Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Methods
This work presents a review of the main deterministic mixed‐integer nonlinear programming (MINLP) solution methods for problems with convex and nonconvex functions. An overview for deriving MINLP formulations through generalized disjunctive programming (GDP), which is an alternative higher‐level rep...
Uložené v:
| Vydané v: | Chemie ingenieur technik Ročník 86; číslo 7; s. 991 - 1012 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
WILEY-VCH Verlag
01.07.2014
WILEY‐VCH Verlag |
| Predmet: | |
| ISSN: | 0009-286X, 1522-2640 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This work presents a review of the main deterministic mixed‐integer nonlinear programming (MINLP) solution methods for problems with convex and nonconvex functions. An overview for deriving MINLP formulations through generalized disjunctive programming (GDP), which is an alternative higher‐level representation of MINLP problems, is also presented. A review of solution methods for GDP problems is provided. Some relevant applications of MINLP and GDP in process systems engineering are described in this work.
The optimal design, planning, and scheduling of chemical processes requires the use of mixed‐integer nonlinear programming (MINLP) or generalized disjunctive programming (GDP) models to optimize discrete and continuous variables. Here, applications of MINLP and GDP are described, and a review of deterministic methods to solve these problems is provided. |
|---|---|
| Bibliografia: | Center for Advanced Process Decision-making (CAPD) ArticleID:CITE201400037 ark:/67375/WNG-PX8RKZCJ-7 istex:145DCA8C974BB53FCC67F92F6F19B83BF57ADD81 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0009-286X 1522-2640 |
| DOI: | 10.1002/cite.201400037 |