Subgradient-Based Neural Networks for Nonsmooth Nonconvex Optimization Problems
This paper presents a subgradient-based neural network to solve a nonsmooth nonconvex optimization problem with a nonsmooth nonconvex objective function, a class of affine equality constraints, and a class of nonsmooth convex inequality constraints. The proposed neural network is modeled with a diff...
Uloženo v:
| Vydáno v: | IEEE transactions on neural networks Ročník 20; číslo 6; s. 1024 - 1038 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.06.2009
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1045-9227, 1941-0093, 1941-0093 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a subgradient-based neural network to solve a nonsmooth nonconvex optimization problem with a nonsmooth nonconvex objective function, a class of affine equality constraints, and a class of nonsmooth convex inequality constraints. The proposed neural network is modeled with a differential inclusion. Under a suitable assumption on the constraint set and a proper assumption on the objective function, it is proved that for a sufficiently large penalty parameter, there exists a unique global solution to the neural network and the trajectory of the network can reach the feasible region in finite time and stay there thereafter. It is proved that the trajectory of the neural network converges to the set which consists of the equilibrium points of the neural network, and coincides with the set which consists of the critical points of the objective function in the feasible region. A condition is given to ensure the convergence to the equilibrium point set in finite time. Moreover, under suitable assumptions, the coincidence between the solution to the differential inclusion and the ldquoslow solutionrdquo of it is also proved. Furthermore, three typical examples are given to present the effectiveness of the theoretic results obtained in this paper and the good performance of the proposed neural network. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 1045-9227 1941-0093 1941-0093 |
| DOI: | 10.1109/TNN.2009.2016340 |