An Intelligent System for Identifying Influential Words in Real-Estate Classifieds

This paper focuses on the problem of quantifying how certain words in a text affect, positively or negatively, some numeric signal. These words can lead to important decisions for significant applications such as E-commerce. For example, consider the corpus of real-estate classifieds, which we devel...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent systems Ročník 27; číslo 2; s. 183 - 194
Hlavní autor: Abdallah Sherief
Médium: Journal Article
Jazyk:angličtina
Vydáno: De Gruyter 01.04.2018
Témata:
ISSN:0334-1860, 2191-026X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper focuses on the problem of quantifying how certain words in a text affect, positively or negatively, some numeric signal. These words can lead to important decisions for significant applications such as E-commerce. For example, consider the corpus of real-estate classifieds, which we developed as a case study. Each classified has a description of a real-estate property, along with simple features such as the location and the number of bedrooms. The problem then is to identify which keywords influence the price of the property. Such identification is complicated due to the existence of simple features (numeric and nominal attributes) that also affect the price. In this research, we propose a two-stage regression model to solve this problem. To assess our contribution, we analyze, as a case study, four corpora of real-estate classifieds. The analysis shows that our model predicts the price of a real-estate unit more accurately using the accompanying text, compared to the prediction relying only on simple features. We also demonstrate the capability of our model to annotate (automatically) words that affect the price positively or negatively.
AbstractList This paper focuses on the problem of quantifying how certain words in a text affect, positively or negatively, some numeric signal. These words can lead to important decisions for significant applications such as E-commerce. For example, consider the corpus of real-estate classifieds, which we developed as a case study. Each classified has a description of a real-estate property, along with simple features such as the location and the number of bedrooms. The problem then is to identify which keywords influence the price of the property. Such identification is complicated due to the existence of simple features (numeric and nominal attributes) that also affect the price. In this research, we propose a two-stage regression model to solve this problem. To assess our contribution, we analyze, as a case study, four corpora of real-estate classifieds. The analysis shows that our model predicts the price of a real-estate unit more accurately using the accompanying text, compared to the prediction relying only on simple features. We also demonstrate the capability of our model to annotate (automatically) words that affect the price positively or negatively.
Author Abdallah Sherief
Author_xml – sequence: 1
  fullname: Abdallah Sherief
  organization: British University in Dubai, Dubai, United Arab Emirates
BookMark eNotUEtLw0AYXKSCtfbsdf_A6r6THEupGigItaC3sMl-X9my3Ug2HvLvjY-5DDMMAzO3ZJH6BITcC_4gjDCP55CnzCQXlnHB-RVZSlEJxqX9WJAlV0ozUVp-Q9Y5n_kMXQlTmiU5bBKt0wgxhhOkkb5NeYQLxX6gtZ-NgFNIpzmC8etHukjf-8FnGhI9gItsl0c3At1Gl3PAAD7fkWt0McP6n1fk-LQ7bl_Y_vW53m72rNOqGJnqTIXSSQ1aF8K5stKF19aWtnBaWRS6A_SulAZL7zvdzoM6zlULioP2akXqv1rfu3PzOYSLG6amd6H5Nfrh1LhhDF2Epp17RAsepUSNHisvEBCMbhX4-TP1DW-mYy0
ContentType Journal Article
DBID DOA
DOI 10.1515/jisys-2016-0100
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2191-026X
EndPage 194
ExternalDocumentID oai_doaj_org_article_bfda1bedf22f4fdf9d1fefe54b3ed016
GroupedDBID 0R~
0~D
4.4
7WY
AAFPC
AAFWJ
AAGVJ
AAONY
AAPJK
AAQCX
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABRQL
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACGFS
ACMKP
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADMLS
ADOZN
AEJTT
AEKEB
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFGNR
AFPKN
AFQUK
AHGBP
AHGSO
AIERV
AIKXB
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMAVY
ARCSS
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
M0C
O9-
OK1
P2P
QD8
RDG
SA.
SLJYH
ID FETCH-LOGICAL-c437t-3c59f2a24e4471aa8947d466867a436f14cefda825f8ddc4b191c003be30e4d3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428510100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0334-1860
IngestDate Fri Oct 03 12:52:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-3c59f2a24e4471aa8947d466867a436f14cefda825f8ddc4b191c003be30e4d3
OpenAccessLink https://doaj.org/article/bfda1bedf22f4fdf9d1fefe54b3ed016
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_bfda1bedf22f4fdf9d1fefe54b3ed016
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of intelligent systems
PublicationYear 2018
Publisher De Gruyter
Publisher_xml – name: De Gruyter
SSID ssj0000491585
Score 2.0997117
Snippet This paper focuses on the problem of quantifying how certain words in a text affect, positively or negatively, some numeric signal. These words can lead to...
SourceID doaj
SourceType Open Website
StartPage 183
SubjectTerms 68t05 learning and adaptive systems
68u15 text processing
data mining
predictive analytics
real estate
regression
text mining
Title An Intelligent System for Identifying Influential Words in Real-Estate Classifieds
URI https://doaj.org/article/bfda1bedf22f4fdf9d1fefe54b3ed016
Volume 27
WOSCitedRecordID wos000428510100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePDit_hNDl7Dtk02H8dVVhRkkWXBvS1pkoEuUmVbBf-906TK3rx4LaWUeZ3Oe5B5j5Ab4ZDUSuVYMAqYKDxn1jvFfKk14u8NhGiZ_6SmU71YmOeNqK_uTFiyB06FG5bgbV4GD0UBAjwYn0OAMBIlDx75Svf3zZTZEFOrxHvzUczjzDgXLNcy6319cH4PV1Xz1eD3kXdiuttt27Drj3Plfp_s9oSQjtOLHJCtUB-SvZ-wBdr33hGZjWv6-Ouf2dJkNU6Rc9K0bBsXlvCWGDqCfftKX1BYNrSq6QzZIJvE3SEaUzArQObZHJP5_WR-98D6QATmBFct425koLCFCAJnirXaCOWFlFoqK7iEXLiA5ULRB9p7J0oUYw7btgw8C8LzEzKo3-pwSihwJ0FnxhaZE74b86BktKIRocwsnJHbriTL92R5sexMqOMFhGbZQ7P8C5rz_3jIBdlBoHQ6LHNJBu36I1yRbffZVs36OqL-DU3ltfw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+System+for+Identifying+Influential+Words+in+Real-Estate+Classifieds&rft.jtitle=Journal+of+intelligent+systems&rft.au=Abdallah+Sherief&rft.date=2018-04-01&rft.pub=De+Gruyter&rft.issn=0334-1860&rft.eissn=2191-026X&rft.volume=27&rft.issue=2&rft.spage=183&rft.epage=194&rft_id=info:doi/10.1515%2Fjisys-2016-0100&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bfda1bedf22f4fdf9d1fefe54b3ed016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0334-1860&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0334-1860&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0334-1860&client=summon