An Intelligent System for Identifying Influential Words in Real-Estate Classifieds
This paper focuses on the problem of quantifying how certain words in a text affect, positively or negatively, some numeric signal. These words can lead to important decisions for significant applications such as E-commerce. For example, consider the corpus of real-estate classifieds, which we devel...
Uloženo v:
| Vydáno v: | Journal of intelligent systems Ročník 27; číslo 2; s. 183 - 194 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
De Gruyter
01.04.2018
|
| Témata: | |
| ISSN: | 0334-1860, 2191-026X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper focuses on the problem of quantifying how certain words in a text affect, positively or negatively, some numeric signal. These words can lead to important decisions for significant applications such as E-commerce. For example, consider the corpus of real-estate classifieds, which we developed as a case study. Each classified has a description of a real-estate property, along with simple features such as the location and the number of bedrooms. The problem then is to identify which keywords influence the price of the property. Such identification is complicated due to the existence of simple features (numeric and nominal attributes) that also affect the price. In this research, we propose a two-stage regression model to solve this problem. To assess our contribution, we analyze, as a case study, four corpora of real-estate classifieds. The analysis shows that our model predicts the price of a real-estate unit more accurately using the accompanying text, compared to the prediction relying only on simple features. We also demonstrate the capability of our model to annotate (automatically) words that affect the price positively or negatively. |
|---|---|
| AbstractList | This paper focuses on the problem of quantifying how certain words in a text affect, positively or negatively, some numeric signal. These words can lead to important decisions for significant applications such as E-commerce. For example, consider the corpus of real-estate classifieds, which we developed as a case study. Each classified has a description of a real-estate property, along with simple features such as the location and the number of bedrooms. The problem then is to identify which keywords influence the price of the property. Such identification is complicated due to the existence of simple features (numeric and nominal attributes) that also affect the price. In this research, we propose a two-stage regression model to solve this problem. To assess our contribution, we analyze, as a case study, four corpora of real-estate classifieds. The analysis shows that our model predicts the price of a real-estate unit more accurately using the accompanying text, compared to the prediction relying only on simple features. We also demonstrate the capability of our model to annotate (automatically) words that affect the price positively or negatively. |
| Author | Abdallah Sherief |
| Author_xml | – sequence: 1 fullname: Abdallah Sherief organization: British University in Dubai, Dubai, United Arab Emirates |
| BookMark | eNotUEtLw0AYXKSCtfbsdf_A6r6THEupGigItaC3sMl-X9my3Ug2HvLvjY-5DDMMAzO3ZJH6BITcC_4gjDCP55CnzCQXlnHB-RVZSlEJxqX9WJAlV0ozUVp-Q9Y5n_kMXQlTmiU5bBKt0wgxhhOkkb5NeYQLxX6gtZ-NgFNIpzmC8etHukjf-8FnGhI9gItsl0c3At1Gl3PAAD7fkWt0McP6n1fk-LQ7bl_Y_vW53m72rNOqGJnqTIXSSQ1aF8K5stKF19aWtnBaWRS6A_SulAZL7zvdzoM6zlULioP2akXqv1rfu3PzOYSLG6amd6H5Nfrh1LhhDF2Epp17RAsepUSNHisvEBCMbhX4-TP1DW-mYy0 |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.1515/jisys-2016-0100 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2191-026X |
| EndPage | 194 |
| ExternalDocumentID | oai_doaj_org_article_bfda1bedf22f4fdf9d1fefe54b3ed016 |
| GroupedDBID | 0R~ 0~D 4.4 7WY AAFPC AAFWJ AAGVJ AAONY AAPJK AAQCX AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABRQL ABSOE ABUVI ABXMZ ABYKJ ACEFL ACGFS ACMKP ACXLN ACZBO ADGQD ADGYE ADJVZ ADMLS ADOZN AEJTT AEKEB AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFGNR AFPKN AFQUK AHGBP AHGSO AIERV AIKXB AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMAVY ARCSS AZMOX BAKPI BBCWN BCIFA BLHJL CFGNV EBS GROUPED_DOAJ HZ~ IY9 M0C O9- OK1 P2P QD8 RDG SA. SLJYH |
| ID | FETCH-LOGICAL-c437t-3c59f2a24e4471aa8947d466867a436f14cefda825f8ddc4b191c003be30e4d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428510100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0334-1860 |
| IngestDate | Fri Oct 03 12:52:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c437t-3c59f2a24e4471aa8947d466867a436f14cefda825f8ddc4b191c003be30e4d3 |
| OpenAccessLink | https://doaj.org/article/bfda1bedf22f4fdf9d1fefe54b3ed016 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bfda1bedf22f4fdf9d1fefe54b3ed016 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of intelligent systems |
| PublicationYear | 2018 |
| Publisher | De Gruyter |
| Publisher_xml | – name: De Gruyter |
| SSID | ssj0000491585 |
| Score | 2.0997117 |
| Snippet | This paper focuses on the problem of quantifying how certain words in a text affect, positively or negatively, some numeric signal. These words can lead to... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 183 |
| SubjectTerms | 68t05 learning and adaptive systems 68u15 text processing data mining predictive analytics real estate regression text mining |
| Title | An Intelligent System for Identifying Influential Words in Real-Estate Classifieds |
| URI | https://doaj.org/article/bfda1bedf22f4fdf9d1fefe54b3ed016 |
| Volume | 27 |
| WOSCitedRecordID | wos000428510100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePDit_hNDl7Dtk02H8dVVhRkkWXBvS1pkoEuUmVbBf-906TK3rx4LaWUeZ3Oe5B5j5Ab4ZDUSuVYMAqYKDxn1jvFfKk14u8NhGiZ_6SmU71YmOeNqK_uTFiyB06FG5bgbV4GD0UBAjwYn0OAMBIlDx75Svf3zZTZEFOrxHvzUczjzDgXLNcy6319cH4PV1Xz1eD3kXdiuttt27Drj3Plfp_s9oSQjtOLHJCtUB-SvZ-wBdr33hGZjWv6-Ouf2dJkNU6Rc9K0bBsXlvCWGDqCfftKX1BYNrSq6QzZIJvE3SEaUzArQObZHJP5_WR-98D6QATmBFct425koLCFCAJnirXaCOWFlFoqK7iEXLiA5ULRB9p7J0oUYw7btgw8C8LzEzKo3-pwSihwJ0FnxhaZE74b86BktKIRocwsnJHbriTL92R5sexMqOMFhGbZQ7P8C5rz_3jIBdlBoHQ6LHNJBu36I1yRbffZVs36OqL-DU3ltfw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+System+for+Identifying+Influential+Words+in+Real-Estate+Classifieds&rft.jtitle=Journal+of+intelligent+systems&rft.au=Abdallah+Sherief&rft.date=2018-04-01&rft.pub=De+Gruyter&rft.issn=0334-1860&rft.eissn=2191-026X&rft.volume=27&rft.issue=2&rft.spage=183&rft.epage=194&rft_id=info:doi/10.1515%2Fjisys-2016-0100&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bfda1bedf22f4fdf9d1fefe54b3ed016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0334-1860&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0334-1860&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0334-1860&client=summon |