A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction

Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regar...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals Vol. 39; no. 4; pp. 335 - 351
Main Authors: Hua, Wei, Sun, Huan-Huan, Xu, Fei, Wang, Jian-Gan
Format: Journal Article
Language:English
Published: Beijing Nonferrous Metals Society of China 01.04.2020
Springer Nature B.V
Subjects:
ISSN:1001-0521, 1867-7185
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt-based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo-based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed. Graphic abstract
AbstractList Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low‐cost and high‐efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)‐based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt‐based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo‐based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo‐based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo‐based electrocatalysts toward high HER performance are proposed.
Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt-based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo-based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed.Graphic abstract
Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low‐cost and high‐efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)‐based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt‐based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo‐based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo‐based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo‐based electrocatalysts toward high HER performance are proposed. Graphic
Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt-based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo-based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed. Graphic abstract
Author Wang, Jian-Gan
Hua, Wei
Sun, Huan-Huan
Xu, Fei
Author_xml – sequence: 1
  givenname: Wei
  surname: Hua
  fullname: Hua, Wei
  organization: State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU)
– sequence: 2
  givenname: Huan-Huan
  surname: Sun
  fullname: Sun, Huan-Huan
  organization: State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU)
– sequence: 3
  givenname: Fei
  surname: Xu
  fullname: Xu, Fei
  organization: State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU)
– sequence: 4
  givenname: Jian-Gan
  orcidid: 0000-0001-5582-0573
  surname: Wang
  fullname: Wang, Jian-Gan
  email: wangjiangan@nwpu.edu.cn
  organization: State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU)
BookMark eNqNkEFr3DAQhUVJoUnaP9CTIGelM5ItWeS0Cdm0ECiE9liEVh6nDl5rI3k3-N9XWxcKPYSe5sG8bx7zztjJGEdi7CPCJQKYTxllbRsBEgSgaiph3rBTbLQRBpv6pGgAFFBLfMfOcn4CqCqt4ZT9WPFEh55euB9bvqOUdxSm_kA8jnwbh3nT0rjfio3P1HIayjLF4Cc_zHnKvIuJ_5zbFB9p5HSIw37qC5jIh6N4z952fsj04c88Z9_Xt99uPov7r3dfblb3IlTKaOGxs-gNWLJEXrUeGxnQyjbUG_CVrjuNte2wanRrfIfKBIW6hY2sTbDWqnN2sdzdpfi8pzy5p7hPY4l0UlmUUmqFxSUXV0gx50Sd26V-69PsENyxRrfU6EqN7neNzhSo-QcK_eSPz03J98Pr6NWCvvQDzf8R5h5WD_J6DdBYXWi10LmA4yOlvz-9kvkLQjubZw
CitedBy_id crossref_primary_10_1002_adfm_202210236
crossref_primary_10_1016_j_fuel_2025_134957
crossref_primary_10_1016_j_ijhydene_2024_09_055
crossref_primary_10_1016_j_ijhydene_2025_02_466
crossref_primary_10_1039_D2RA02547G
crossref_primary_10_1016_j_apsusc_2020_148407
crossref_primary_10_1063_5_0197987
crossref_primary_10_3390_molecules29225404
crossref_primary_10_1016_j_ijhydene_2022_06_084
crossref_primary_10_1002_smll_202412693
crossref_primary_10_1016_j_apsusc_2022_153678
crossref_primary_10_1016_j_jwpe_2024_106345
crossref_primary_10_1016_j_cej_2025_163260
crossref_primary_10_1021_acsami_4c21484
crossref_primary_10_1007_s12598_023_02500_z
crossref_primary_10_3390_catal13081148
crossref_primary_10_1016_j_ijhydene_2023_06_010
crossref_primary_10_1039_D3QI02444J
crossref_primary_10_1039_D2CY00606E
crossref_primary_10_1002_adfm_202108681
crossref_primary_10_1039_D0CY01311K
crossref_primary_10_1016_j_colsurfa_2024_134599
crossref_primary_10_3390_coatings13061072
crossref_primary_10_1002_adsu_202500495
crossref_primary_10_1016_j_matlet_2023_135268
crossref_primary_10_1007_s12598_020_01541_y
crossref_primary_10_1016_j_apcatb_2022_121204
crossref_primary_10_1039_D3QM01076G
crossref_primary_10_1039_D2CY00577H
crossref_primary_10_1016_j_cej_2021_128494
crossref_primary_10_1039_D1SE01591E
crossref_primary_10_1039_D3QI01673K
crossref_primary_10_1002_adma_202410039
crossref_primary_10_1016_j_ijhydene_2022_11_087
crossref_primary_10_1007_s00339_023_06798_5
crossref_primary_10_1002_advs_202105135
crossref_primary_10_1016_j_electacta_2023_142050
crossref_primary_10_1007_s12274_023_6271_0
crossref_primary_10_1007_s11665_025_11748_8
crossref_primary_10_1016_j_ijhydene_2023_07_023
crossref_primary_10_1016_j_electacta_2024_145008
crossref_primary_10_1007_s12598_022_01967_6
crossref_primary_10_1016_j_ijhydene_2025_02_328
crossref_primary_10_1002_inf2_12357
crossref_primary_10_1039_D4SE00457D
crossref_primary_10_1002_aenm_202501970
crossref_primary_10_1016_j_jallcom_2024_175523
crossref_primary_10_1016_j_saa_2024_124190
crossref_primary_10_1002_tcr_202500082
crossref_primary_10_1007_s12598_021_01819_9
crossref_primary_10_1007_s43153_025_00552_5
crossref_primary_10_1016_j_mattod_2020_08_021
crossref_primary_10_1016_j_esi_2024_02_001
crossref_primary_10_1016_j_jece_2022_108736
crossref_primary_10_1016_j_cej_2025_162031
crossref_primary_10_1016_j_cej_2020_127686
crossref_primary_10_1007_s12598_021_01709_0
crossref_primary_10_1007_s12598_021_01917_8
crossref_primary_10_1016_j_jallcom_2021_162590
crossref_primary_10_1016_j_jics_2025_101788
crossref_primary_10_1002_smll_202104323
crossref_primary_10_3390_nano13182613
crossref_primary_10_1016_j_apcatb_2022_122072
crossref_primary_10_1007_s11708_022_0827_7
crossref_primary_10_1016_j_ijhydene_2021_11_184
crossref_primary_10_1002_anie_202502029
crossref_primary_10_1007_s12598_021_01948_1
crossref_primary_10_1016_j_cclet_2021_08_033
crossref_primary_10_1002_cplu_202300285
crossref_primary_10_1007_s12598_022_02168_x
crossref_primary_10_1016_j_ijhydene_2024_03_192
crossref_primary_10_3390_nano13182602
crossref_primary_10_3390_nanomanufacturing2030009
crossref_primary_10_1007_s40843_020_1495_x
crossref_primary_10_1016_j_ijhydene_2023_08_175
crossref_primary_10_1016_j_mtsust_2025_101141
crossref_primary_10_1007_s10895_024_03616_w
crossref_primary_10_1016_j_ijhydene_2022_11_231
crossref_primary_10_1016_j_jcis_2021_08_201
crossref_primary_10_1016_j_apsusc_2020_147909
crossref_primary_10_1007_s12598_024_02772_z
crossref_primary_10_1016_j_jallcom_2023_170814
crossref_primary_10_1007_s12274_021_3445_5
crossref_primary_10_1080_01614940_2021_2003085
crossref_primary_10_15407_pcmm2024_06_096
crossref_primary_10_1007_s12598_023_02300_5
crossref_primary_10_1007_s11706_022_0606_8
crossref_primary_10_1016_j_micromeso_2021_111435
crossref_primary_10_1016_j_jallcom_2021_159562
crossref_primary_10_1021_acs_estlett_5c00465
crossref_primary_10_1007_s11581_025_06166_8
crossref_primary_10_1016_j_ijhydene_2023_03_228
crossref_primary_10_1088_1361_648X_ac06f1
crossref_primary_10_1002_tcr_202500049
crossref_primary_10_1016_j_cej_2021_129717
crossref_primary_10_1016_j_cej_2024_153909
crossref_primary_10_1016_j_jphotochem_2023_114831
crossref_primary_10_1002_smll_202401019
crossref_primary_10_1016_j_rser_2023_113490
crossref_primary_10_1007_s12598_022_02059_1
crossref_primary_10_1016_j_ijhydene_2023_07_100
crossref_primary_10_1002_adfm_202402966
crossref_primary_10_1088_1361_6528_acaf35
crossref_primary_10_1007_s12598_021_01881_3
crossref_primary_10_1016_j_ijhydene_2022_06_142
crossref_primary_10_1002_jccs_70050
crossref_primary_10_1016_j_seppur_2023_124207
crossref_primary_10_1007_s11708_022_0813_0
crossref_primary_10_1007_s10800_022_01764_0
crossref_primary_10_1016_j_susmat_2024_e01090
crossref_primary_10_1016_j_jcis_2022_02_103
crossref_primary_10_1002_smll_202105331
crossref_primary_10_1002_cplu_202200416
crossref_primary_10_1016_j_ijhydene_2022_09_310
crossref_primary_10_1016_j_jallcom_2020_156896
crossref_primary_10_1002_cctc_202201411
crossref_primary_10_1016_j_cej_2021_128885
crossref_primary_10_1016_j_ijhydene_2025_05_272
crossref_primary_10_1016_j_cej_2021_131131
crossref_primary_10_1080_16583655_2021_1996944
crossref_primary_10_3389_fchem_2020_608133
crossref_primary_10_3390_catal12010002
crossref_primary_10_3390_catal10111301
crossref_primary_10_1002_ange_202502029
crossref_primary_10_1016_j_cej_2024_150622
crossref_primary_10_1016_j_jechem_2022_01_025
crossref_primary_10_1002_ejic_202300492
crossref_primary_10_1007_s12598_020_01665_1
crossref_primary_10_1016_j_jcat_2025_116178
crossref_primary_10_1016_j_jcat_2021_04_003
crossref_primary_10_1002_adfm_202108167
crossref_primary_10_1016_j_diamond_2023_110501
crossref_primary_10_1002_smtd_202500411
crossref_primary_10_1007_s12598_021_01791_4
crossref_primary_10_1002_cey2_528
crossref_primary_10_1016_j_cej_2023_143221
crossref_primary_10_1016_j_jallcom_2022_166846
crossref_primary_10_1002_aenm_202402294
crossref_primary_10_1039_D3MH01757E
crossref_primary_10_1002_adfm_202210855
crossref_primary_10_1039_D2EN00668E
crossref_primary_10_1016_j_ijhydene_2024_02_201
crossref_primary_10_1016_j_cclet_2023_109037
crossref_primary_10_1016_j_ijhydene_2024_07_182
crossref_primary_10_1016_j_jallcom_2022_167254
crossref_primary_10_1016_j_ijhydene_2023_09_273
crossref_primary_10_1016_j_electacta_2022_141524
crossref_primary_10_1016_j_jcis_2021_10_088
crossref_primary_10_1007_s12598_020_01621_z
crossref_primary_10_1007_s12598_025_03345_4
crossref_primary_10_3390_catal15080716
crossref_primary_10_1002_cey2_656
crossref_primary_10_1007_s10563_021_09342_8
crossref_primary_10_1016_j_mtsust_2024_100894
crossref_primary_10_2497_jjspm_16D_T18_05
crossref_primary_10_1016_j_ijhydene_2024_05_341
crossref_primary_10_1002_poc_70010
crossref_primary_10_1016_j_jcis_2021_12_100
crossref_primary_10_1016_j_fuel_2022_125794
crossref_primary_10_1039_D4QI02311K
crossref_primary_10_1088_2515_7639_abd596
crossref_primary_10_1016_j_matlet_2021_131166
crossref_primary_10_1016_j_jcis_2021_04_110
crossref_primary_10_1134_S003602442308006X
crossref_primary_10_1016_j_ijhydene_2023_12_107
crossref_primary_10_1016_j_flatc_2021_100307
crossref_primary_10_1002_nano_202400051
crossref_primary_10_1007_s12598_024_02649_1
crossref_primary_10_1039_D3QM00819C
crossref_primary_10_1016_j_ijhydene_2021_08_046
crossref_primary_10_20517_energymater_2024_134
crossref_primary_10_1016_j_jpcs_2024_112079
crossref_primary_10_1016_j_nxmate_2025_100560
crossref_primary_10_1016_j_ijhydene_2023_09_012
crossref_primary_10_1007_s11003_025_00948_1
crossref_primary_10_1002_smll_202203630
crossref_primary_10_1016_j_ijhydene_2025_02_310
crossref_primary_10_1038_s41467_024_50713_2
crossref_primary_10_1007_s12598_021_01824_y
crossref_primary_10_1016_j_cej_2022_134860
crossref_primary_10_1016_j_est_2023_107393
crossref_primary_10_1016_j_jelechem_2023_117880
crossref_primary_10_1088_1361_6528_ad0985
crossref_primary_10_1016_j_cej_2023_145170
crossref_primary_10_1016_j_electacta_2021_139683
crossref_primary_10_1016_j_apsusc_2021_150779
crossref_primary_10_1016_j_ijhydene_2023_11_242
crossref_primary_10_1016_j_jallcom_2025_181568
crossref_primary_10_1021_acsanm_5c00906
crossref_primary_10_1002_crat_202400189
crossref_primary_10_1016_j_cej_2024_155498
crossref_primary_10_1038_s41598_025_17069_z
crossref_primary_10_1007_s12598_021_01851_9
crossref_primary_10_1016_j_apcatb_2023_123015
crossref_primary_10_1088_1361_6528_ac33d2
crossref_primary_10_1016_j_apsusc_2023_157433
crossref_primary_10_1016_j_cclet_2021_03_063
crossref_primary_10_1063_5_0049772
crossref_primary_10_1016_j_cattod_2021_11_023
crossref_primary_10_1016_j_matchemphys_2021_125643
crossref_primary_10_1016_j_mtsust_2023_100434
crossref_primary_10_1007_s12598_021_01873_3
crossref_primary_10_1007_s12598_021_01727_y
crossref_primary_10_1002_adem_202402287
crossref_primary_10_1016_j_jallcom_2024_174868
crossref_primary_10_1016_j_ijhydene_2025_06_197
crossref_primary_10_1016_j_solmat_2024_112794
crossref_primary_10_1002_advs_202308178
crossref_primary_10_1021_acs_langmuir_5c00888
crossref_primary_10_1016_j_jcat_2020_05_042
Cites_doi 10.1007/s12598-020-01369-6
10.1039/C4CP01237B
10.1016/j.nanoen.2017.05.011
10.1002/adfm.201600915
10.1021/nn500959v
10.1016/j.jpowsour.2019.227364
10.1002/chem.201801693
10.1021/jacs.7b07247
10.1039/C7TA08090E
10.1039/c3nr02994h
10.1002/anie.201207111
10.1039/C5TA06018D
10.1038/ncomms15437
10.1039/C8EE03252A
10.1002/adma.201401692
10.1016/j.jpowsour.2015.11.013
10.1039/C6SC00077K
10.1016/j.vacuum.2015.05.023
10.1007/s10562-012-0929-7
10.1039/C5CS00434A
10.1016/j.elecom.2012.06.009
10.1039/C3EE42441C
10.1039/C4SC02019G
10.1002/anie.201602237
10.1039/C4NR01894J
10.1021/acsnano.6b06580
10.1126/science.aad4998
10.1039/C8TA04852E
10.1021/nl400258t
10.1021/acs.chemrev.5b00287
10.1021/acs.nanolett.6b05134
10.1016/0013-4686(84)85008-2
10.3390/nano7120433
10.1039/c3nr04975b
10.1002/cssc.201801337
10.1039/C7TA07566A
10.1002/smtd.201800287
10.1016/j.nantod.2017.06.006
10.1021/cs501970w
10.1038/s41467-019-09210-0
10.1021/nl403661s
10.1002/anie.201611756
10.1002/adma.201700311
10.1021/acsnano.6b04725
10.1002/anie.201402998
10.1126/science.1141483
10.1002/anie.201604315
10.1039/C5TA08458J
10.1021/ja0504690
10.1007/s12598-018-1164-1
10.1007/s12598-018-1036-8
10.1039/C4TA00458B
10.1021/ja4081056
10.1002/adma.201506314
10.1002/asia.201801645
10.1039/C4CY01162G
10.1039/C4CS00448E
10.1038/nature21672
10.1039/c4ta01004c
10.1039/C6EE01786J
10.1039/C4NR06624C
10.1016/j.nanoen.2016.07.005
10.1039/C7TA11401J
10.1039/C4TA04858J
10.1002/adfm.201804600
10.1002/anie.201708748
10.1002/anie.201200699
10.1038/ncomms7512
10.1016/j.ijhydene.2018.09.159
10.1016/j.electacta.2016.08.068
10.1039/C4EE00957F
10.1002/adma.201302685
10.1021/ja408329q
10.1038/nmat3439
10.1021/ja404523s
10.1021/cm500347r
ContentType Journal Article
Copyright The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020
2020 Youke Publishing Co., Ltd.
The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: 2020 Youke Publishing Co., Ltd.
– notice: The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1007/s12598-020-01384-7
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-7185
EndPage 351
ExternalDocumentID 10_1007_s12598_020_01384_7
RAR2BF00896
Genre article
GrantInformation_xml – fundername: Innovation Program for Talent
  grantid: 2019KJXX-066
– fundername: National Natural Science Foundation
  grantid: 2018JM5092; 2019JLM-26
– fundername: Fundamental Research Funds for the Central Universities
  grantid: G2017KY0308; 3102019JC005
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 51772249; 51821091
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Post-doctoral Program of Shaanxi Province
  grantid: 2018BSHTDZZ16
– fundername: National Natural Science Foundation of China
  funderid: 51772249; 51821091
– fundername: Fundamental Research Funds for the Central Universities
  funderid: G2017KY0308; 3102019JC005
– fundername: Post‐doctoral Program of Shaanxi Province
  funderid: 2018BSHTDZZ16
– fundername: National Natural Science Foundation
  funderid: 2018JM5092; 2019JLM‐26
– fundername: Innovation Program for Talent
  funderid: 2019KJXX‐066
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2VQ
30V
4.4
406
408
40D
5VR
5VS
5XA
5XC
8FE
8FG
8RM
8TC
92H
92I
92R
93N
96X
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
COF
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q--
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
M7S
PHGZM
PHGZT
PQGLB
PTHSS
AAYXX
AFFHD
CITATION
8BQ
8FD
JG9
ID FETCH-LOGICAL-c4376-a1f91a709e9eea3da182c192dc5b0a465f6159f1486d7af137c316d0b257c9993
IEDL.DBID RSV
ISICitedReferencesCount 264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522932300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1001-0521
IngestDate Thu Sep 25 00:43:30 EDT 2025
Sat Nov 29 06:51:26 EST 2025
Tue Nov 18 22:29:52 EST 2025
Wed Oct 08 09:30:17 EDT 2025
Fri Feb 21 02:43:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hydrogen evolution reaction
Water splitting
Electrocatalysts
Mo-based materials
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4376-a1f91a709e9eea3da182c192dc5b0a465f6159f1486d7af137c316d0b257c9993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5582-0573
PQID 2391222631
PQPubID 326325
PageCount 17
ParticipantIDs proquest_journals_2391222631
crossref_primary_10_1007_s12598_020_01384_7
crossref_citationtrail_10_1007_s12598_020_01384_7
wiley_primary_10_1007_s12598_020_01384_7_RAR2BF00896
springer_journals_10_1007_s12598_020_01384_7
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationYear 2020
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References Xie, Yu, Xue, Bin Yousaf, Du, Liang, Jiang, Xu (CR74) 2016; 4
Bian, Zhu, Liao, Scanlon, Ge, Ji, Girault, Liu (CR33) 2012; 22
Hua, Liu, Wang, Wei (CR77) 2017; 7
Qi, Li, Chen, Zheng, Liu, Lan, Lai, Xu, Liu, Zhou, He, Zhang (CR20) 2015; 119
Yan, Xia, Li, Xu, Fisher, Wang (CR35) 2015; 3
Xie, Li, Zhang, Zhang, Wang, Zhang, Pan, Xie (CR65) 2014; 5
Yang, Zhang, Wang, He, Wu, Yang, Hong, Wu, Li (CR59) 2016; 55
Chen, Sasaki, Ma, Frenkel, Marinkovic, Muckerman, Zhu, Adzic (CR64) 2012; 51
Chia, Eng, Ambrosi, Tan, Pumera (CR7) 2015; 115
Xing, Liu, Asiri, Sun (CR58) 2014; 26
Xie, Zhang, Li, Grote, Zhang, Zhang, Wang, Lei, Pan, Xie (CR29) 2013; 135
Tsai, Chan, Nørskov, Abild-Pedersen (CR27) 2015; 5
Liao, Wang, Xiao, Bian, Zhang, Scanlon, Hu, Tang, Liu, Girault (CR49) 2014; 7
Jin, Wang, Li, Yue, Han, Shen, Cui (CR72) 2016; 28
Yang, Gao, Zhang, Sun, Zhang (CR2) 2018; 37
Liu, Wang, Yang, Liu, Xu (CR10) 2019; 38
Voiry, Salehi, Silva, Fujita, Chen, Asefa, Shenoy, Eda, Chhowalla (CR25) 2013; 13
Zhuang, Li, Li, Lv, Lang, Zhao, Zhou, Moskaleva, Guo, Mai (CR63) 2018; 57
Li, Jiang, Jia, Wang (CR69) 2016; 304
Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (CR1) 2017; 355
Park, Zhang, Scheifers, Jothi, Encinas, Fokwa (CR62) 2017; 139
Xie, Zhang, Li, Wang, Sun, Zhou, Zhou, Lou, Xie (CR23) 2013; 25
Brown, Mahmood, Man, Turner (CR17) 1984; 29
Yin, Zhang, Gao, Yao, Zhang, Han, Wang, Zhang, Xu, Zhang, Cao, Song, Jin (CR45) 2017; 29
Chang, Yang, Shao, Zhang, Fan, Huang, Wu, Hao (CR68) 2018; 11
Zang, Niu, Wu, Zheng, Cai, Ye, Xie, Liu, Zhou, Zhu, Liu, Wang, Qian (CR38) 2019; 10
Gong, Cheng, Liu, Zhang, Feng, Ye, Zeng, Xie, Liu, Li (CR44) 2015; 5
Zhang, Wang, Pohl, Rellinghaus, Dong, Liu, Zhuang, Feng (CR40) 2016; 55
Kibsgaard, Chen, Reinecke, Jaramillo (CR22) 2012; 11
Ma, Qi, Chen, Bao, Yin, Wu, Luo, Wei, Zhang, Zhang (CR34) 2014; 6
Wu, Xia, Yu, Yu, Lou (CR52) 2015; 6
Zhao, Li, Rui, Chen, Dou, Sun (CR47) 2018; 24
Xiong, Cai, Shi, Zhang, Li, Yang, Feng, Cheng (CR66) 2017; 5
Kong, Wang, Cha, Pasta, Koski, Yao, Cui (CR42) 2013; 13
Wang, Lu, Kong, Sun, Hymel, Cui (CR36) 2014; 8
Lin, Liu, Shi, Guo, Tang, Gao (CR54) 2016; 26
Geng, Zhang, Han, Li, Yang, Benamara, Chen, Zhu (CR8) 2017; 17
Tsai, Chan, Abild-Pedersen, Norskov (CR41) 2014; 16
Wang, Kong, Zhao, Wang, Selomulya (CR4) 2017; 15
Xu, Peng, Tan, Ang, Tan, Zhang, Yan (CR43) 2014; 2
Yu, Yang, Hu, He, Chen, He (CR15) 2019; 3
Zhang, Wang, Liu, Liu, Dong, Zhuang, Chen, Feng (CR37) 2016; 9
Shi, Zhang (CR5) 2016; 45
Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zschech, Feng (CR19) 2017; 8
Bonde, Moses, Jaramillo, Nørskovb, Chorkendorff (CR26) 2008; 140
Sun, Wang, Zhang, Hua, Li, Liu (CR11) 2018; 6
Cao, Veith, Neuefeind, Adzic, Khalifah (CR67) 2013; 135
Yan, Ge, Liu, Wang, Lee, Wang (CR30) 2013; 5
Sun, Dai, Guo, Wu, Hu, Zhao, Zeng, Xie (CR28) 2014; 6
Zou, Zhang (CR6) 2015; 44
Huang, Gong, Song, Feng, Nie, Zhao, Wang, Zeng, Zhong, Li (CR51) 2016; 10
Jin, Shen (CR71) 2015; 3
Prins, Bussell (CR56) 2012; 142
Ren, Li, Jin, Cui, Wang (CR73) 2017; 5
Lin, Zhou, Gao, Yao, Zhang, Xu, Zheng, Jiang, Yu, Li, Shi, Wen, Ma (CR9) 2017; 544
Lukowski, Daniel, Meng, Forticaux, Li, Jin (CR24) 2013; 135
Fang, Gao, Dong, Xia, Yip, Qin, Qu, Ho (CR18) 2016; 27
Zhang, Liu, Wang, Ruan, Ji, Xu, Chen, Wan, Miao, Jiang (CR39) 2017; 37
Vrubel, Hu (CR48) 2012; 51
Park, Encinas, Scheifers, Zhang, Fokwa (CR61) 2017; 56
He, Hartmann, Lee, Hwang, Chen, Manthiram (CR13) 2019; 12
Chen, Zhang, Jiang, Zhang, Dai, Wan, Hu (CR50) 2016; 10
Wu, Wang, Sun, Liu, Li (CR70) 2015; 7
Yu, Chen, Wang, Chen, Wang, Zhang, He, He (CR14) 2020; 447
Ou, Tian, Liu, Zhang, Xiao (CR76) 2018; 6
Ji, Weng, Li, Zhang, Gu (CR3) 2020
Lin, Shi, He, Yu, Wang, Gao, Tang (CR55) 2016; 7
Xiao, Sk, Thia, Ge, Lim, Wang, Lim, Wang (CR57) 2014; 7
Jaramillo, Jørgensen, Bonde, Nielsen, Horch, Chorkendorff (CR16) 2007; 317
Xu, Sun, Chen, Zhao, Yang, Zhang, Li (CR75) 2018; 43
He, Li, Lv, Wen, Chen, Zhang, Li, Qin, He (CR12) 2016; 215
Hinnemann, Moses, Bonde, Jørgensen, Nielsen, Horch, Chorkendorff, Nørskov (CR21) 2005; 127
Zhang, Zhou, Pan, Liang, Wang (CR60) 2018; 28
Zheng, Xu, Yan, Wang, Wang, Yang (CR32) 2014; 26
Zhu, Du, Zhang, Zou, Yang, Fu, Yao (CR31) 2014; 2
Wan, Regmi, Leonard (CR53) 2014; 53
Zhao, Wang, Wang, Rui, Chen, Yu, Ma, Dou, Sun (CR46) 2019; 14
2017; 5
2017; 7
2017; 8
2013; 25
2019; 10
2019; 12
2019; 14
2014; 26
2020; 447
1984; 29
2016; 304
2017; 355
2013; 5
2018; 43
2012; 11
2008; 140
2012; 51
2018; 6
2014; 5
2014; 2
2017; 37
2013; 13
2015; 44
2014; 16
2014; 8
2014; 7
2014; 6
2012; 22
2018; 37
2016; 45
2014; 53
2012; 142
2018; 28
2015; 6
2019; 3
2015; 5
2015; 3
2016; 10
2019; 38
2017; 29
2015; 7
2017; 139
2016; 55
2018; 24
2016; 4
2016; 7
2007; 317
2017; 15
2015; 115
2017; 17
2020
2005; 127
2017; 56
2013; 135
2015; 119
2016; 215
2018; 11
2016; 28
2016; 27
2016; 26
2017; 544
2016; 9
2018; 57
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
Bonde J (e_1_2_6_27_1) 2008; 140
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 51
  start-page: 12703
  issue: 51
  year: 2012
  ident: CR48
  article-title: Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions
  publication-title: Angew Chem Int Ed
– volume: 11
  start-page: 963
  issue: 11
  year: 2012
  ident: CR22
  article-title: Engineering the surface structure of MoS to preferentially expose active edge sites for electrocatalysis
  publication-title: Nat Mater
– volume: 135
  start-page: 17881
  issue: 47
  year: 2013
  ident: CR29
  article-title: Controllable disorder engineering in oxygen-incorporated MoS ultrathin nanosheets for efficient hydrogen evolution
  publication-title: J Am Chem Soc
– volume: 27
  start-page: 247
  year: 2016
  ident: CR18
  article-title: Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions
  publication-title: Nano Energy
– volume: 10
  start-page: 8851
  issue: 9
  year: 2016
  ident: CR50
  article-title: Pomegranate-like N, P-doped Mo C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution
  publication-title: ACS Nano
– volume: 3
  start-page: 131
  issue: 1
  year: 2015
  ident: CR35
  article-title: Vertically oriented MoS and WS nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes
  publication-title: J Mater Chem A
– volume: 215
  start-page: 12
  year: 2016
  ident: CR12
  article-title: Three-dimensional hierarchically structured aerogels constructed with layered MoS /graphene nanosheets as free-standing anodes for high-performance lithium ion batteries
  publication-title: Electrochim Acta
– volume: 13
  start-page: 6222
  issue: 12
  year: 2013
  ident: CR25
  article-title: Conducting MoS nanosheets as catalysts for hydrogen evolution reaction
  publication-title: Nano Lett
– volume: 5
  start-page: 24193
  issue: 46
  year: 2017
  ident: CR66
  article-title: Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction
  publication-title: J Mater Chem A
– volume: 7
  start-page: 7040
  issue: 16
  year: 2015
  ident: CR70
  article-title: Flawed MoO belts transformed from MoO on a graphene template for the hydrogen evolution reaction
  publication-title: Nanoscale
– volume: 2
  start-page: 5597
  issue: 16
  year: 2014
  ident: CR43
  article-title: Ultrathin S-doped MoSe nanosheets for efficient hydrogen evolution
  publication-title: J Mater Chem A
– volume: 28
  start-page: 1804600
  issue: 43
  year: 2018
  ident: CR60
  article-title: General construction of molybdenum-based nanowire arrays for pH-universal hydrogen evolution electrocatalysis
  publication-title: Adv Funct Mater
– volume: 544
  start-page: 80
  issue: 7648
  year: 2017
  ident: CR9
  article-title: Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts
  publication-title: Nature
– volume: 12
  start-page: 344
  issue: 1
  year: 2019
  ident: CR13
  article-title: Freestanding 1T MoS /graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries
  publication-title: Energy Environ Sci
– volume: 127
  start-page: 5308
  issue: 15
  year: 2005
  ident: CR21
  article-title: Biomimetic hydrogen evolution: MoS nanoparticles as catalyst for hydrogen evolution
  publication-title: J Am Chem Soc
– volume: 51
  start-page: 6131
  issue: 25
  year: 2012
  ident: CR64
  article-title: Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets
  publication-title: Angew Chem Int Ed
– volume: 7
  start-page: 433
  issue: 12
  year: 2017
  ident: CR77
  article-title: Self-supported Ni(P, O) ·MoO nanowire array on nickel foam as an efficient and durable electrocatalyst for alkaline hydrogen evolution
  publication-title: Nanomaterials
– volume: 38
  start-page: 1
  issue: 1
  year: 2019
  ident: CR10
  article-title: Recovery and regeneration of Al O with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al O
  publication-title: Rare Met
– volume: 9
  start-page: 2789
  issue: 9
  year: 2016
  ident: CR37
  article-title: Engineering water dissociation sites in MoS nanosheets for accelerated electrocatalytic hydrogen production
  publication-title: Energy Environ Sci
– volume: 5
  start-page: 7768
  issue: 17
  year: 2013
  ident: CR30
  article-title: Facile synthesis of low crystalline MoS nanosheet-coated CNTs for enhanced hydrogen evolution reaction
  publication-title: Nanoscale
– volume: 55
  start-page: 12854
  issue: 41
  year: 2016
  ident: CR59
  article-title: Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution
  publication-title: Angew Chem Int Ed
– volume: 22
  start-page: 128
  year: 2012
  ident: CR33
  article-title: Nanocomposite of MoS on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution
  publication-title: Electrochim Commun
– volume: 16
  start-page: 13156
  issue: 26
  year: 2014
  ident: CR41
  article-title: Active edge sites in MoSe and WSe catalysts for the hydrogen evolution reaction: a density functional study
  publication-title: Phys Chem Chem Phys
– volume: 10
  start-page: 1217
  issue: 1
  year: 2019
  ident: CR38
  article-title: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability
  publication-title: Nat Commun
– volume: 57
  start-page: 496
  issue: 2
  year: 2018
  ident: CR63
  article-title: MoB/g-C N interface materials as a schottky catalyst to boost hydrogen evolution
  publication-title: Angew Chem Int Ed
– volume: 14
  start-page: 301
  issue: 2
  year: 2019
  ident: CR46
  article-title: Heteroatom-doped MoSe nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting
  publication-title: Chem Asian J
– volume: 7
  start-page: 387
  issue: 1
  year: 2014
  ident: CR49
  article-title: A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction
  publication-title: Energy Environ Sci
– volume: 115
  start-page: 11941
  issue: 21
  year: 2015
  ident: CR7
  article-title: Electrochemistry of nanostructured layered transition-metal dichalcogenides
  publication-title: Chem Rev
– volume: 304
  start-page: 146
  year: 2016
  ident: CR69
  article-title: MoO nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst
  publication-title: J Power Sour
– volume: 25
  start-page: 5807
  issue: 40
  year: 2013
  ident: CR23
  article-title: Defect-rich MoS ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
  publication-title: Adv Mater
– volume: 26
  start-page: 2344
  issue: 7
  year: 2014
  ident: CR32
  article-title: Space-confined growth of MoS nanosheets within graphite: the layered hybrid of MoS and graphene as an active catalyst for hydrogen evolution reaction
  publication-title: Chem Mater
– volume: 6
  start-page: 6512
  issue: 1
  year: 2015
  ident: CR52
  article-title: Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production
  publication-title: Nat Commun
– volume: 53
  start-page: 6407
  issue: 25
  year: 2014
  ident: CR53
  article-title: Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction
  publication-title: Angew Chem Int Ed
– volume: 7
  start-page: 2624
  issue: 8
  year: 2014
  ident: CR57
  article-title: Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction
  publication-title: Energy Environ Sci
– volume: 44
  start-page: 5148
  issue: 15
  year: 2015
  ident: CR6
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem Soc Rev
– volume: 8
  start-page: 4940
  issue: 5
  year: 2014
  ident: CR36
  article-title: Electrochemical tuning of MoS nanoparticles on three-dimensional substrate for efficient hydrogen evolution
  publication-title: ACS Nano
– volume: 5
  start-page: 4615
  issue: 12
  year: 2014
  ident: CR65
  article-title: Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution
  publication-title: Chem Sci
– volume: 13
  start-page: 1341
  issue: 3
  year: 2013
  ident: CR42
  article-title: Synthesis of MoS and MoSe films with vertically aligned layers
  publication-title: Nano Lett
– year: 2020
  ident: CR3
  article-title: Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review
  publication-title: Rare Met
  doi: 10.1007/s12598-020-01369-6
– volume: 56
  start-page: 5575
  issue: 20
  year: 2017
  ident: CR61
  article-title: Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction
  publication-title: Angew Chem Int Ed
– volume: 29
  start-page: 1700311
  issue: 28
  year: 2017
  ident: CR45
  article-title: Synergistic phase and disorder engineering in 1T-MoSe nanosheets for enhanced hydrogen-evolution reaction
  publication-title: Adv Mater
– volume: 24
  start-page: 11158
  issue: 43
  year: 2018
  ident: CR47
  article-title: CoSe /MoSe heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction
  publication-title: Chem Eur J
– volume: 140
  start-page: 9
  year: 2008
  ident: CR26
  article-title: Hydrogen evolution on nano-particulate transition metal sulfide
  publication-title: Faraday Discuss
– volume: 5
  start-page: 24453
  issue: 46
  year: 2017
  ident: CR73
  article-title: Integrated 3D self-supported Ni decorated MoO nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution
  publication-title: J Mater Chem A
– volume: 317
  start-page: 100
  issue: 5834
  year: 2007
  ident: CR16
  article-title: Identification of active edge sites for electrochemical H evolution from MoS nanocatalysts
  publication-title: Science
– volume: 135
  start-page: 10274
  issue: 28
  year: 2013
  ident: CR24
  article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets
  publication-title: J Am Chem Soc
– volume: 43
  start-page: 20721
  issue: 45
  year: 2018
  ident: CR75
  article-title: Facile and large-scale preparation of Co/Ni-MoO composite as high-performance electrocatalyst for hydrogen evolution reaction
  publication-title: Int J Hydrog Energy
– volume: 28
  start-page: 3785
  issue: 19
  year: 2016
  ident: CR72
  article-title: Porous MoO nanosheets as non-noble bifunctional electrocatalysts for overall water splitting
  publication-title: Adv Mater
– volume: 6
  start-page: 13419
  issue: 27
  year: 2018
  ident: CR11
  article-title: Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS /N-doped carbon nanowires
  publication-title: J Mater Chem A
– volume: 5
  start-page: 246
  issue: 1
  year: 2015
  ident: CR27
  article-title: Rational design of MoS catalysts: tuning the structure and activity via transition metal doping
  publication-title: Catal Sci Technol
– volume: 5
  start-page: 2213
  issue: 4
  year: 2015
  ident: CR44
  article-title: Ultrathin MoS Se alloy nanoflakes for electrocatalytic hydrogen evolution reaction
  publication-title: ACS Catal
– volume: 26
  start-page: 5702
  issue: 32
  year: 2014
  ident: CR58
  article-title: Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water
  publication-title: Adv Mater
– volume: 135
  start-page: 19186
  issue: 51
  year: 2013
  ident: CR67
  article-title: Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction
  publication-title: J Am Chem Soc
– volume: 17
  start-page: 1825
  issue: 3
  year: 2017
  ident: CR8
  article-title: Two-dimensional water-coupled metallic MoS with nanochannels for ultrafast supercapacitors
  publication-title: Nano Lett
– volume: 3
  start-page: 1800287
  issue: 2
  year: 2019
  ident: CR15
  article-title: Mo C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage
  publication-title: Small Methods
– volume: 142
  start-page: 1413
  issue: 12
  year: 2012
  ident: CR56
  article-title: Metal phosphides: preparation, characterization and catalytic reactivity
  publication-title: Catal Lett
– volume: 6
  start-page: 5217
  issue: 12
  year: 2018
  ident: CR76
  article-title: Bimetallic Co Mo O suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte
  publication-title: J Mater Chem A
– volume: 11
  start-page: 3198
  issue: 18
  year: 2018
  ident: CR68
  article-title: Bimetallic NiMoN nanowires with preferential reactive facet: an ultra-efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Chemsuschem
– volume: 37
  start-page: 459
  issue: 6
  year: 2018
  ident: CR2
  article-title: Rechargeable solid-state Li-air batteries: a status report
  publication-title: Rare Met
– volume: 3
  start-page: 20080
  issue: 40
  year: 2015
  ident: CR71
  article-title: Nanoflower-like metallic conductive MoO as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction
  publication-title: J Mater Chem A
– volume: 447
  start-page: 227364
  year: 2020
  ident: CR14
  article-title: 1T-MoS nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries
  publication-title: J Power Sour
– volume: 6
  start-page: 5624
  issue: 11
  year: 2014
  ident: CR34
  article-title: MoS nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction
  publication-title: Nanoscale
– volume: 26
  start-page: 5590
  issue: 31
  year: 2016
  ident: CR54
  article-title: Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution
  publication-title: Adv Funct Mater
– volume: 4
  start-page: 1647
  issue: 5
  year: 2016
  ident: CR74
  article-title: P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction
  publication-title: J Mater Chem A
– volume: 10
  start-page: 11337
  issue: 12
  year: 2016
  ident: CR51
  article-title: Mo C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution
  publication-title: ACS Nano
– volume: 119
  start-page: 204
  year: 2015
  ident: CR20
  article-title: Effect of hydrogen on the growth of MoS thin layers by thermal decomposition method
  publication-title: Vacuum
– volume: 8
  start-page: 15437
  issue: 1
  year: 2017
  ident: CR19
  article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics
  publication-title: Nat Commun
– volume: 37
  start-page: 74
  year: 2017
  ident: CR39
  article-title: Interface engineering: the Ni(OH) /MoS heterostructure for highly efficient alkaline hydrogen evolution
  publication-title: Nano Energy
– volume: 7
  start-page: 3399
  issue: 5
  year: 2016
  ident: CR55
  article-title: Heteronanowires of MoC-Mo C as efficient electrocatalysts for hydrogen evolution reaction
  publication-title: Chem Sci
– volume: 29
  start-page: 1551
  issue: 11
  year: 1984
  ident: CR17
  article-title: Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions
  publication-title: Electrochim Acta
– volume: 45
  start-page: 1529
  issue: 6
  year: 2016
  ident: CR5
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem Soc Rev
– volume: 6
  start-page: 8359
  issue: 14
  year: 2014
  ident: CR28
  article-title: Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution
  publication-title: Nanoscale
– volume: 139
  start-page: 12915
  issue: 37
  year: 2017
  ident: CR62
  article-title: Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo B for hydrogen evolution
  publication-title: J Am Chem Soc
– volume: 2
  start-page: 7680
  issue: 21
  year: 2014
  ident: CR31
  article-title: The design and construction of 3D rose-petal-shaped MoS hierarchical nanostructures with structure-sensitive properties
  publication-title: J Mater Chem A
– volume: 55
  start-page: 6701
  issue: 23
  year: 2016
  ident: CR40
  article-title: Interface engineering of MoS /Ni S heterostructures for highly enhanced electrochemical overall-water-splitting activity
  publication-title: Angew Chem Int Ed
– volume: 355
  start-page: eaad4998
  issue: 6321
  year: 2017
  ident: CR1
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 15
  start-page: 26
  year: 2017
  ident: CR4
  article-title: Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting
  publication-title: Nano Today
– volume: 119
  start-page: 204
  year: 2015
  article-title: Effect of hydrogen on the growth of MoS thin layers by thermal decomposition method
  publication-title: Vacuum
– volume: 37
  start-page: 74
  year: 2017
  article-title: Interface engineering: the Ni(OH) /MoS heterostructure for highly efficient alkaline hydrogen evolution
  publication-title: Nano Energy
– volume: 28
  start-page: 1804600
  issue: 43
  year: 2018
  article-title: General construction of molybdenum‐based nanowire arrays for pH‐universal hydrogen evolution electrocatalysis
  publication-title: Adv Funct Mater
– volume: 6
  start-page: 6512
  issue: 1
  year: 2015
  article-title: Porous molybdenum carbide nano‐octahedrons synthesized via confined carburization in metal‐organic frameworks for efficient hydrogen production
  publication-title: Nat Commun
– volume: 38
  start-page: 1
  issue: 1
  year: 2019
  article-title: Recovery and regeneration of Al O with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al O
  publication-title: Rare Met
– volume: 3
  start-page: 20080
  issue: 40
  year: 2015
  article-title: Nanoflower‐like metallic conductive MoO as a high‐performance non‐precious metal electrocatalyst for the hydrogen evolution reaction
  publication-title: J Mater Chem A
– volume: 7
  start-page: 3399
  issue: 5
  year: 2016
  article-title: Heteronanowires of MoC‐Mo C as efficient electrocatalysts for hydrogen evolution reaction
  publication-title: Chem Sci
– volume: 56
  start-page: 5575
  issue: 20
  year: 2017
  article-title: Boron‐dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction
  publication-title: Angew Chem Int Ed
– volume: 6
  start-page: 8359
  issue: 14
  year: 2014
  article-title: Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution
  publication-title: Nanoscale
– volume: 8
  start-page: 15437
  issue: 1
  year: 2017
  article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics
  publication-title: Nat Commun
– volume: 139
  start-page: 12915
  issue: 37
  year: 2017
  article-title: Graphene‐ and phosphorene‐like boron layers with contrasting activities in highly active Mo B for hydrogen evolution
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 5217
  issue: 12
  year: 2018
  article-title: Bimetallic Co Mo O suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte
  publication-title: J Mater Chem A
– volume: 215
  start-page: 12
  year: 2016
  article-title: Three‐dimensional hierarchically structured aerogels constructed with layered MoS /graphene nanosheets as free‐standing anodes for high‐performance lithium ion batteries
  publication-title: Electrochim Acta
– volume: 5
  start-page: 246
  issue: 1
  year: 2015
  article-title: Rational design of MoS catalysts: tuning the structure and activity via transition metal doping
  publication-title: Catal Sci Technol
– volume: 51
  start-page: 12703
  issue: 51
  year: 2012
  article-title: Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions
  publication-title: Angew Chem Int Ed
– volume: 26
  start-page: 5590
  issue: 31
  year: 2016
  article-title: Cobalt‐doping in molybdenum‐carbide nanowires toward efficient electrocatalytic hydrogen evolution
  publication-title: Adv Funct Mater
– volume: 140
  start-page: 9
  year: 2008
  article-title: Hydrogen evolution on nano‐particulate transition metal sulfide
  publication-title: Faraday Discuss
– volume: 10
  start-page: 1217
  issue: 1
  year: 2019
  article-title: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability
  publication-title: Nat Commun
– volume: 115
  start-page: 11941
  issue: 21
  year: 2015
  article-title: Electrochemistry of nanostructured layered transition‐metal dichalcogenides
  publication-title: Chem Rev
– volume: 544
  start-page: 80
  issue: 7648
  year: 2017
  article-title: Low‐temperature hydrogen production from water and methanol using Pt/α‐MoC catalysts
  publication-title: Nature
– volume: 135
  start-page: 19186
  issue: 51
  year: 2013
  article-title: Mixed close‐packed cobalt molybdenum nitrides as non‐noble metal electrocatalysts for the hydrogen evolution reaction
  publication-title: J Am Chem Soc
– volume: 55
  start-page: 12854
  issue: 41
  year: 2016
  article-title: Porous molybdenum phosphide nano‐octahedrons derived from confined phosphorization in UIO‐66 for efficient hydrogen evolution
  publication-title: Angew Chem Int Ed
– volume: 37
  start-page: 459
  issue: 6
  year: 2018
  article-title: Rechargeable solid‐state Li‐air batteries: a status report
  publication-title: Rare Met
– volume: 5
  start-page: 24453
  issue: 46
  year: 2017
  article-title: Integrated 3D self‐supported Ni decorated MoO nanowires as highly efficient electrocatalysts for ultra‐highly stable and large‐current‐density hydrogen evolution
  publication-title: J Mater Chem A
– volume: 22
  start-page: 128
  year: 2012
  article-title: Nanocomposite of MoS on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution
  publication-title: Electrochim Commun
– volume: 45
  start-page: 1529
  issue: 6
  year: 2016
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem Soc Rev
– volume: 11
  start-page: 3198
  issue: 18
  year: 2018
  article-title: Bimetallic NiMoN nanowires with preferential reactive facet: an ultra‐efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Chemsuschem
– volume: 7
  start-page: 387
  issue: 1
  year: 2014
  article-title: A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction
  publication-title: Energy Environ Sci
– volume: 14
  start-page: 301
  issue: 2
  year: 2019
  article-title: Heteroatom‐doped MoSe nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting
  publication-title: Chem Asian J
– volume: 26
  start-page: 5702
  issue: 32
  year: 2014
  article-title: Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water
  publication-title: Adv Mater
– volume: 25
  start-page: 5807
  issue: 40
  year: 2013
  article-title: Defect‐rich MoS ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
  publication-title: Adv Mater
– volume: 53
  start-page: 6407
  issue: 25
  year: 2014
  article-title: Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction
  publication-title: Angew Chem Int Ed
– volume: 11
  start-page: 963
  issue: 11
  year: 2012
  article-title: Engineering the surface structure of MoS to preferentially expose active edge sites for electrocatalysis
  publication-title: Nat Mater
– volume: 57
  start-page: 496
  issue: 2
  year: 2018
  article-title: MoB/g‐C N interface materials as a schottky catalyst to boost hydrogen evolution
  publication-title: Angew Chem Int Ed
– volume: 5
  start-page: 24193
  issue: 46
  year: 2017
  article-title: Salt‐templated synthesis of defect‐rich MoN nanosheets for boosted hydrogen evolution reaction
  publication-title: J Mater Chem A
– volume: 135
  start-page: 17881
  issue: 47
  year: 2013
  article-title: Controllable disorder engineering in oxygen‐incorporated MoS ultrathin nanosheets for efficient hydrogen evolution
  publication-title: J Am Chem Soc
– volume: 10
  start-page: 11337
  issue: 12
  year: 2016
  article-title: Mo C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution
  publication-title: ACS Nano
– volume: 3
  start-page: 131
  issue: 1
  year: 2015
  article-title: Vertically oriented MoS and WS nanosheets directly grown on carbon cloth as efficient and stable 3‐dimensional hydrogen‐evolving cathodes
  publication-title: J Mater Chem A
– volume: 8
  start-page: 4940
  issue: 5
  year: 2014
  article-title: Electrochemical tuning of MoS nanoparticles on three‐dimensional substrate for efficient hydrogen evolution
  publication-title: ACS Nano
– volume: 55
  start-page: 6701
  issue: 23
  year: 2016
  article-title: Interface engineering of MoS /Ni S heterostructures for highly enhanced electrochemical overall‐water‐splitting activity
  publication-title: Angew Chem Int Ed
– volume: 7
  start-page: 2624
  issue: 8
  year: 2014
  article-title: Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction
  publication-title: Energy Environ Sci
– volume: 16
  start-page: 13156
  issue: 26
  year: 2014
  article-title: Active edge sites in MoSe and WSe catalysts for the hydrogen evolution reaction: a density functional study
  publication-title: Phys Chem Chem Phys
– volume: 15
  start-page: 26
  year: 2017
  article-title: Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting
  publication-title: Nano Today
– volume: 3
  start-page: 1800287
  issue: 2
  year: 2019
  article-title: Mo C nanodots anchored on N‐doped porous CNT microspheres as electrode for efficient Li‐ion storage
  publication-title: Small Methods
– volume: 10
  start-page: 8851
  issue: 9
  year: 2016
  article-title: Pomegranate‐like N, P‐doped Mo C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution
  publication-title: ACS Nano
– volume: 12
  start-page: 344
  issue: 1
  year: 2019
  article-title: Freestanding 1T MoS /graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries
  publication-title: Energy Environ Sci
– volume: 2
  start-page: 5597
  issue: 16
  year: 2014
  article-title: Ultrathin S‐doped MoSe nanosheets for efficient hydrogen evolution
  publication-title: J Mater Chem A
– volume: 27
  start-page: 247
  year: 2016
  article-title: Hierarchical NiMo‐based 3D electrocatalysts for highly‐efficient hydrogen evolution in alkaline conditions
  publication-title: Nano Energy
– volume: 5
  start-page: 2213
  issue: 4
  year: 2015
  article-title: Ultrathin MoS Se alloy nanoflakes for electrocatalytic hydrogen evolution reaction
  publication-title: ACS Catal
– volume: 6
  start-page: 13419
  issue: 27
  year: 2018
  article-title: Ultrafast lithium energy storage enabled by interfacial construction of interlayer‐expanded MoS /N‐doped carbon nanowires
  publication-title: J Mater Chem A
– volume: 142
  start-page: 1413
  issue: 12
  year: 2012
  article-title: Metal phosphides: preparation, characterization and catalytic reactivity
  publication-title: Catal Lett
– volume: 51
  start-page: 6131
  issue: 25
  year: 2012
  article-title: Hydrogen‐evolution catalysts based on non‐noble metal nickel‐molybdenum nitride nanosheets
  publication-title: Angew Chem Int Ed
– volume: 17
  start-page: 1825
  issue: 3
  year: 2017
  article-title: Two‐dimensional water‐coupled metallic MoS with nanochannels for ultrafast supercapacitors
  publication-title: Nano Lett
– volume: 29
  start-page: 1700311
  issue: 28
  year: 2017
  article-title: Synergistic phase and disorder engineering in 1T‐MoSe nanosheets for enhanced hydrogen‐evolution reaction
  publication-title: Adv Mater
– volume: 304
  start-page: 146
  year: 2016
  article-title: MoO nanoparticles on reduced graphene oxide/polyimide‐carbon nanotube film as efficient hydrogen evolution electrocatalyst
  publication-title: J Power Sour
– volume: 7
  start-page: 433
  issue: 12
  year: 2017
  article-title: Self‐supported Ni(P, O) ·MoO nanowire array on nickel foam as an efficient and durable electrocatalyst for alkaline hydrogen evolution
  publication-title: Nanomaterials
– volume: 447
  start-page: 227364
  year: 2020
  article-title: 1T‐MoS nanotubes wrapped with N‐doped graphene as highly‐efficient absorbent and electrocatalyst for Li–S batteries
  publication-title: J Power Sour
– volume: 43
  start-page: 20721
  issue: 45
  year: 2018
  article-title: Facile and large‐scale preparation of Co/Ni‐MoO composite as high‐performance electrocatalyst for hydrogen evolution reaction
  publication-title: Int J Hydrog Energy
– volume: 317
  start-page: 100
  issue: 5834
  year: 2007
  article-title: Identification of active edge sites for electrochemical H evolution from MoS nanocatalysts
  publication-title: Science
– volume: 5
  start-page: 7768
  issue: 17
  year: 2013
  article-title: Facile synthesis of low crystalline MoS nanosheet‐coated CNTs for enhanced hydrogen evolution reaction
  publication-title: Nanoscale
– volume: 6
  start-page: 5624
  issue: 11
  year: 2014
  article-title: MoS nanoflower‐decorated reduced graphene oxide paper for high‐performance hydrogen evolution reaction
  publication-title: Nanoscale
– volume: 13
  start-page: 6222
  issue: 12
  year: 2013
  article-title: Conducting MoS nanosheets as catalysts for hydrogen evolution reaction
  publication-title: Nano Lett
– volume: 24
  start-page: 11158
  issue: 43
  year: 2018
  article-title: CoSe /MoSe heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction
  publication-title: Chem Eur J
– volume: 7
  start-page: 7040
  issue: 16
  year: 2015
  article-title: Flawed MoO belts transformed from MoO on a graphene template for the hydrogen evolution reaction
  publication-title: Nanoscale
– year: 2020
– volume: 29
  start-page: 1551
  issue: 11
  year: 1984
  article-title: Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions
  publication-title: Electrochim Acta
– volume: 127
  start-page: 5308
  issue: 15
  year: 2005
  article-title: Biomimetic hydrogen evolution: MoS nanoparticles as catalyst for hydrogen evolution
  publication-title: J Am Chem Soc
– volume: 13
  start-page: 1341
  issue: 3
  year: 2013
  article-title: Synthesis of MoS and MoSe films with vertically aligned layers
  publication-title: Nano Lett
– volume: 5
  start-page: 4615
  issue: 12
  year: 2014
  article-title: Atomically‐thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution
  publication-title: Chem Sci
– volume: 355
  start-page: eaad4998
  issue: 6321
  year: 2017
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 44
  start-page: 5148
  issue: 15
  year: 2015
  article-title: Noble metal‐free hydrogen evolution catalysts for water splitting
  publication-title: Chem Soc Rev
– volume: 4
  start-page: 1647
  issue: 5
  year: 2016
  article-title: P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction
  publication-title: J Mater Chem A
– volume: 2
  start-page: 7680
  issue: 21
  year: 2014
  article-title: The design and construction of 3D rose‐petal‐shaped MoS hierarchical nanostructures with structure‐sensitive properties
  publication-title: J Mater Chem A
– volume: 26
  start-page: 2344
  issue: 7
  year: 2014
  article-title: Space‐confined growth of MoS nanosheets within graphite: the layered hybrid of MoS and graphene as an active catalyst for hydrogen evolution reaction
  publication-title: Chem Mater
– volume: 135
  start-page: 10274
  issue: 28
  year: 2013
  article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets
  publication-title: J Am Chem Soc
– volume: 9
  start-page: 2789
  issue: 9
  year: 2016
  article-title: Engineering water dissociation sites in MoS nanosheets for accelerated electrocatalytic hydrogen production
  publication-title: Energy Environ Sci
– volume: 28
  start-page: 3785
  issue: 19
  year: 2016
  article-title: Porous MoO nanosheets as non‐noble bifunctional electrocatalysts for overall water splitting
  publication-title: Adv Mater
– ident: e_1_2_6_42_1
  doi: 10.1039/C4CP01237B
– ident: e_1_2_6_40_1
  doi: 10.1016/j.nanoen.2017.05.011
– ident: e_1_2_6_55_1
  doi: 10.1002/adfm.201600915
– ident: e_1_2_6_37_1
  doi: 10.1021/nn500959v
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jpowsour.2019.227364
– ident: e_1_2_6_48_1
  doi: 10.1002/chem.201801693
– ident: e_1_2_6_63_1
  doi: 10.1021/jacs.7b07247
– ident: e_1_2_6_74_1
  doi: 10.1039/C7TA08090E
– ident: e_1_2_6_31_1
  doi: 10.1039/c3nr02994h
– ident: e_1_2_6_49_1
  doi: 10.1002/anie.201207111
– ident: e_1_2_6_72_1
  doi: 10.1039/C5TA06018D
– ident: e_1_2_6_20_1
  doi: 10.1038/ncomms15437
– ident: e_1_2_6_14_1
  doi: 10.1039/C8EE03252A
– ident: e_1_2_6_4_1
– ident: e_1_2_6_59_1
  doi: 10.1002/adma.201401692
– volume: 140
  start-page: 9
  year: 2008
  ident: e_1_2_6_27_1
  article-title: Hydrogen evolution on nano‐particulate transition metal sulfide
  publication-title: Faraday Discuss
– ident: e_1_2_6_70_1
  doi: 10.1016/j.jpowsour.2015.11.013
– ident: e_1_2_6_56_1
  doi: 10.1039/C6SC00077K
– ident: e_1_2_6_21_1
  doi: 10.1016/j.vacuum.2015.05.023
– ident: e_1_2_6_57_1
  doi: 10.1007/s10562-012-0929-7
– ident: e_1_2_6_6_1
  doi: 10.1039/C5CS00434A
– ident: e_1_2_6_34_1
  doi: 10.1016/j.elecom.2012.06.009
– ident: e_1_2_6_50_1
  doi: 10.1039/C3EE42441C
– ident: e_1_2_6_66_1
  doi: 10.1039/C4SC02019G
– ident: e_1_2_6_41_1
  doi: 10.1002/anie.201602237
– ident: e_1_2_6_29_1
  doi: 10.1039/C4NR01894J
– ident: e_1_2_6_52_1
  doi: 10.1021/acsnano.6b06580
– ident: e_1_2_6_2_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_6_12_1
  doi: 10.1039/C8TA04852E
– ident: e_1_2_6_43_1
  doi: 10.1021/nl400258t
– ident: e_1_2_6_8_1
  doi: 10.1021/acs.chemrev.5b00287
– ident: e_1_2_6_9_1
  doi: 10.1021/acs.nanolett.6b05134
– ident: e_1_2_6_18_1
  doi: 10.1016/0013-4686(84)85008-2
– ident: e_1_2_6_78_1
  doi: 10.3390/nano7120433
– ident: e_1_2_6_35_1
  doi: 10.1039/c3nr04975b
– ident: e_1_2_6_69_1
  doi: 10.1002/cssc.201801337
– ident: e_1_2_6_67_1
  doi: 10.1039/C7TA07566A
– ident: e_1_2_6_16_1
  doi: 10.1002/smtd.201800287
– ident: e_1_2_6_5_1
  doi: 10.1016/j.nantod.2017.06.006
– ident: e_1_2_6_45_1
  doi: 10.1021/cs501970w
– ident: e_1_2_6_39_1
  doi: 10.1038/s41467-019-09210-0
– ident: e_1_2_6_26_1
  doi: 10.1021/nl403661s
– ident: e_1_2_6_62_1
  doi: 10.1002/anie.201611756
– ident: e_1_2_6_46_1
  doi: 10.1002/adma.201700311
– ident: e_1_2_6_51_1
  doi: 10.1021/acsnano.6b04725
– ident: e_1_2_6_54_1
  doi: 10.1002/anie.201402998
– ident: e_1_2_6_17_1
  doi: 10.1126/science.1141483
– ident: e_1_2_6_60_1
  doi: 10.1002/anie.201604315
– ident: e_1_2_6_75_1
  doi: 10.1039/C5TA08458J
– ident: e_1_2_6_22_1
  doi: 10.1021/ja0504690
– ident: e_1_2_6_11_1
  doi: 10.1007/s12598-018-1164-1
– ident: e_1_2_6_3_1
  doi: 10.1007/s12598-018-1036-8
– ident: e_1_2_6_44_1
  doi: 10.1039/C4TA00458B
– ident: e_1_2_6_68_1
  doi: 10.1021/ja4081056
– ident: e_1_2_6_73_1
  doi: 10.1002/adma.201506314
– ident: e_1_2_6_47_1
  doi: 10.1002/asia.201801645
– ident: e_1_2_6_28_1
  doi: 10.1039/C4CY01162G
– ident: e_1_2_6_7_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_6_10_1
  doi: 10.1038/nature21672
– ident: e_1_2_6_32_1
  doi: 10.1039/c4ta01004c
– ident: e_1_2_6_38_1
  doi: 10.1039/C6EE01786J
– ident: e_1_2_6_71_1
  doi: 10.1039/C4NR06624C
– ident: e_1_2_6_19_1
  doi: 10.1016/j.nanoen.2016.07.005
– ident: e_1_2_6_77_1
  doi: 10.1039/C7TA11401J
– ident: e_1_2_6_36_1
  doi: 10.1039/C4TA04858J
– ident: e_1_2_6_61_1
  doi: 10.1002/adfm.201804600
– ident: e_1_2_6_64_1
  doi: 10.1002/anie.201708748
– ident: e_1_2_6_65_1
  doi: 10.1002/anie.201200699
– ident: e_1_2_6_53_1
  doi: 10.1038/ncomms7512
– ident: e_1_2_6_76_1
  doi: 10.1016/j.ijhydene.2018.09.159
– ident: e_1_2_6_13_1
  doi: 10.1016/j.electacta.2016.08.068
– ident: e_1_2_6_58_1
  doi: 10.1039/C4EE00957F
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.201302685
– ident: e_1_2_6_30_1
  doi: 10.1021/ja408329q
– ident: e_1_2_6_23_1
  doi: 10.1038/nmat3439
– ident: e_1_2_6_25_1
  doi: 10.1021/ja404523s
– ident: e_1_2_6_33_1
  doi: 10.1021/cm500347r
SSID ssj0044660
Score 2.6072192
SecondaryResourceType review_article
Snippet Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and...
Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low‐cost and...
SourceID proquest
crossref
wiley
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 335
SubjectTerms Biomaterials
Borides
Catalysts
Catalytic activity
Chemistry and Materials Science
Electrocatalysts
Electrolysis
Energy
Hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen-based energy
Materials Engineering
Materials Science
Metallic Materials
Molybdenum
Molybdenum base alloys
Molybdenum carbide
Molybdenum oxides
Molybdenum sulfides
Mo‐based materials
Nanoscale Science and Technology
Phosphides
Physical Chemistry
Selenides
Water splitting
Title A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction
URI https://link.springer.com/article/10.1007/s12598-020-01384-7
https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs12598-020-01384-7
https://www.proquest.com/docview/2391222631
Volume 39
WOSCitedRecordID wos000522932300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1867-7185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044660
  issn: 1001-0521
  databaseCode: RSV
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1itkoM3DTSbbbI5VrF4KlIfeJElTxR0K90q9N872UdXQUQ9b3ayTGYy3-y8EDpmUnvvuSXWa0HiWDDQOe-I012qJI2NinQxbEIMh8n9vbyqisLyOtu9DkkWN3VT7AZIPSHB3QnRtZiIRbQE5i4J6ji6vqvv3xCgLHsQBEcZrFNVKvM9ja_mqMGY87DoV9BaWJ3B-v--dwOtVSgT90ux2EQLLttCq596D26jhz4uy1awyix-bWou8TjDL-PnmbYhS54EM2dxNS2n-Nkzy6c5BqyLH2d2MgYBxO69EmAgWRZK7KDbwcXN-SWpZi0QE8MdQxT1kirRlU46p5hV4HcYQH_W9HRXxbznAfpID84Tt0J5yoRhlNuuBpU3ADLZLmpl48ztIZwIrR2gHmUSgIPgwChumWGsl3AvqInaiNYsT03ViDzMw3hOmxbKgXUpsC4tWJeKNjqZv_NatuH4cXWnPsm0Usk8jZikAIY4o210Wp9Y8_gnanEhAb_YOB31R9HZAHCV5Pt_2-UArUSFrISkoA5qTSdv7hAtm_fpUz45KiT8Az8U8e0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9aW6g-VG0Vr1Wbh77ZwGWzt9k8XouHoj3kasWXEvKJgu7J7Sncf9_JfrgKIrbPm50sk5nMb3a-AL5yaUIImaMuGEHTVHDUueCpN32mJUutTkw1bEKMx_n5uTxpisLKNtu9DUlWN3VX7IZIPafR3YnRtZSK1_AmRYsVE_kmv87a-zcGKOseBNFRRuvUlMo8TeOxOeow5n1Y9DForazOaPX_vncN3jcokwxrsViHV774ACsPeg9-hD9DUpetEF04ctPVXJJpQa6nVwvjYpY8jWbOkWZaTvWzZ1HOS4JYl1ws3GyKAkj8XSPASLIulNiA36P90x8HtJm1QG2KdwzVLEimRV966b3mTqPfYRH9OTswfZ1mg4DQRwZ0njIndGBcWM4y1zeo8hZBJt-EpWJa-C0guTDGI-rRNkc4iA6Mzhy3nA_yLAhmkx6wluXKNo3I4zyMK9W1UI6sU8g6VbFOiR7s3b9zU7fheHb1dnuSqlHJUiVcMgRDGWc9-NaeWPf4OWppJQEv2FhNhpPk-whxlcw-_dsuX-DdwenPY3V8OD76DMtJJTcxQWgbluazW78Db-3d_LKc7VbS_hedkvTR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB61KUL0wBs1JRQfuBWLeL1Zr4_pI2pVFCGgFRdk-Skq0U2UpEj59x3vgwWpQlQ9r9dejceeb3bmmwE44tKEEDJHXTCCpqngeOaCp970mZYstToxZbMJMR7nV1fy7AGLv8x2b0KSFachVmkqFidTF05a4hui9pxG1ydG2lIqXsKrNDYNiv76xY_mLo7ByqoeQXSa0VLVtJm_z_HYNLV48z5E-hjAlhZotPH_374J6zX6JMNKXbbghS-24fWDmoQ7cD0kFZ2F6MKRacvFJJOC_JrcLo2L2fM0mj9H6i465U-g5XwxJ4iByc3SzSaomMTf1YqNU1YEil34Pvp8-fELrXswUJvi3UM1C5Jp0Zdeeq-50-iPWESFzg5MX6fZICAkkgGdqswJHRgXlrPM9Q1eBRbBJ9-DTjEp_BsguTDGIxrSNkeYiI6Nzhy3nA_yLAhmky6wRvzK1gXKY5-MW9WWVo6iUyg6VYpOiS68v39nWpXneHJ0r9lVVR_VuUq4ZAiSMs66cNzsXvv4qdnSUhuesbA6H54nH0aIt2T29t9WOYTVs08jdfp1_G0f1pJSbWLeUA86i9lvfwAr9m7xcz57Vyr-H4ve_bU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+and+perspective+on+molybdenum-based+electrocatalysts+for+hydrogen+evolution+reaction&rft.jtitle=Rare+metals&rft.au=Hua%2C+Wei&rft.au=Huan-Huan%2C+Sun&rft.au=Xu%2C+Fei&rft.au=Jian-Gan%2C+Wang&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=39&rft.issue=4&rft.spage=335&rft.epage=351&rft_id=info:doi/10.1007%2Fs12598-020-01384-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon