_primary_10_1016_j_seta_2019_100582
crossref_primary_10_1016_j_heliyon_2024_e37571
crossref_primary_10_1016_j_fss_2019_05_009
crossref_primary_10_1016_j_radi_2024_08_005
crossref_primary_10_3390_md20010038
crossref_primary_10_1109_TCYB_2022_3208130
crossref_primary_10_1007_s10462_019_09738_z
crossref_primary_10_1016_j_est_2020_101409
crossref_primary_10_1155_2022_4553446
crossref_primary_10_3390_bs15030345
crossref_primary_10_1007_s00500_019_03901_y
crossref_primary_10_4103_1673_5374_382228
crossref_primary_10_1016_j_jksuci_2017_12_007
crossref_primary_10_1109_ACCESS_2022_3204114
crossref_primary_10_3390_app13031296
crossref_primary_10_1007_s42979_020_00356_z
crossref_primary_10_1155_2022_6082280
crossref_primary_10_3390_coatings15060693
crossref_primary_10_3390_s23010426
crossref_primary_10_3390_s23042112
crossref_primary_10_1142_S1793984425300067
crossref_primary_10_1007_s13278_018_0500_7
crossref_primary_10_1155_2022_5658641
crossref_primary_10_3389_frai_2021_576892
crossref_primary_10_1002_asi_24642
crossref_primary_10_1155_2022_9687496
crossref_primary_10_1007_s12530_018_9223_2
crossref_primary_10_1080_15391523_2023_2266060
crossref_primary_10_1016_j_est_2020_101410
crossref_primary_10_3390_app15010346
crossref_primary_10_3390_buildings14113515
crossref_primary_10_1155_2022_1761154
crossref_primary_10_1016_j_ecolmodel_2023_110476
crossref_primary_10_1016_j_watres_2023_120075
Cites_doi 10.1145/2647868.2654926
10.1186/s40537-014-0007-7
10.1007/s12559-016-9404-x
10.1109/ISCAS.2010.5537907
10.1109/ICDM.2012.155
10.1007/s10115-007-0073-7
10.1145/2783258.2783387
10.1145/2287076.2287111
10.1023/A:1007563306331
10.1007/s13748-012-0035-5
10.1109/BDC.2014.10
10.1016/j.neucom.2016.09.042
10.1145/2487788.2488042
10.14778/2556549.2556553
10.1145/2509352.2509396
10.1016/j.asoc.2015.01.035
10.1109/ICDCSW.2014.14
10.1109/BigData.Congress.2014.14
10.1145/1273496.1273641
10.1109/BigData.2016.7841037
10.1109/TPAMI.2013.50
10.1145/2647868.2654889
10.1109/ICDCS.2015.40
10.1016/j.neucom.2013.04.017
10.1109/ACCESS.2014.2325029
10.1126/science.aaa8415
10.1007/s10586-014-0360-5
10.1016/j.jpdc.2014.09.005
10.1007/11925231_54
10.14778/2735471.2735474
10.1109/TPAMI.2005.77
10.1504/IJCIH.2015.069788
10.14778/2733004.2733075
10.18653/v1/D13-1170
10.1016/j.neucom.2015.09.116
10.1109/TBDATA.2015.2472014
10.1145/2020408.2020426
10.14778/1687553.1687569
10.1145/2736277.2741668
10.1002/widm.1173
10.1145/2433396.2433459
10.1145/2500489
10.1016/j.neucom.2014.04.078
10.1109/MCI.2014.2326099
10.1016/j.neucom.2015.12.042
10.1145/2699026.2699136
10.1111/exsy.12019
10.1126/science.aab3050
10.1016/j.neucom.2013.09.055
10.1109/ICDE.2011.5767930
10.1109/JSTARS.2015.2458855
10.1145/2783258.2789989
10.14778/2212351.2212354
10.1186/s40537-015-0032-1
10.1145/1273496.1273592
10.1186/s40537-015-0030-3
10.1016/j.inffus.2015.03.001
10.1007/978-3-7908-2604-3_16
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
ADTPV
AOWAS
DOI 10.1016/j.neucom.2017.01.026
DatabaseName CrossRef
SwePub
SwePub Articles
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 361
ExternalDocumentID oai_DiVA_org_ltu_61412
10_1016_j_neucom_2017_01_026
S0925231217300577
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ADTPV
AOWAS
ID FETCH-LOGICAL-c437t-5dc3faca10e02128a0e75d107e602454336a13d8bfb3b2992e66f0ad8b587ff63
ISICitedReferencesCount 712
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397356700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
1872-8286
IngestDate Sat Oct 25 06:23:52 EDT 2025
Tue Nov 18 21:16:28 EST 2025
Sat Nov 29 07:08:30 EST 2025
Fri Feb 23 02:30:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Evaluation
Big data
Data preprocessing
Parallelization
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-5dc3faca10e02128a0e75d107e602454336a13d8bfb3b2992e66f0ad8b587ff63
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0925231217300577?via%3Dihub
PageCount 12
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_61412
crossref_primary_10_1016_j_neucom_2017_01_026
crossref_citationtrail_10_1016_j_neucom_2017_01_026
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_01_026
PublicationCentury 2000
PublicationDate 2017-05-10
PublicationDateYYYYMMDD 2017-05-10
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-10
  day: 10
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References L.Bagheri, H.Goote, A.Hasan, G.Hazard, Risk adjustment of patient expenditures: A big data analytics approach, in Proceedings of the 2013 IEEE International Conference on Big Data, 2013.
R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, et al., Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2013.
R. Collobert, K. Kavukcuoglu, and C. Farabet, Torch7: A Matlab-like Environment for Machine Learning, in: Proceedings of the Neural Information Processing Systems (NIPS) Workshop on BigLearn, 2011.
G.De Francisci Morales, SAMOA: a platform for mining big data streams, in: Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 777–778.
Su, Agrawal, Woodring, Myers, Wendelberger, Ahrens (bib24) 2014; 17
Wang, Crammer, Vucetic (bib103) 2012; 13
Russell, Norvig (bib5) 2010
Zeng, Wang, Zhang, Liu, Alsaadi (bib84) 2016; 8
Peteiro-Barral, Guijarro-Berdiñas (bib69) 2013; 2
Zhang, Ou, Huang, Wang (bib21) 2015; 2
S. Ramírez-Gallego, S. García, H. Mouriño-Talín, D. Martínez-Rego, V. Bolón-Canedo, A. Alonso-Betanzos, et al., "Data discretization: taxonomy and big data challenge," Wiley Interdisciplinary Reviews, Data Mining and Knowledge Discovery, vol. 6, pp. 5-21, 2016.
Goodfellow, Bengio, Courville (bib86) 2016
Amershi, Cakmak, Knox, Kulesza (bib8) 2014; 35
J.J.Pfeiffer , III, J.Neville, P.N.Bennett, Overcoming relational learning biases to accurately predict preferences in large scale networks, in: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 853–863.
Lake, Salakhutdinov, Tenenbaum (bib20) 2015; 350
Y.Jia, E.Shelhamer, J.Donahue, S.Karayev, J.Long, R.Girshick, et al., Caffe: Convolutional Architecture for Fast Feature Embedding, in: Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, USA, 2014.
Q.Yang, Big data, lifelong machine learning and transfer learning, in: Proceedings of the sixth ACM international conference on Web search and data mining, 2013, pp. 505–506.
Popescu, Balmin, Ercegovac, Ailamaki (bib96) 2013; 6
Landset, Khoshgoftaar, Richter, Hasanin (bib63) 2015; 2
Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and applications in vision, in: Proceedings of IEEE International Symposium on Circuits and Systems, 2010, pp. 253–256.
R.Gemulla, E.Nijkamp, P.J.Haas, Y.Sismanis, Large-scale matrix factorization with distributed stochastic gradient descent, in: Proceedings of the 17th ACM SIGKDD international conference ion Knowledge discovery and data mining, San Diego, California, USA, 2011, pp. 69–77.
(bib67) 2012
Kashyap, Ahmed, Hoque, Roy, Bhattacharyya (bib98) 2015
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib32) 2010; 11
A. Kumar, A. Beutel, Q. Ho, E.P. Xing, Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big Data, in: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), Reykjavik, Iceland, 2014, pp. 531–539.
J. Cervantes, X. Li, W. Yu, Support vector machine classification based on fuzzy clustering for large data sets, in: Proceedings of the 5th MICAI, 2015, pp. 572–582.
Chen, Zobel, Verspoor (bib11) 2015
Chen, Lin (bib89) 2014; 2
Rakthanmanon, Campana, Mueen, Batista, Westover, Zhu (bib12) 2013; 7
B.Thuraisingham, Big Data Security and Privacy, in: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, Texas, USA, 2015.
J.Xu, C.Tekin, M.van der Schaar, Learning optimal classifier chains for real-time big data mining, in Proceedings 51st Annu. Allerton
Liou, Cheng, Liou, Liou (bib33) 2014; 139
Bengio, LeCun (bib35) 2007
Jiang, Pang, Li, Pan (bib81) 2016; 185
K. Xu, H. Yue, L. Guo, Y. Guo, Y. Fang, Privacy-preserving machine learning algorithms for big data systems, in: Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS), 2015, pp. 318–327.
Singh, Reddy (bib106) 2014; 2
Dekel (bib7) 2008
Deng, Li, Do, Su, Fei-Fei (bib79) 2009; 1
Hsu, Karampatziakis, Langford, Smola (bib65) 2011
Z.Zhao, H.Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th international conference on Machine learning, 2007, pp. 1151–1157.
Tong (bib109) 2010; 2016
Triguero, Peralta, Bacardit, García, Herrera (bib62) 2015; 150
Tsai, Lai, Chao, Vasilakos (bib2) 2015; 2
Lu, Hoi, Wang, Zhao, Liu (bib102) 2016; 17
Chu, Kim, Lin, Yu, Bradski, Ng (bib49) 2006
onference Comm., Control and Comput. (Allerton'13), 2013.
Mahajan, Park, Amaro, Sharma, Yazdanbakhsh, Kim (bib91) 2016
T.Mikolov, I.Sutskever, K.Chen, G.S.Corrado, J.Dean, Distributed Representations of Words and Phrases and their Compositionality, presented at the NIPS, Stateline, NV, 2013.
Yue, Wu, Fu, Xu, Yin, Liu (bib45) 2017; 219
J. Suzuki, H. Isozaki, and M. Nagata, Learning condensed feature representations from large unsupervised data sets for supervised learning, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Human Language Technologies, short papers, 2, 2011, pp. 636–641.
Bengio, Courville, Vincent (bib6) 2013; 35
Nguyen-Dinh, Rossi, Blanke, Tröster (bib19) 2013
Azar, Hassanien (bib31) 2015; 19
T.Xiao, J.Zhang, K.Yang, Y.Peng, Z.Zhang, Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 177–186.
You, Fu, Song, Randles, Kerbyson, Marquez (bib37) 2015; 76
Zhai, Ong, Tsang (bib104) 2014; 9
Çatak (bib72) 2015
Krizhevsky, Sutskever, Hinton (bib77) 2012
Jordan, Mitchell (bib1) 2015; 349
Zhou, Chen, Wang (bib83) 2013; 120
J.S.Yoo, D.Boulware, D.Kimmey, A Parallel Spatial Co-location Mining Algorithm Based on MapReduce, in: proceedings of the 2014 IEEE International Congress on Big Data, 3rd, pp. 25–31.
Collobert, Sinz, Weston, Bottou (bib34) 2006
Borkar, Bu, Carey, Rosen, Polyzotis, Condie (bib51) 2012; 35
Low, Bickson, Gonzalez, Guestrin, Kyrola, Hellerstein (bib52) 2012; 5
C.Dijun Luo, Ding, H.Huang, Parallelization with ultiplicative algorithms for big data mining, in: Proceedings of the 12th International Conference on Data Mining (ICDM), 2012, pp. 489–498.
Markl (bib108) 2014; 7
Armes, M (bib110) 2013
J.Zhu, J.Chen, W.Hu, Big Learning with Bayesian Methods. Available
Y.Z.Y.-M.Cheung, Discretizing Numerical Attributes in Decision Tree for Big Data Analysis, in: Proceedings of the 2014 IEEE International Conference on Data Mining Workshop (ICDMW), 2014.
A.K.Ghoting, R.E.Pednault, B.Reinwald, V.Sindhwani, S.Tatikonda, Y.Tian, et al., SystemML: Declarative machine learning on MapReduce, in: Proceedings of the 27th International Conference on Data Engineering (ICDE), 2011.
Theano Development Team, Theano: A Python framework for fast computation of mathematical expression. Available: arXiv:1605.02688.
Japkowicz, Shah (bib4) 2011
Wang, Tang, Nguyen, Altintas (bib44) 2014
Mirchevska, Luštrek, Gams (bib9) 2014; 31
Tan, Tsang, Wang (bib27) 2014; 15
J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, et al., Large scale distributed deep networks, in: Proceedings of the Neural Information Processing Systems, Lake Tahoe, Nevada, United States, 2012, pp. 1232–1240.
Yui, Kojima (bib71) 2013
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (bib25) 2015; 30
Owen, Anil, Dunning, Friedman (bib48) 2011
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib3) 2015; 2
X.Cai, F.Nie, H.Huang, Multi-view K-means clustering on big data, in: Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013, pp. 2598–2604.
2014.
Cavallaro, Riedel, Richerzhagen, Benediktsson, Plaza (bib74) 2015; 8
K.L.C.Zhu, M.Savvides, Distributed class dependent feature analysis — A big data approach, in: proceedings of the 2014 IEEE International Conference on Big Data, 2014.
R.Raina, A.Battle, H.Lee, B.Packer, A.Y.Ng, Self-taught learning: transfer learning from unlabeled data, in: Proceedings of the 24th international conference on Machine learning, Corvalis, Oregon, USA, 2007.
Vaidya, Yu, Jiang (bib95) 2008; 14
Q.V.Le, J.Ngiam, A.Coates, A.Lahiri, B.Prochnow, A.Y.Ng, On optimization methods for deep learning, in: Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 2011.
M.Zaharia, M.Chowdhury, M.J.Franklin, S.Shenker, I.Stoica, Spark: cluster computing with working sets, presented at in: Proceedings of the 2nd USENIX conference on Hot topics in Cloud Computing, Boston, MA, 2010.
L.Cao, M.Wei, D.Yang, E.A.Rundensteiner, Online outlier exploration over large datasets, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 89–98.
Yu (bib10) 2007
W. Xu, Towards Optimal one pass large scale learning with averaged stochastic gradient descent, 2011. Available at: arXiv:1107.2490.
E.Bortnikov, A.Frank, E.Hillel, S.Rao, Predicting execution bottlenecks in map-reduce clusters, in: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing, 2012, pp. 18–18.
L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent, in: Proceedings of COMPSTAT, 2010, pp. 177–186.
Xing, Ho, Dai, Kim, Wei, Lee (bib39) 2015
B.Nelson, T.Olovsson, Security and Privacy for Big Data: A Systematic Literature Review, in: Proceedings of the 2016 IEEE International Conference on Big Data, Washington, D.C, 2016, pp. 3693–3702.
T.Kraska, A.Talwalkar, J.Duchi, R.Griffith, M.J.Franklin, M.I.Jordan, MLbase: A Distributed Machine-learning System, in: Proceedings of the 6th Biennial Conference on Innovative Data Systems Research, Asilomar, California, USA, 2013.
Gandomi, Haider (bib15) 2015; 35
Chen, Luo, Liu, Zhang, He, Wang (bib90) 2014
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems," CoRR, 2016.
Dong, Krzyzak, Suen (bib55) 2005; 27
Sankar, Karau (bib47) 2015
Mason, Traoré,
Lu (10.1016/j.neucom.2017.01.026_bib102) 2016; 17
Vaidya (10.1016/j.neucom.2017.01.026_bib95) 2008; 14
Guo (10.1016/j.neucom.2017.01.026_bib80) 2016; 187
10.1016/j.neucom.2017.01.026_bib100
Jordan (10.1016/j.neucom.2017.01.026_bib1) 2015; 349
10.1016/j.neucom.2017.01.026_bib99
Liou (10.1016/j.neucom.2017.01.026_bib33) 2014; 139
10.1016/j.neucom.2017.01.026_bib101
10.1016/j.neucom.2017.01.026_bib107
10.1016/j.neucom.2017.01.026_bib16
Chen (10.1016/j.neucom.2017.01.026_bib89) 2014; 2
10.1016/j.neucom.2017.01.026_bib13
Bengio (10.1016/j.neucom.2017.01.026_bib35) 2007
10.1016/j.neucom.2017.01.026_bib105
10.1016/j.neucom.2017.01.026_bib14
Collobert (10.1016/j.neucom.2017.01.026_bib34) 2006
Rakthanmanon (10.1016/j.neucom.2017.01.026_bib12) 2013; 7
10.1016/j.neucom.2017.01.026_bib17
Japkowicz (10.1016/j.neucom.2017.01.026_bib4) 2011
10.1016/j.neucom.2017.01.026_bib18
Yu (10.1016/j.neucom.2017.01.026_bib10) 2007
Goodfellow (10.1016/j.neucom.2017.01.026_bib86) 2016
Kashyap (10.1016/j.neucom.2017.01.026_bib98) 2015
Najafabadi (10.1016/j.neucom.2017.01.026_bib3) 2015; 2
Parker (10.1016/j.neucom.2017.01.026_bib68) 2012
10.1016/j.neucom.2017.01.026_bib30
10.1016/j.neucom.2017.01.026_bib111
10.1016/j.neucom.2017.01.026_bib22
Zeng (10.1016/j.neucom.2017.01.026_bib84) 2016; 8
Triguero (10.1016/j.neucom.2017.01.026_bib62) 2015; 150
10.1016/j.neucom.2017.01.026_bib112
Yui (10.1016/j.neucom.2017.01.026_bib71) 2013
Markl (10.1016/j.neucom.2017.01.026_bib108) 2014; 7
Mahajan (10.1016/j.neucom.2017.01.026_bib91) 2016
Sun (10.1016/j.neucom.2017.01.026_bib26) 2015; 26
Dekel (10.1016/j.neucom.2017.01.026_bib7) 2008
10.1016/j.neucom.2017.01.026_bib28
Popescu (10.1016/j.neucom.2017.01.026_bib96) 2013; 6
10.1016/j.neucom.2017.01.026_bib29
Breiman (10.1016/j.neucom.2017.01.026_bib97) 1999; 36
Ganjisaffar (10.1016/j.neucom.2017.01.026_bib59) 2011
Azar (10.1016/j.neucom.2017.01.026_bib31) 2015; 19
Lake (10.1016/j.neucom.2017.01.026_bib20) 2015; 350
10.1016/j.neucom.2017.01.026_bib40
10.1016/j.neucom.2017.01.026_bib41
Zhou (10.1016/j.neucom.2017.01.026_bib83) 2013; 120
Panda (10.1016/j.neucom.2017.01.026_bib38) 2009; 2
Nguyen-Dinh (10.1016/j.neucom.2017.01.026_bib19) 2013
Owen (10.1016/j.neucom.2017.01.026_bib48) 2011
10.1016/j.neucom.2017.01.026_bib36
Hsu (10.1016/j.neucom.2017.01.026_bib65) 2011
Amershi (10.1016/j.neucom.2017.01.026_bib8) 2014; 35
Tan (10.1016/j.neucom.2017.01.026_bib27) 2014; 15
Landset (10.1016/j.neucom.2017.01.026_bib63) 2015; 2
Vincent (10.1016/j.neucom.2017.01.026_bib32) 2010; 11
Mozafari (10.1016/j.neucom.2017.01.026_bib23) 2014; 8
Cavallaro (10.1016/j.neucom.2017.01.026_bib74) 2015; 8
10.1016/j.neucom.2017.01.026_bib50
10.1016/j.neucom.2017.01.026_bib42
10.1016/j.neucom.2017.01.026_bib43
Chu (10.1016/j.neucom.2017.01.026_bib49) 2006
10.1016/j.neucom.2017.01.026_bib46
Jiang (10.1016/j.neucom.2017.01.026_bib81) 2016; 185
Krizhevsky (10.1016/j.neucom.2017.01.026_bib77) 2012
Gandomi (10.1016/j.neucom.2017.01.026_bib15) 2015; 35
Peteiro-Barral (10.1016/j.neucom.2017.01.026_bib69) 2013; 2
Erhan (10.1016/j.neucom.2017.01.026_bib87) 2010; 11
Dong (10.1016/j.neucom.2017.01.026_bib55) 2005; 27
Chen (10.1016/j.neucom.2017.01.026_bib90) 2014
10.1016/j.neucom.2017.01.026_bib60
10.1016/j.neucom.2017.01.026_bib61
10.1016/j.neucom.2017.01.026_bib56
10.1016/j.neucom.2017.01.026_bib53
10.1016/j.neucom.2017.01.026_bib54
10.1016/j.neucom.2017.01.026_bib58
Sankar (10.1016/j.neucom.2017.01.026_bib47) 2015
Low (10.1016/j.neucom.2017.01.026_bib52) 2012; 5
Wang (10.1016/j.neucom.2017.01.026_bib44) 2014
Çatak (10.1016/j.neucom.2017.01.026_bib72) 2015
Xing (10.1016/j.neucom.2017.01.026_bib39) 2015
10.1016/j.neucom.2017.01.026_bib70
10.1016/j.neucom.2017.01.026_bib73
10.1016/j.neucom.2017.01.026_bib66
10.1016/j.neucom.2017.01.026_bib64
(10.1016/j.neucom.2017.01.026_bib67) 2012
Wang (10.1016/j.neucom.2017.01.026_bib103) 2012; 13
Tong (10.1016/j.neucom.2017.01.026_bib109) 2010; 2016
Zhang (10.1016/j.neucom.2017.01.026_bib21) 2015; 2
Tsai (10.1016/j.neucom.2017.01.026_bib2) 2015; 2
Mason (10.1016/j.neucom.2017.01.026_bib57) 2016
Deng (10.1016/j.neucom.2017.01.026_bib79) 2009; 1
Zhai (10.1016/j.neucom.2017.01.026_bib104) 2014; 9
Singh (10.1016/j.neucom.2017.01.026_bib106) 2014; 2
Yue (10.1016/j.neucom.2017.01.026_bib45) 2017; 219
Mirchevska (10.1016/j.neucom.2017.01.026_bib9) 2014; 31
Su (10.1016/j.neucom.2017.01.026_bib24) 2014; 17
10.1016/j.neucom.2017.01.026_bib85
10.1016/j.neucom.2017.01.026_bib82
Armes, M (10.1016/j.neucom.2017.01.026_bib110) 2013
10.1016/j.neucom.2017.01.026_bib78
Russell (10.1016/j.neucom.2017.01.026_bib5) 2010
10.1016/j.neucom.2017.01.026_bib75
10.1016/j.neucom.2017.01.026_bib76
Bolón-Canedo (10.1016/j.neucom.2017.01.026_bib25) 2015; 30
You (10.1016/j.neucom.2017.01.026_bib37) 2015; 76
10.1016/j.neucom.2017.01.026_bib92
10.1016/j.neucom.2017.01.026_bib93
10.1016/j.neucom.2017.01.026_bib94
10.1016/j.neucom.2017.01.026_bib88
Borkar (10.1016/j.neucom.2017.01.026_bib51) 2012; 35
Bengio (10.1016/j.neucom.2017.01.026_bib6) 2013; 35
Chen (10.1016/j.neucom.2017.01.026_bib11) 2015
References_xml – volume: 2
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib69
  article-title: A survey of methods for distributed machine learning
  publication-title: Prog. Artif. Intell.
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: bib87
  article-title: Why does Unsupervised Pre-training help deep learning?
  publication-title: T
– reference: G.De Francisci Morales, SAMOA: a platform for mining big data streams, in: Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 777–778.
– reference: Y.Z.Y.-M.Cheung, Discretizing Numerical Attributes in Decision Tree for Big Data Analysis, in: Proceedings of the 2014 IEEE International Conference on Data Mining Workshop (ICDMW), 2014.
– year: 2007
  ident: bib35
  article-title: Scaling learning algorithms towards, AI
  publication-title: Large Scale Kernel Machines
– volume: 26
  start-page: 36
  year: 2015
  end-page: 48
  ident: bib26
  article-title: A review of Nyström methods for large-scale machine learning
  publication-title: Inf. Fusion
– start-page: 14
  year: 2016
  end-page: 26
  ident: bib91
  article-title: TABLA: a unified template-based framework for accelerating statistical machine learning
  publication-title: I
– volume: 2016
  year: 2010
  ident: bib109
  publication-title: Lessons learned developing a practical large scale machine learning system
– year: 2016
  ident: bib57
  article-title: Machine Learning Techniques for Gait Biometric Recognition: Using the Ground Reaction Force
– reference: P.Domingos, G.Hulten, A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering, presented at Proceedings of the Eighteenth International Conference on Machine Learning, 2001, pp. 106–113.
– reference: B.Thuraisingham, Big Data Security and Privacy, in: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, Texas, USA, 2015.
– reference: O. Y. S. Al-Jarrah, A., M. Elsalamouny, P. D. Yoo, S. Muhaidat, and K. Kim, Machine-Learning-Based Feature Selection Techniques for Large-Scale Network Intrusion Detection, in: Proceedings of the 2014 IEEE 34th International Conference on in Distributed Computing Systems Workshops (ICDCSW).
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib32
  article-title: Stacked denoising Autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 76
  start-page: 16
  year: 2015
  end-page: 31
  ident: bib37
  article-title: Scaling support vector machines on modern HPC platforms
  publication-title: J
– volume: 2
  start-page: 1
  year: 2015
  end-page: 36
  ident: bib63
  article-title: A survey of open source tools for machine learning with big data in the Hadoop ecosystem
  publication-title: J. Big Data
– reference: R. Collobert, K. Kavukcuoglu, and C. Farabet, Torch7: A Matlab-like Environment for Machine Learning, in: Proceedings of the Neural Information Processing Systems (NIPS) Workshop on BigLearn, 2011.
– start-page: 2
  year: 2011
  ident: bib59
  article-title: Distributed tuning of machine learning algorithms using MapReduce Clusters
  publication-title: Proc. Third Workshop Large Scale Data Min.: Theory Appl.
– volume: 15
  start-page: 1371
  year: 2014
  end-page: 1429
  ident: bib27
  article-title: Towards ultrahigh dimensional feature selection for big data
  publication-title: J. Mach. Learn. Res
– start-page: 1
  year: 2013
  end-page: 8
  ident: bib71
  article-title: A database-Hadoop hybrid approach to Scalable machine learning
  publication-title: IEEE Int. Congr. Big Data (BigData Congr.)
– year: 2015
  ident: bib98
  publication-title: Big Data Anal. Bioinforma.: A Mach. Learn. Perspect.
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib68
  article-title: Unexpected challenges in large scale machine learning
  publication-title: Proc. 1st Int. Workshop Big Data, Streams Heterog. Source Min.: Algorithms, Syst., Program. Models Appl.
– start-page: 16
  year: 2014
  end-page: 25
  ident: bib44
  article-title: A Scalable data Science workflow approach for Big data Bayesian network learning
  publication-title: Proc. 2014 IEEE/ACM Int. Symp. Big Data Comput.
– reference: L.Bagheri, H.Goote, A.Hasan, G.Hazard, Risk adjustment of patient expenditures: A big data analytics approach, in Proceedings of the 2013 IEEE International Conference on Big Data, 2013.
– reference: Theano Development Team, Theano: A Python framework for fast computation of mathematical expression. Available: arXiv:1605.02688.
– reference: L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent, in: Proceedings of COMPSTAT, 2010, pp. 177–186.
– reference: T.Xiao, J.Zhang, K.Yang, Y.Peng, Z.Zhang, Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 177–186.
– year: 2012
  ident: bib67
  publication-title: Scaling up Machine Learning: Parallel and Distributed Approaches
– reference: X.Cai, F.Nie, H.Huang, Multi-view K-means clustering on big data, in: Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013, pp. 2598–2604.
– reference: M. Hefeeda, F. Gao, and W. Abd-Almageed, Distributed approximate spectral clustering for large-scale datasets, in: Proceedings of the 21st international symposium on High-Performance Parallel and Distributed Computing, 2012, pp. 223–234.
– volume: 2
  start-page: 98
  year: 2015
  end-page: 110
  ident: bib21
  article-title: Semi-supervised learning methods for large scale healthcare data analysis
  publication-title: Int. J. Comput. Healthc.
– year: 2011
  ident: bib4
  article-title: Evaluating Learning Algorithms: a Classification Perspective
– volume: 35
  start-page: 24
  year: 2012
  end-page: 32
  ident: bib51
  article-title: Declarative systems for large-scale machine learning
  publication-title: I
– reference: C.Dijun Luo, Ding, H.Huang, Parallelization with ultiplicative algorithms for big data mining, in: Proceedings of the 12th International Conference on Data Mining (ICDM), 2012, pp. 489–498.
– start-page: 201
  year: 2006
  end-page: 208
  ident: bib34
  article-title: Trading convexity for scalability
  publication-title: Proc. 23rd Int. Conf. Mach. Learn.
– volume: 7
  start-page: 1730
  year: 2014
  end-page: 1733
  ident: bib108
  article-title: Breaking the chains: on declarative data analysis and data independence in the big data era
  publication-title: Proc. VLDB Endow.
– reference: Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and applications in vision, in: Proceedings of IEEE International Symposium on Circuits and Systems, 2010, pp. 253–256.
– reference: Z.Zhao, H.Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th international conference on Machine learning, 2007, pp. 1151–1157.
– volume: 150
  start-page: 331
  year: 2015
  end-page: 345
  ident: bib62
  article-title: MRPR: A MapReduce solution for prototype reduction in big data classification
  publication-title: Neurocomputing
– reference: J.S.Yoo, D.Boulware, D.Kimmey, A Parallel Spatial Co-location Mining Algorithm Based on MapReduce, in: proceedings of the 2014 IEEE International Congress on Big Data, 3rd, pp. 25–31.
– volume: 350
  start-page: 1332
  year: 2015
  end-page: 1338
  ident: bib20
  article-title: Human-level concept learning through probabilistic program induction
  publication-title: Science
– volume: 36
  start-page: 85
  year: 1999
  end-page: 103
  ident: bib97
  article-title: Pasting small votes for classification in large databases and On-Line
  publication-title: Machine Learn
– volume: 19
  start-page: 1115
  year: 2015
  end-page: 1127
  ident: bib31
  article-title: Dimensionality reduction of medical big data using neural-fuzzy classifier
  publication-title: Soft Comput. - A Fusion Found., Methodol. Appl.
– volume: 9
  start-page: 14
  year: 2014
  end-page: 26
  ident: bib104
  article-title: The emerging big dimensionality
  publication-title: IEEE Comput. Intell. Mag.
– volume: 6
  start-page: 1678
  year: 2013
  end-page: 1689
  ident: bib96
  article-title: PREDIcT: towards predicting the runtime of large scale iterative analytics
  publication-title: Proc. VLDB Endow.
– year: 2013
  ident: bib110
  article-title: Using Big data and predictive machine learning in aerospace test environments
  publication-title: IEEE Autotestcon
– start-page: 1
  year: 2015
  end-page: 13
  ident: bib72
  article-title: Classification with boosting of extreme learning machine over arbitrarily partitioned data
  publication-title: Soft Comput.
– year: 2012
  ident: bib77
  publication-title: Imagen. Classif. Deep convolutional Neural Netw.
– volume: 1
  year: 2009
  ident: bib79
  article-title: Construction and analysis of a large scale image ontology
  publication-title: Vis. Sci. Soc.
– volume: 2
  start-page: 1426
  year: 2009
  end-page: 1437
  ident: bib38
  article-title: PLANET: massively parallel learning of tree ensembles with MapReduce
  publication-title: Proc. VLDB Endow.
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: bib1
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
– volume: 2
  start-page: 514
  year: 2014
  end-page: 525
  ident: bib89
  article-title: Big data deep learning: challenges and perspectives
  publication-title: Access, IEEE
– volume: 2
  start-page: 1
  year: 2015
  end-page: 32
  ident: bib2
  article-title: Big data analytics: a survey
  publication-title: J. Big Data
– volume: 8
  start-page: 125
  year: 2014
  end-page: 136
  ident: bib23
  article-title: Scaling up crowd-sourcing to very large datasets: a case for active learning
  publication-title: Proc. VLDB Endow.
– volume: 27
  start-page: 603
  year: 2005
  end-page: 618
  ident: bib55
  article-title: Fast SVM training algorithm with decomposition on very large data sets
  publication-title: I
– start-page: 49
  year: 2015
  end-page: 67
  ident: bib39
  article-title: Petuum: a new platform for distributed machine learning on Big data
  publication-title: IEEE Trans. Big Data
– reference: T.Kraska, A.Talwalkar, J.Duchi, R.Griffith, M.J.Franklin, M.I.Jordan, MLbase: A Distributed Machine-learning System, in: Proceedings of the 6th Biennial Conference on Innovative Data Systems Research, Asilomar, California, USA, 2013.
– volume: 2
  start-page: 1
  year: 2014
  end-page: 20
  ident: bib106
  article-title: A survey on platforms for big data analytics
  publication-title: J. Big Data
– volume: 35
  start-page: 105
  year: 2014
  end-page: 120
  ident: bib8
  article-title: Power to the people: the role of humans in Interactive machine learning
  publication-title: AI Mag.
– volume: 17
  start-page: 1081
  year: 2014
  end-page: 1100
  ident: bib24
  article-title: Effective and efficient data sampling using bitmap indices
  publication-title: Clust. Comput.
– reference: M.Zaharia, M.Chowdhury, M.J.Franklin, S.Shenker, I.Stoica, Spark: cluster computing with working sets, presented at in: Proceedings of the 2nd USENIX conference on Hot topics in Cloud Computing, Boston, MA, 2010.
– reference: K.L.C.Zhu, M.Savvides, Distributed class dependent feature analysis — A big data approach, in: proceedings of the 2014 IEEE International Conference on Big Data, 2014.
– volume: 8
  start-page: 4634
  year: 2015
  end-page: 4646
  ident: bib74
  article-title: On Understanding Big data impacts in remotely sensed image classification using support vector machine methods
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 5
  start-page: 716
  year: 2012
  end-page: 727
  ident: bib52
  article-title: Distributed GraphLab: a framework for machine learning and data mining in the cloud
  publication-title: Proc. VLDB Endow.
– year: 2010
  ident: bib5
  publication-title: Artificial Intelligence: A Modern Approach
– reference: J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, et al., Large scale distributed deep networks, in: Proceedings of the Neural Information Processing Systems, Lake Tahoe, Nevada, United States, 2012, pp. 1232–1240.
– start-page: 609
  year: 2014
  end-page: 622
  ident: bib90
  article-title: DaDianNao: a machine-learning Supercomputer
  publication-title: 47th Annu. IEEE/ACM Int. Symp. Micro.
– reference: W. Xu, Towards Optimal one pass large scale learning with averaged stochastic gradient descent, 2011. Available at: arXiv:1107.2490.
– year: 2011
  ident: bib48
  article-title: Mahout in Action
– reference: J.Xu, C.Tekin, M.van der Schaar, Learning optimal classifier chains for real-time big data mining, in Proceedings 51st Annu. Allerton
– volume: 8
  start-page: 684
  year: 2016
  end-page: 692
  ident: bib84
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cogn. Comput.
– volume: 185
  start-page: 163
  year: 2016
  end-page: 170
  ident: bib81
  article-title: Speed up deep neural network based pedestrian detection by sharing features across multi-scale models
  publication-title: Neurocomputing
– volume: 13
  start-page: 3103
  year: 2012
  end-page: 3131
  ident: bib103
  article-title: Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training
  publication-title: T
– volume: 2
  start-page: 1
  year: 2015
  end-page: 21
  ident: bib3
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– reference: Q.Yang, Big data, lifelong machine learning and transfer learning, in: Proceedings of the sixth ACM international conference on Web search and data mining, 2013, pp. 505–506.
– volume: 219
  start-page: 364
  year: 2017
  end-page: 375
  ident: bib45
  article-title: A data-intensive approach for discovering user similarities in social behavioral interactions based on the bayesian network
  publication-title: Neurocomputing
– reference: A.K.Ghoting, R.E.Pednault, B.Reinwald, V.Sindhwani, S.Tatikonda, Y.Tian, et al., SystemML: Declarative machine learning on MapReduce, in: Proceedings of the 27th International Conference on Data Engineering (ICDE), 2011.
– reference: R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, et al., Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2013.
– reference: K. Xu, H. Yue, L. Guo, Y. Guo, Y. Fang, Privacy-preserving machine learning algorithms for big data systems, in: Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS), 2015, pp. 318–327.
– year: 2007
  ident: bib10
  article-title: Incorporating Prior Domain Knowledge into Inductive Machine Learning
  publication-title: Computing Sciences
– volume: 7
  start-page: 10
  year: 2013
  ident: bib12
  article-title: Addressing Big data time series: mining Trillions of time series subsequences Under dynamic time Warping
  publication-title: ACM Trans. Knowl. Discov. Data
– reference: J. Suzuki, H. Isozaki, and M. Nagata, Learning condensed feature representations from large unsupervised data sets for supervised learning, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Human Language Technologies, short papers, 2, 2011, pp. 636–641.
– volume: 30
  start-page: 136
  year: 2015
  end-page: 150
  ident: bib25
  article-title: Distributed feature selection
  publication-title: Appl. Soft Comput.
– volume: 35
  start-page: 137
  year: 2015
  end-page: 144
  ident: bib15
  article-title: Beyond the hype: Big data concepts, methods, and analytics
  publication-title: Int. J. Inf. Manag.
– reference: L.Cao, M.Wei, D.Yang, E.A.Rundensteiner, Online outlier exploration over large datasets, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 89–98.
– volume: 14
  start-page: 161
  year: 2008
  end-page: 178
  ident: bib95
  article-title: Privacy-preserving SVM classification
  publication-title: Knowledge Inf. Syst.
– reference: J.Zhu, J.Chen, W.Hu, Big Learning with Bayesian Methods. Available:
– reference: B.Nelson, T.Olovsson, Security and Privacy for Big Data: A Systematic Literature Review, in: Proceedings of the 2016 IEEE International Conference on Big Data, Washington, D.C, 2016, pp. 3693–3702.
– year: 2015
  ident: bib47
  publication-title: Fast Data Processing with Spark
– volume: 31
  start-page: 163
  year: 2014
  end-page: 175
  ident: bib9
  article-title: Combining domain knowledge and machine learning for robust fall detection
  publication-title: Expert Syst.
– reference: S. Ramírez-Gallego, S. García, H. Mouriño-Talín, D. Martínez-Rego, V. Bolón-Canedo, A. Alonso-Betanzos, et al., "Data discretization: taxonomy and big data challenge," Wiley Interdisciplinary Reviews, Data Mining and Knowledge Discovery, vol. 6, pp. 5-21, 2016.
– start-page: 377
  year: 2008
  end-page: 384
  ident: bib7
  article-title: From Online to Batch Learning with Cutoff-Averaging
  publication-title: NIPS
– reference: E.Bortnikov, A.Frank, E.Hillel, S.Rao, Predicting execution bottlenecks in map-reduce clusters, in: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing, 2012, pp. 18–18.
– reference: R.Raina, A.Battle, H.Lee, B.Packer, A.Y.Ng, Self-taught learning: transfer learning from unlabeled data, in: Proceedings of the 24th international conference on Machine learning, Corvalis, Oregon, USA, 2007.
– start-page: 35
  year: 2013
  end-page: 38
  ident: bib19
  article-title: Combining crowd-generated media and personal data: semi-supervised learning for context recognition
  publication-title: Proc. 1st ACM Int. Workshop Pers. data meets Distrib. Multimed.
– reference: T.Mikolov, I.Sutskever, K.Chen, G.S.Corrado, J.Dean, Distributed Representations of Words and Phrases and their Compositionality, presented at the NIPS, Stateline, NV, 2013.
– reference: , 2014.
– reference: R.Gemulla, E.Nijkamp, P.J.Haas, Y.Sismanis, Large-scale matrix factorization with distributed stochastic gradient descent, in: Proceedings of the 17th ACM SIGKDD international conference ion Knowledge discovery and data mining, San Diego, California, USA, 2011, pp. 69–77.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib6
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. on Pattern Anal. Mach. Intell., Trans.
– volume: 139
  start-page: 84
  year: 2014
  end-page: 96
  ident: bib33
  article-title: Autoencoder for words
  publication-title: Neurocomputing
– start-page: 4
  year: 2015
  end-page: 12
  ident: bib11
  article-title: Evaluation of a machine learning duplicate detection method for bioinformatics Databases
  publication-title: Proc. ACM Ninth Int. Workshop Data Text. Min. Biomed. Inform.
– reference: T.Yang, Q.Lin, R.Jin, Big data analytics: Optimization and randomization, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 2327–2327.
– reference: Q.V.Le, J.Ngiam, A.Coates, A.Lahiri, B.Prochnow, A.Y.Ng, On optimization methods for deep learning, in: Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 2011.
– volume: 120
  start-page: 536
  year: 2013
  end-page: 546
  ident: bib83
  article-title: Active deep learning method for semi-supervised sentiment classification
  publication-title: Neurocomputing
– start-page: 281
  year: 2006
  end-page: 288
  ident: bib49
  article-title: Map-reduce for machine learning on multicore
  publication-title: N
– year: 2016
  ident: bib86
  article-title: Deep Learning
– year: 2011
  ident: bib65
  article-title: Parallel online learning
  publication-title: Scaling up machine learning: Parallel and distributed approaches
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: bib80
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
– reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems," CoRR, 2016.
– reference: Y.Jia, E.Shelhamer, J.Donahue, S.Karayev, J.Long, R.Girshick, et al., Caffe: Convolutional Architecture for Fast Feature Embedding, in: Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, USA, 2014.
– reference: J.J.Pfeiffer , III, J.Neville, P.N.Bennett, Overcoming relational learning biases to accurately predict preferences in large scale networks, in: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 853–863.
– reference: A. Kumar, A. Beutel, Q. Ho, E.P. Xing, Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big Data, in: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), Reykjavik, Iceland, 2014, pp. 531–539.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 43
  ident: bib102
  article-title: Large scale online kernel learning
  publication-title: J. Mach. Learn. Res.
– reference: J. Cervantes, X. Li, W. Yu, Support vector machine classification based on fuzzy clustering for large data sets, in: Proceedings of the 5th MICAI, 2015, pp. 572–582.
– reference: onference Comm., Control and Comput. (Allerton'13), 2013.
– ident: 10.1016/j.neucom.2017.01.026_bib53
– ident: 10.1016/j.neucom.2017.01.026_bib105
  doi: 10.1145/2647868.2654926
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib3
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 8
  start-page: 684
  year: 2016
  ident: 10.1016/j.neucom.2017.01.026_bib84
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9404-x
– ident: 10.1016/j.neucom.2017.01.026_bib76
– ident: 10.1016/j.neucom.2017.01.026_bib78
  doi: 10.1109/ISCAS.2010.5537907
– volume: 35
  start-page: 24
  year: 2012
  ident: 10.1016/j.neucom.2017.01.026_bib51
  article-title: Declarative systems for large-scale machine learning
  publication-title: IEEE Data Eng. Bull.
– ident: 10.1016/j.neucom.2017.01.026_bib60
  doi: 10.1109/ICDM.2012.155
– year: 2016
  ident: 10.1016/j.neucom.2017.01.026_bib86
– volume: 14
  start-page: 161
  year: 2008
  ident: 10.1016/j.neucom.2017.01.026_bib95
  article-title: Privacy-preserving SVM classification
  publication-title: Knowledge Inf. Syst.
  doi: 10.1007/s10115-007-0073-7
– ident: 10.1016/j.neucom.2017.01.026_bib99
– start-page: 609
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib90
  article-title: DaDianNao: a machine-learning Supercomputer
  publication-title: 47th Annu. IEEE/ACM Int. Symp. Micro.
– ident: 10.1016/j.neucom.2017.01.026_bib14
  doi: 10.1145/2783258.2783387
– ident: 10.1016/j.neucom.2017.01.026_bib73
  doi: 10.1145/2287076.2287111
– year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib98
  publication-title: Big Data Anal. Bioinforma.: A Mach. Learn. Perspect.
– volume: 36
  start-page: 85
  year: 1999
  ident: 10.1016/j.neucom.2017.01.026_bib97
  article-title: Pasting small votes for classification in large databases and On-Line
  publication-title: Machine Learn.
  doi: 10.1023/A:1007563306331
– volume: 2
  start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2017.01.026_bib69
  article-title: A survey of methods for distributed machine learning
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-012-0035-5
– start-page: 16
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib44
  article-title: A Scalable data Science workflow approach for Big data Bayesian network learning
  publication-title: Proc. 2014 IEEE/ACM Int. Symp. Big Data Comput.
  doi: 10.1109/BDC.2014.10
– year: 2016
  ident: 10.1016/j.neucom.2017.01.026_bib57
– volume: 219
  start-page: 364
  year: 2017
  ident: 10.1016/j.neucom.2017.01.026_bib45
  article-title: A data-intensive approach for discovering user similarities in social behavioral interactions based on the bayesian network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.042
– ident: 10.1016/j.neucom.2017.01.026_bib100
  doi: 10.1145/2487788.2488042
– ident: 10.1016/j.neucom.2017.01.026_bib58
– volume: 6
  start-page: 1678
  year: 2013
  ident: 10.1016/j.neucom.2017.01.026_bib96
  article-title: PREDIcT: towards predicting the runtime of large scale iterative analytics
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2556549.2556553
– start-page: 35
  year: 2013
  ident: 10.1016/j.neucom.2017.01.026_bib19
  article-title: Combining crowd-generated media and personal data: semi-supervised learning for context recognition
  publication-title: Proc. 1st ACM Int. Workshop Pers. data meets Distrib. Multimed.
  doi: 10.1145/2509352.2509396
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib72
  article-title: Classification with boosting of extreme learning machine over arbitrarily partitioned data
  publication-title: Soft Comput.
– volume: 30
  start-page: 136
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib25
  article-title: Distributed feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.035
– ident: 10.1016/j.neucom.2017.01.026_bib30
  doi: 10.1109/ICDCSW.2014.14
– ident: 10.1016/j.neucom.2017.01.026_bib61
  doi: 10.1109/BigData.Congress.2014.14
– ident: 10.1016/j.neucom.2017.01.026_bib28
  doi: 10.1145/1273496.1273641
– ident: 10.1016/j.neucom.2017.01.026_bib112
  doi: 10.1109/BigData.2016.7841037
– volume: 35
  start-page: 1798
  year: 2013
  ident: 10.1016/j.neucom.2017.01.026_bib6
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. on Pattern Anal. Mach. Intell., Trans.
  doi: 10.1109/TPAMI.2013.50
– ident: 10.1016/j.neucom.2017.01.026_bib22
– ident: 10.1016/j.neucom.2017.01.026_bib54
  doi: 10.1145/2647868.2654889
– start-page: 4
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib11
  article-title: Evaluation of a machine learning duplicate detection method for bioinformatics Databases
  publication-title: Proc. ACM Ninth Int. Workshop Data Text. Min. Biomed. Inform.
– start-page: 201
  year: 2006
  ident: 10.1016/j.neucom.2017.01.026_bib34
  article-title: Trading convexity for scalability
  publication-title: Proc. 23rd Int. Conf. Mach. Learn.
– ident: 10.1016/j.neucom.2017.01.026_bib94
  doi: 10.1109/ICDCS.2015.40
– ident: 10.1016/j.neucom.2017.01.026_bib42
– volume: 35
  start-page: 137
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib15
  article-title: Beyond the hype: Big data concepts, methods, and analytics
  publication-title: Int. J. Inf. Manag.
– ident: 10.1016/j.neucom.2017.01.026_bib70
– ident: 10.1016/j.neucom.2017.01.026_bib93
– ident: 10.1016/j.neucom.2017.01.026_bib36
– year: 2007
  ident: 10.1016/j.neucom.2017.01.026_bib35
  article-title: Scaling learning algorithms towards, AI
– volume: 120
  start-page: 536
  year: 2013
  ident: 10.1016/j.neucom.2017.01.026_bib83
  article-title: Active deep learning method for semi-supervised sentiment classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.017
– year: 2012
  ident: 10.1016/j.neucom.2017.01.026_bib77
  publication-title: Imagen. Classif. Deep convolutional Neural Netw.
– volume: 2
  start-page: 514
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib89
  article-title: Big data deep learning: challenges and perspectives
  publication-title: Access, IEEE
  doi: 10.1109/ACCESS.2014.2325029
– volume: 349
  start-page: 255
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib1
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 19
  start-page: 1115
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib31
  article-title: Dimensionality reduction of medical big data using neural-fuzzy classifier
  publication-title: Soft Comput. - A Fusion Found., Methodol. Appl.
– ident: 10.1016/j.neucom.2017.01.026_bib56
– volume: 17
  start-page: 1081
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib24
  article-title: Effective and efficient data sampling using bitmap indices
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-014-0360-5
– volume: 13
  start-page: 3103
  year: 2012
  ident: 10.1016/j.neucom.2017.01.026_bib103
  article-title: Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training
  publication-title: The J. Mach. Learn. Res.
– volume: 76
  start-page: 16
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib37
  article-title: Scaling support vector machines on modern HPC platforms
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2014.09.005
– year: 2011
  ident: 10.1016/j.neucom.2017.01.026_bib4
– ident: 10.1016/j.neucom.2017.01.026_bib29
  doi: 10.1007/11925231_54
– volume: 8
  start-page: 125
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib23
  article-title: Scaling up crowd-sourcing to very large datasets: a case for active learning
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2735471.2735474
– volume: 27
  start-page: 603
  year: 2005
  ident: 10.1016/j.neucom.2017.01.026_bib55
  article-title: Fast SVM training algorithm with decomposition on very large data sets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.77
– year: 2011
  ident: 10.1016/j.neucom.2017.01.026_bib65
  article-title: Parallel online learning
– volume: 2
  start-page: 98
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib21
  article-title: Semi-supervised learning methods for large scale healthcare data analysis
  publication-title: Int. J. Comput. Healthc.
  doi: 10.1504/IJCIH.2015.069788
– volume: 7
  start-page: 1730
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib108
  article-title: Breaking the chains: on declarative data analysis and data independence in the big data era
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2733004.2733075
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.neucom.2017.01.026_bib87
  article-title: Why does Unsupervised Pre-training help deep learning?
  publication-title: The J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2017.01.026_bib82
  doi: 10.18653/v1/D13-1170
– volume: 187
  start-page: 27
  year: 2016
  ident: 10.1016/j.neucom.2017.01.026_bib80
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– year: 2007
  ident: 10.1016/j.neucom.2017.01.026_bib10
  article-title: Incorporating Prior Domain Knowledge into Inductive Machine Learning
– start-page: 49
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib39
  article-title: Petuum: a new platform for distributed machine learning on Big data
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2015.2472014
– ident: 10.1016/j.neucom.2017.01.026_bib64
  doi: 10.1145/2020408.2020426
– volume: 15
  start-page: 1371
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib27
  article-title: Towards ultrahigh dimensional feature selection for big data
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 1426
  year: 2009
  ident: 10.1016/j.neucom.2017.01.026_bib38
  article-title: PLANET: massively parallel learning of tree ensembles with MapReduce
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1687553.1687569
– ident: 10.1016/j.neucom.2017.01.026_bib40
– start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2017.01.026_bib68
  article-title: Unexpected challenges in large scale machine learning
  publication-title: Proc. 1st Int. Workshop Big Data, Streams Heterog. Source Min.: Algorithms, Syst., Program. Models Appl.
– ident: 10.1016/j.neucom.2017.01.026_bib13
  doi: 10.1145/2736277.2741668
– volume: 35
  start-page: 105
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib8
  article-title: Power to the people: the role of humans in Interactive machine learning
  publication-title: AI Mag.
– start-page: 377
  year: 2008
  ident: 10.1016/j.neucom.2017.01.026_bib7
  article-title: From Online to Batch Learning with Cutoff-Averaging
– ident: 10.1016/j.neucom.2017.01.026_bib17
  doi: 10.1002/widm.1173
– ident: 10.1016/j.neucom.2017.01.026_bib75
– ident: 10.1016/j.neucom.2017.01.026_bib101
  doi: 10.1145/2433396.2433459
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2017.01.026_bib102
  article-title: Large scale online kernel learning
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 10
  year: 2013
  ident: 10.1016/j.neucom.2017.01.026_bib12
  article-title: Addressing Big data time series: mining Trillions of time series subsequences Under dynamic time Warping
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2500489
– start-page: 281
  year: 2006
  ident: 10.1016/j.neucom.2017.01.026_bib49
  article-title: Map-reduce for machine learning on multicore
  publication-title: NIPS
– year: 2010
  ident: 10.1016/j.neucom.2017.01.026_bib5
– volume: 150
  start-page: 331
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib62
  article-title: MRPR: A MapReduce solution for prototype reduction in big data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.078
– ident: 10.1016/j.neucom.2017.01.026_bib92
– ident: 10.1016/j.neucom.2017.01.026_bib16
– start-page: 2
  year: 2011
  ident: 10.1016/j.neucom.2017.01.026_bib59
  article-title: Distributed tuning of machine learning algorithms using MapReduce Clusters
  publication-title: Proc. Third Workshop Large Scale Data Min.: Theory Appl.
– start-page: 14
  year: 2016
  ident: 10.1016/j.neucom.2017.01.026_bib91
  article-title: TABLA: a unified template-based framework for accelerating statistical machine learning
  publication-title: IEEE Int. Symp. High. Perform. Comput. Archit. (HPCA)
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neucom.2017.01.026_bib32
  article-title: Stacked denoising Autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2017.01.026_bib107
– volume: 9
  start-page: 14
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib104
  article-title: The emerging big dimensionality
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2014.2326099
– volume: 185
  start-page: 163
  year: 2016
  ident: 10.1016/j.neucom.2017.01.026_bib81
  article-title: Speed up deep neural network based pedestrian detection by sharing features across multi-scale models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.042
– ident: 10.1016/j.neucom.2017.01.026_bib111
  doi: 10.1145/2699026.2699136
– volume: 31
  start-page: 163
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib9
  article-title: Combining domain knowledge and machine learning for robust fall detection
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12019
– year: 2011
  ident: 10.1016/j.neucom.2017.01.026_bib48
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib106
  article-title: A survey on platforms for big data analytics
  publication-title: J. Big Data
– ident: 10.1016/j.neucom.2017.01.026_bib88
– volume: 350
  start-page: 1332
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib20
  article-title: Human-level concept learning through probabilistic program induction
  publication-title: Science
  doi: 10.1126/science.aab3050
– ident: 10.1016/j.neucom.2017.01.026_bib46
– year: 2012
  ident: 10.1016/j.neucom.2017.01.026_bib67
– volume: 139
  start-page: 84
  year: 2014
  ident: 10.1016/j.neucom.2017.01.026_bib33
  article-title: Autoencoder for words
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.055
– year: 2013
  ident: 10.1016/j.neucom.2017.01.026_bib110
  article-title: Using Big data and predictive machine learning in aerospace test environments
  publication-title: IEEE Autotestcon
– ident: 10.1016/j.neucom.2017.01.026_bib50
  doi: 10.1109/ICDE.2011.5767930
– volume: 1
  year: 2009
  ident: 10.1016/j.neucom.2017.01.026_bib79
  article-title: Construction and analysis of a large scale image ontology
  publication-title: Vis. Sci. Soc.
– volume: 8
  start-page: 4634
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib74
  article-title: On Understanding Big data impacts in remotely sensed image classification using support vector machine methods
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2458855
– ident: 10.1016/j.neucom.2017.01.026_bib41
  doi: 10.1145/2783258.2789989
– volume: 5
  start-page: 716
  year: 2012
  ident: 10.1016/j.neucom.2017.01.026_bib52
  article-title: Distributed GraphLab: a framework for machine learning and data mining in the cloud
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2212351.2212354
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib63
  article-title: A survey of open source tools for machine learning with big data in the Hadoop ecosystem
  publication-title: J. Big Data
  doi: 10.1186/s40537-015-0032-1
– start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2017.01.026_bib71
  article-title: A database-Hadoop hybrid approach to Scalable machine learning
  publication-title: IEEE Int. Congr. Big Data (BigData Congr.)
– year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib47
– ident: 10.1016/j.neucom.2017.01.026_bib85
  doi: 10.1145/1273496.1273592
– ident: 10.1016/j.neucom.2017.01.026_bib66
– ident: 10.1016/j.neucom.2017.01.026_bib18
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib2
  article-title: Big data analytics: a survey
  publication-title: J. Big Data
  doi: 10.1186/s40537-015-0030-3
– volume: 2016
  year: 2010
  ident: 10.1016/j.neucom.2017.01.026_bib109
– volume: 26
  start-page: 36
  year: 2015
  ident: 10.1016/j.neucom.2017.01.026_bib26
  article-title: A review of Nyström methods for large-scale machine learning
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.03.001
– ident: 10.1016/j.neucom.2017.01.026_bib43
  doi: 10.1007/978-3-7908-2604-3_16
SSID ssj0017129
Score 2.6745894
Snippet Machine learning (ML) is continuously unleashing its power in a wide range of applications. It has been pushed to the forefront in recent years partly owing to...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 350
SubjectTerms Big data
Data preprocessing
Distribuerade datorsystem
Evaluation
Machine learning
Parallelization
Pervasive Mobile Computing
Title Machine learning on big data: Opportunities and challenges
URI https://dx.doi.org/10.1016/j.neucom.2017.01.026
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61412
Volume 237
WOSCitedRecordID wos000397356700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCllJdoocgHOFWp4jiv7S2CIkCi9FBWKy6WnTjblG2y2mygP58Z28luKVB64BJFo42TzXwZz4zH3xDySqclh4lNenkBsUkoufKQ1crjXPq-UnHoc2WaTSTHx-lkMjpxywWtaSeQ1HV6eTma_1dVgwyUjVtnb6HuYVAQwDkoHY6gdjj-k-I_mfJI3feDmOJygKqm-1gLivH_5zm63F1tqFTttra-oUq77qoa2o7cNH1w6YTsAlkVCoTQkD74etZ0LrYfDPyJS6qeVRe6WmXsXe0v4PFH10vHsq1m8put9cswjQ-Cpt0fH6ynI2CKM0ym63nFIPLAabxiYgNL7OKMJLdUs26-5ZaM_Zopt1mF84Nad1jXg_eyBKu_Yc7-ZUYb6gz7ErZzYUcROIrwmYBR7pLNIIlGYAk3sw9Hk4_D2lPCAsvQ6P5Iv-HSVAVef5o_OjTrzLPGWzndJlsuzKCZhcdDckfXj8iDvoUHdRb9MTl0aKE9WmhTU0ALRbQc0itYoYAVusLKE_Ll3dHpm_eea6fh5SFPll5U5LyUuWS-Rl7_VPo6iQoI_3WM6-8h57FkvEhVqbgCLyXQcVz6EgRRmpRlzJ-Sjbqp9TNCIUgNJStUEQUylFGkFCsCJX2J9QGsZDuE9-9E5I5rHluezMTfNLJDvOGqueVaueH3Sf-6hfMXrR8oAEM3XPnaame4D7Ksv63GmWgWUzFbdgLcVhbs3vKJnpP7q2_iBdlYLjq9R-7l35dVu3jpgPYT9HaaMQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+on+big+data%3A+Opportunities+and+challenges&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhou%2C+Lina&rft.au=Pan%2C+Shimei&rft.au=Wang%2C+Jianwu&rft.au=Vasilakos%2C+Athanasios+V.&rft.date=2017-05-10&rft.issn=0925-2312&rft.volume=237&rft.spage=350&rft.epage=361&rft_id=info:doi/10.1016%2Fj.neucom.2017.01.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2017_01_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon