A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction
Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regar...
Saved in:
| Published in: | Rare metals Vol. 39; no. 4; pp. 335 - 351 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Beijing
Nonferrous Metals Society of China
01.04.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1001-0521, 1867-7185 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt-based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo-based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed.
Graphic abstract |
|---|---|
| AbstractList | Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low‐cost and high‐efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)‐based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt‐based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo‐based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo‐based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo‐based electrocatalysts toward high HER performance are proposed. Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt-based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo-based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed.Graphic abstract Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low‐cost and high‐efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)‐based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt‐based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo‐based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo‐based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo‐based electrocatalysts toward high HER performance are proposed. Graphic Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and high-efficient hydrogen evolution reaction (HER) catalyst to improve the overall reaction efficiency. Molybdenum (Mo)-based electrocatalysts are regarded as the promising candidates to replace the benchmark but expensive Pt-based HER catalysts, due to their high activity and stability in a wide pH range. In this review, we present a comprehensive and critical summary on the recent progress in the Mo-based electrodes for HER, including molybdenum alloys, molybdenum sulfides, molybdenum selenides, molybdenum carbides, molybdenum phosphides, molybdenum borides, molybdenum nitrides, and molybdenum oxides. Particular attention is mainly focused on the synthetic methods of Mo-based materials, the strategies for increasing the catalytic activity, and the relationship between structure/composition and electrocatalytic performance. Finally, the future development and perspectives of Mo-based electrocatalysts toward high HER performance are proposed. Graphic abstract |
| Author | Wang, Jian-Gan Hua, Wei Sun, Huan-Huan Xu, Fei |
| Author_xml | – sequence: 1 givenname: Wei surname: Hua fullname: Hua, Wei organization: State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU) – sequence: 2 givenname: Huan-Huan surname: Sun fullname: Sun, Huan-Huan organization: State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU) – sequence: 3 givenname: Fei surname: Xu fullname: Xu, Fei organization: State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU) – sequence: 4 givenname: Jian-Gan orcidid: 0000-0001-5582-0573 surname: Wang fullname: Wang, Jian-Gan email: wangjiangan@nwpu.edu.cn organization: State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU) |
| BookMark | eNqNkEFr3DAQhUVJoUnaP9CTIGelM5ItWeS0Cdm0ECiE9liEVh6nDl5rI3k3-N9XWxcKPYSe5sG8bx7zztjJGEdi7CPCJQKYTxllbRsBEgSgaiph3rBTbLQRBpv6pGgAFFBLfMfOcn4CqCqt4ZT9WPFEh55euB9bvqOUdxSm_kA8jnwbh3nT0rjfio3P1HIayjLF4Cc_zHnKvIuJ_5zbFB9p5HSIw37qC5jIh6N4z952fsj04c88Z9_Xt99uPov7r3dfblb3IlTKaOGxs-gNWLJEXrUeGxnQyjbUG_CVrjuNte2wanRrfIfKBIW6hY2sTbDWqnN2sdzdpfi8pzy5p7hPY4l0UlmUUmqFxSUXV0gx50Sd26V-69PsENyxRrfU6EqN7neNzhSo-QcK_eSPz03J98Pr6NWCvvQDzf8R5h5WD_J6DdBYXWi10LmA4yOlvz-9kvkLQjubZw |
| CitedBy_id | crossref_primary_10_1002_adfm_202210236 crossref_primary_10_1016_j_fuel_2025_134957 crossref_primary_10_1016_j_ijhydene_2024_09_055 crossref_primary_10_1016_j_ijhydene_2025_02_466 crossref_primary_10_1039_D2RA02547G crossref_primary_10_1016_j_apsusc_2020_148407 crossref_primary_10_1063_5_0197987 crossref_primary_10_3390_molecules29225404 crossref_primary_10_1016_j_ijhydene_2022_06_084 crossref_primary_10_1002_smll_202412693 crossref_primary_10_1016_j_apsusc_2022_153678 crossref_primary_10_1016_j_jwpe_2024_106345 crossref_primary_10_1016_j_cej_2025_163260 crossref_primary_10_1021_acsami_4c21484 crossref_primary_10_1007_s12598_023_02500_z crossref_primary_10_3390_catal13081148 crossref_primary_10_1016_j_ijhydene_2023_06_010 crossref_primary_10_1039_D3QI02444J crossref_primary_10_1039_D2CY00606E crossref_primary_10_1002_adfm_202108681 crossref_primary_10_1039_D0CY01311K crossref_primary_10_1016_j_colsurfa_2024_134599 crossref_primary_10_3390_coatings13061072 crossref_primary_10_1002_adsu_202500495 crossref_primary_10_1016_j_matlet_2023_135268 crossref_primary_10_1007_s12598_020_01541_y crossref_primary_10_1016_j_apcatb_2022_121204 crossref_primary_10_1039_D3QM01076G crossref_primary_10_1039_D2CY00577H crossref_primary_10_1016_j_cej_2021_128494 crossref_primary_10_1039_D1SE01591E crossref_primary_10_1039_D3QI01673K crossref_primary_10_1002_adma_202410039 crossref_primary_10_1016_j_ijhydene_2022_11_087 crossref_primary_10_1007_s00339_023_06798_5 crossref_primary_10_1002_advs_202105135 crossref_primary_10_1016_j_electacta_2023_142050 crossref_primary_10_1007_s12274_023_6271_0 crossref_primary_10_1007_s11665_025_11748_8 crossref_primary_10_1016_j_ijhydene_2023_07_023 crossref_primary_10_1016_j_electacta_2024_145008 crossref_primary_10_1007_s12598_022_01967_6 crossref_primary_10_1016_j_ijhydene_2025_02_328 crossref_primary_10_1002_inf2_12357 crossref_primary_10_1039_D4SE00457D crossref_primary_10_1002_aenm_202501970 crossref_primary_10_1016_j_jallcom_2024_175523 crossref_primary_10_1016_j_saa_2024_124190 crossref_primary_10_1002_tcr_202500082 crossref_primary_10_1007_s12598_021_01819_9 crossref_primary_10_1007_s43153_025_00552_5 crossref_primary_10_1016_j_mattod_2020_08_021 crossref_primary_10_1016_j_esi_2024_02_001 crossref_primary_10_1016_j_jece_2022_108736 crossref_primary_10_1016_j_cej_2025_162031 crossref_primary_10_1016_j_cej_2020_127686 crossref_primary_10_1007_s12598_021_01709_0 crossref_primary_10_1007_s12598_021_01917_8 crossref_primary_10_1016_j_jallcom_2021_162590 crossref_primary_10_1016_j_jics_2025_101788 crossref_primary_10_1002_smll_202104323 crossref_primary_10_3390_nano13182613 crossref_primary_10_1016_j_apcatb_2022_122072 crossref_primary_10_1007_s11708_022_0827_7 crossref_primary_10_1016_j_ijhydene_2021_11_184 crossref_primary_10_1002_anie_202502029 crossref_primary_10_1007_s12598_021_01948_1 crossref_primary_10_1016_j_cclet_2021_08_033 crossref_primary_10_1002_cplu_202300285 crossref_primary_10_1007_s12598_022_02168_x crossref_primary_10_1016_j_ijhydene_2024_03_192 crossref_primary_10_3390_nano13182602 crossref_primary_10_3390_nanomanufacturing2030009 crossref_primary_10_1007_s40843_020_1495_x crossref_primary_10_1016_j_ijhydene_2023_08_175 crossref_primary_10_1016_j_mtsust_2025_101141 crossref_primary_10_1007_s10895_024_03616_w crossref_primary_10_1016_j_ijhydene_2022_11_231 crossref_primary_10_1016_j_jcis_2021_08_201 crossref_primary_10_1016_j_apsusc_2020_147909 crossref_primary_10_1007_s12598_024_02772_z crossref_primary_10_1016_j_jallcom_2023_170814 crossref_primary_10_1007_s12274_021_3445_5 crossref_primary_10_1080_01614940_2021_2003085 crossref_primary_10_15407_pcmm2024_06_096 crossref_primary_10_1007_s12598_023_02300_5 crossref_primary_10_1007_s11706_022_0606_8 crossref_primary_10_1016_j_micromeso_2021_111435 crossref_primary_10_1016_j_jallcom_2021_159562 crossref_primary_10_1021_acs_estlett_5c00465 crossref_primary_10_1007_s11581_025_06166_8 crossref_primary_10_1016_j_ijhydene_2023_03_228 crossref_primary_10_1088_1361_648X_ac06f1 crossref_primary_10_1002_tcr_202500049 crossref_primary_10_1016_j_cej_2021_129717 crossref_primary_10_1016_j_cej_2024_153909 crossref_primary_10_1016_j_jphotochem_2023_114831 crossref_primary_10_1002_smll_202401019 crossref_primary_10_1016_j_rser_2023_113490 crossref_primary_10_1007_s12598_022_02059_1 crossref_primary_10_1016_j_ijhydene_2023_07_100 crossref_primary_10_1002_adfm_202402966 crossref_primary_10_1088_1361_6528_acaf35 crossref_primary_10_1007_s12598_021_01881_3 crossref_primary_10_1016_j_ijhydene_2022_06_142 crossref_primary_10_1002_jccs_70050 crossref_primary_10_1016_j_seppur_2023_124207 crossref_primary_10_1007_s11708_022_0813_0 crossref_primary_10_1007_s10800_022_01764_0 crossref_primary_10_1016_j_susmat_2024_e01090 crossref_primary_10_1016_j_jcis_2022_02_103 crossref_primary_10_1002_smll_202105331 crossref_primary_10_1002_cplu_202200416 crossref_primary_10_1016_j_ijhydene_2022_09_310 crossref_primary_10_1016_j_jallcom_2020_156896 crossref_primary_10_1002_cctc_202201411 crossref_primary_10_1016_j_cej_2021_128885 crossref_primary_10_1016_j_ijhydene_2025_05_272 crossref_primary_10_1016_j_cej_2021_131131 crossref_primary_10_1080_16583655_2021_1996944 crossref_primary_10_3389_fchem_2020_608133 crossref_primary_10_3390_catal12010002 crossref_primary_10_3390_catal10111301 crossref_primary_10_1002_ange_202502029 crossref_primary_10_1016_j_cej_2024_150622 crossref_primary_10_1016_j_jechem_2022_01_025 crossref_primary_10_1002_ejic_202300492 crossref_primary_10_1007_s12598_020_01665_1 crossref_primary_10_1016_j_jcat_2025_116178 crossref_primary_10_1016_j_jcat_2021_04_003 crossref_primary_10_1002_adfm_202108167 crossref_primary_10_1016_j_diamond_2023_110501 crossref_primary_10_1002_smtd_202500411 crossref_primary_10_1007_s12598_021_01791_4 crossref_primary_10_1002_cey2_528 crossref_primary_10_1016_j_cej_2023_143221 crossref_primary_10_1016_j_jallcom_2022_166846 crossref_primary_10_1002_aenm_202402294 crossref_primary_10_1039_D3MH01757E crossref_primary_10_1002_adfm_202210855 crossref_primary_10_1039_D2EN00668E crossref_primary_10_1016_j_ijhydene_2024_02_201 crossref_primary_10_1016_j_cclet_2023_109037 crossref_primary_10_1016_j_ijhydene_2024_07_182 crossref_primary_10_1016_j_jallcom_2022_167254 crossref_primary_10_1016_j_ijhydene_2023_09_273 crossref_primary_10_1016_j_electacta_2022_141524 crossref_primary_10_1016_j_jcis_2021_10_088 crossref_primary_10_1007_s12598_020_01621_z crossref_primary_10_1007_s12598_025_03345_4 crossref_primary_10_3390_catal15080716 crossref_primary_10_1002_cey2_656 crossref_primary_10_1007_s10563_021_09342_8 crossref_primary_10_1016_j_mtsust_2024_100894 crossref_primary_10_2497_jjspm_16D_T18_05 crossref_primary_10_1016_j_ijhydene_2024_05_341 crossref_primary_10_1002_poc_70010 crossref_primary_10_1016_j_jcis_2021_12_100 crossref_primary_10_1016_j_fuel_2022_125794 crossref_primary_10_1039_D4QI02311K crossref_primary_10_1088_2515_7639_abd596 crossref_primary_10_1016_j_matlet_2021_131166 crossref_primary_10_1016_j_jcis_2021_04_110 crossref_primary_10_1134_S003602442308006X crossref_primary_10_1016_j_ijhydene_2023_12_107 crossref_primary_10_1016_j_flatc_2021_100307 crossref_primary_10_1002_nano_202400051 crossref_primary_10_1007_s12598_024_02649_1 crossref_primary_10_1039_D3QM00819C crossref_primary_10_1016_j_ijhydene_2021_08_046 crossref_primary_10_20517_energymater_2024_134 crossref_primary_10_1016_j_jpcs_2024_112079 crossref_primary_10_1016_j_nxmate_2025_100560 crossref_primary_10_1016_j_ijhydene_2023_09_012 crossref_primary_10_1007_s11003_025_00948_1 crossref_primary_10_1002_smll_202203630 crossref_primary_10_1016_j_ijhydene_2025_02_310 crossref_primary_10_1038_s41467_024_50713_2 crossref_primary_10_1007_s12598_021_01824_y crossref_primary_10_1016_j_cej_2022_134860 crossref_primary_10_1016_j_est_2023_107393 crossref_primary_10_1016_j_jelechem_2023_117880 crossref_primary_10_1088_1361_6528_ad0985 crossref_primary_10_1016_j_cej_2023_145170 crossref_primary_10_1016_j_electacta_2021_139683 crossref_primary_10_1016_j_apsusc_2021_150779 crossref_primary_10_1016_j_ijhydene_2023_11_242 crossref_primary_10_1016_j_jallcom_2025_181568 crossref_primary_10_1021_acsanm_5c00906 crossref_primary_10_1002_crat_202400189 crossref_primary_10_1016_j_cej_2024_155498 crossref_primary_10_1038_s41598_025_17069_z crossref_primary_10_1007_s12598_021_01851_9 crossref_primary_10_1016_j_apcatb_2023_123015 crossref_primary_10_1088_1361_6528_ac33d2 crossref_primary_10_1016_j_apsusc_2023_157433 crossref_primary_10_1016_j_cclet_2021_03_063 crossref_primary_10_1063_5_0049772 crossref_primary_10_1016_j_cattod_2021_11_023 crossref_primary_10_1016_j_matchemphys_2021_125643 crossref_primary_10_1016_j_mtsust_2023_100434 crossref_primary_10_1007_s12598_021_01873_3 crossref_primary_10_1007_s12598_021_01727_y crossref_primary_10_1002_adem_202402287 crossref_primary_10_1016_j_jallcom_2024_174868 crossref_primary_10_1016_j_ijhydene_2025_06_197 crossref_primary_10_1016_j_solmat_2024_112794 crossref_primary_10_1002_advs_202308178 crossref_primary_10_1021_acs_langmuir_5c00888 crossref_primary_10_1016_j_jcat_2020_05_042 |
| Cites_doi | 10.1007/s12598-020-01369-6 10.1039/C4CP01237B 10.1016/j.nanoen.2017.05.011 10.1002/adfm.201600915 10.1021/nn500959v 10.1016/j.jpowsour.2019.227364 10.1002/chem.201801693 10.1021/jacs.7b07247 10.1039/C7TA08090E 10.1039/c3nr02994h 10.1002/anie.201207111 10.1039/C5TA06018D 10.1038/ncomms15437 10.1039/C8EE03252A 10.1002/adma.201401692 10.1016/j.jpowsour.2015.11.013 10.1039/C6SC00077K 10.1016/j.vacuum.2015.05.023 10.1007/s10562-012-0929-7 10.1039/C5CS00434A 10.1016/j.elecom.2012.06.009 10.1039/C3EE42441C 10.1039/C4SC02019G 10.1002/anie.201602237 10.1039/C4NR01894J 10.1021/acsnano.6b06580 10.1126/science.aad4998 10.1039/C8TA04852E 10.1021/nl400258t 10.1021/acs.chemrev.5b00287 10.1021/acs.nanolett.6b05134 10.1016/0013-4686(84)85008-2 10.3390/nano7120433 10.1039/c3nr04975b 10.1002/cssc.201801337 10.1039/C7TA07566A 10.1002/smtd.201800287 10.1016/j.nantod.2017.06.006 10.1021/cs501970w 10.1038/s41467-019-09210-0 10.1021/nl403661s 10.1002/anie.201611756 10.1002/adma.201700311 10.1021/acsnano.6b04725 10.1002/anie.201402998 10.1126/science.1141483 10.1002/anie.201604315 10.1039/C5TA08458J 10.1021/ja0504690 10.1007/s12598-018-1164-1 10.1007/s12598-018-1036-8 10.1039/C4TA00458B 10.1021/ja4081056 10.1002/adma.201506314 10.1002/asia.201801645 10.1039/C4CY01162G 10.1039/C4CS00448E 10.1038/nature21672 10.1039/c4ta01004c 10.1039/C6EE01786J 10.1039/C4NR06624C 10.1016/j.nanoen.2016.07.005 10.1039/C7TA11401J 10.1039/C4TA04858J 10.1002/adfm.201804600 10.1002/anie.201708748 10.1002/anie.201200699 10.1038/ncomms7512 10.1016/j.ijhydene.2018.09.159 10.1016/j.electacta.2016.08.068 10.1039/C4EE00957F 10.1002/adma.201302685 10.1021/ja408329q 10.1038/nmat3439 10.1021/ja404523s 10.1021/cm500347r |
| ContentType | Journal Article |
| Copyright | The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020 2020 Youke Publishing Co., Ltd. The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: 2020 Youke Publishing Co., Ltd. – notice: The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8BQ 8FD JG9 |
| DOI | 10.1007/s12598-020-01384-7 |
| DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1867-7185 |
| EndPage | 351 |
| ExternalDocumentID | 10_1007_s12598_020_01384_7 RAR2BF00896 |
| Genre | article |
| GrantInformation_xml | – fundername: Innovation Program for Talent grantid: 2019KJXX-066 – fundername: National Natural Science Foundation grantid: 2018JM5092; 2019JLM-26 – fundername: Fundamental Research Funds for the Central Universities grantid: G2017KY0308; 3102019JC005 funderid: http://dx.doi.org/10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 51772249; 51821091 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Post-doctoral Program of Shaanxi Province grantid: 2018BSHTDZZ16 – fundername: National Natural Science Foundation of China funderid: 51772249; 51821091 – fundername: Fundamental Research Funds for the Central Universities funderid: G2017KY0308; 3102019JC005 – fundername: Post‐doctoral Program of Shaanxi Province funderid: 2018BSHTDZZ16 – fundername: National Natural Science Foundation funderid: 2018JM5092; 2019JLM‐26 – fundername: Innovation Program for Talent funderid: 2019KJXX‐066 |
| GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 29P 2B. 2C0 2KG 2VQ 30V 4.4 406 408 40D 5VR 5VS 5XA 5XC 8FE 8FG 8RM 8TC 92H 92I 92R 93N 96X AAAVM AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACRPL ACZOJ ADHHG ADHIR ADINQ ADKNI ADMLS ADMUD ADNMO ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BA0 BENPR BGLVJ BGNMA CAG CAJEB CCEZO CCPQU CDRFL CHBEP COF CW9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I0C IKXTQ IWAJR I~X J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9N PDBOC PT4 Q-- Q2X R9I RIG RLLFE ROL RSV S1Z S27 S3B SCL SCM SDC SDG SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM ABBRH ABDBE ABFSG ABRTQ ACSTC AEUYN AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA M7S PHGZM PHGZT PQGLB PTHSS AAYXX AFFHD CITATION 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c4376-a1f91a709e9eea3da182c192dc5b0a465f6159f1486d7af137c316d0b257c9993 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 264 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522932300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1001-0521 |
| IngestDate | Thu Sep 25 00:43:30 EDT 2025 Sat Nov 29 06:51:26 EST 2025 Tue Nov 18 22:29:52 EST 2025 Wed Oct 08 09:30:17 EDT 2025 Fri Feb 21 02:43:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Hydrogen evolution reaction Water splitting Electrocatalysts Mo-based materials |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4376-a1f91a709e9eea3da182c192dc5b0a465f6159f1486d7af137c316d0b257c9993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5582-0573 |
| PQID | 2391222631 |
| PQPubID | 326325 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2391222631 crossref_primary_10_1007_s12598_020_01384_7 crossref_citationtrail_10_1007_s12598_020_01384_7 wiley_primary_10_1007_s12598_020_01384_7_RAR2BF00896 springer_journals_10_1007_s12598_020_01384_7 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing |
| PublicationTitle | Rare metals |
| PublicationTitleAbbrev | Rare Met |
| PublicationYear | 2020 |
| Publisher | Nonferrous Metals Society of China Springer Nature B.V |
| Publisher_xml | – name: Nonferrous Metals Society of China – name: Springer Nature B.V |
| References | Xie, Yu, Xue, Bin Yousaf, Du, Liang, Jiang, Xu (CR74) 2016; 4 Bian, Zhu, Liao, Scanlon, Ge, Ji, Girault, Liu (CR33) 2012; 22 Hua, Liu, Wang, Wei (CR77) 2017; 7 Qi, Li, Chen, Zheng, Liu, Lan, Lai, Xu, Liu, Zhou, He, Zhang (CR20) 2015; 119 Yan, Xia, Li, Xu, Fisher, Wang (CR35) 2015; 3 Xie, Li, Zhang, Zhang, Wang, Zhang, Pan, Xie (CR65) 2014; 5 Yang, Zhang, Wang, He, Wu, Yang, Hong, Wu, Li (CR59) 2016; 55 Chen, Sasaki, Ma, Frenkel, Marinkovic, Muckerman, Zhu, Adzic (CR64) 2012; 51 Chia, Eng, Ambrosi, Tan, Pumera (CR7) 2015; 115 Xing, Liu, Asiri, Sun (CR58) 2014; 26 Xie, Zhang, Li, Grote, Zhang, Zhang, Wang, Lei, Pan, Xie (CR29) 2013; 135 Tsai, Chan, Nørskov, Abild-Pedersen (CR27) 2015; 5 Liao, Wang, Xiao, Bian, Zhang, Scanlon, Hu, Tang, Liu, Girault (CR49) 2014; 7 Jin, Wang, Li, Yue, Han, Shen, Cui (CR72) 2016; 28 Yang, Gao, Zhang, Sun, Zhang (CR2) 2018; 37 Liu, Wang, Yang, Liu, Xu (CR10) 2019; 38 Voiry, Salehi, Silva, Fujita, Chen, Asefa, Shenoy, Eda, Chhowalla (CR25) 2013; 13 Zhuang, Li, Li, Lv, Lang, Zhao, Zhou, Moskaleva, Guo, Mai (CR63) 2018; 57 Li, Jiang, Jia, Wang (CR69) 2016; 304 Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (CR1) 2017; 355 Park, Zhang, Scheifers, Jothi, Encinas, Fokwa (CR62) 2017; 139 Xie, Zhang, Li, Wang, Sun, Zhou, Zhou, Lou, Xie (CR23) 2013; 25 Brown, Mahmood, Man, Turner (CR17) 1984; 29 Yin, Zhang, Gao, Yao, Zhang, Han, Wang, Zhang, Xu, Zhang, Cao, Song, Jin (CR45) 2017; 29 Chang, Yang, Shao, Zhang, Fan, Huang, Wu, Hao (CR68) 2018; 11 Zang, Niu, Wu, Zheng, Cai, Ye, Xie, Liu, Zhou, Zhu, Liu, Wang, Qian (CR38) 2019; 10 Gong, Cheng, Liu, Zhang, Feng, Ye, Zeng, Xie, Liu, Li (CR44) 2015; 5 Zhang, Wang, Pohl, Rellinghaus, Dong, Liu, Zhuang, Feng (CR40) 2016; 55 Kibsgaard, Chen, Reinecke, Jaramillo (CR22) 2012; 11 Ma, Qi, Chen, Bao, Yin, Wu, Luo, Wei, Zhang, Zhang (CR34) 2014; 6 Wu, Xia, Yu, Yu, Lou (CR52) 2015; 6 Zhao, Li, Rui, Chen, Dou, Sun (CR47) 2018; 24 Xiong, Cai, Shi, Zhang, Li, Yang, Feng, Cheng (CR66) 2017; 5 Kong, Wang, Cha, Pasta, Koski, Yao, Cui (CR42) 2013; 13 Wang, Lu, Kong, Sun, Hymel, Cui (CR36) 2014; 8 Lin, Liu, Shi, Guo, Tang, Gao (CR54) 2016; 26 Geng, Zhang, Han, Li, Yang, Benamara, Chen, Zhu (CR8) 2017; 17 Tsai, Chan, Abild-Pedersen, Norskov (CR41) 2014; 16 Wang, Kong, Zhao, Wang, Selomulya (CR4) 2017; 15 Xu, Peng, Tan, Ang, Tan, Zhang, Yan (CR43) 2014; 2 Yu, Yang, Hu, He, Chen, He (CR15) 2019; 3 Zhang, Wang, Liu, Liu, Dong, Zhuang, Chen, Feng (CR37) 2016; 9 Shi, Zhang (CR5) 2016; 45 Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zschech, Feng (CR19) 2017; 8 Bonde, Moses, Jaramillo, Nørskovb, Chorkendorff (CR26) 2008; 140 Sun, Wang, Zhang, Hua, Li, Liu (CR11) 2018; 6 Cao, Veith, Neuefeind, Adzic, Khalifah (CR67) 2013; 135 Yan, Ge, Liu, Wang, Lee, Wang (CR30) 2013; 5 Sun, Dai, Guo, Wu, Hu, Zhao, Zeng, Xie (CR28) 2014; 6 Zou, Zhang (CR6) 2015; 44 Huang, Gong, Song, Feng, Nie, Zhao, Wang, Zeng, Zhong, Li (CR51) 2016; 10 Jin, Shen (CR71) 2015; 3 Prins, Bussell (CR56) 2012; 142 Ren, Li, Jin, Cui, Wang (CR73) 2017; 5 Lin, Zhou, Gao, Yao, Zhang, Xu, Zheng, Jiang, Yu, Li, Shi, Wen, Ma (CR9) 2017; 544 Lukowski, Daniel, Meng, Forticaux, Li, Jin (CR24) 2013; 135 Fang, Gao, Dong, Xia, Yip, Qin, Qu, Ho (CR18) 2016; 27 Zhang, Liu, Wang, Ruan, Ji, Xu, Chen, Wan, Miao, Jiang (CR39) 2017; 37 Vrubel, Hu (CR48) 2012; 51 Park, Encinas, Scheifers, Zhang, Fokwa (CR61) 2017; 56 He, Hartmann, Lee, Hwang, Chen, Manthiram (CR13) 2019; 12 Chen, Zhang, Jiang, Zhang, Dai, Wan, Hu (CR50) 2016; 10 Wu, Wang, Sun, Liu, Li (CR70) 2015; 7 Yu, Chen, Wang, Chen, Wang, Zhang, He, He (CR14) 2020; 447 Ou, Tian, Liu, Zhang, Xiao (CR76) 2018; 6 Ji, Weng, Li, Zhang, Gu (CR3) 2020 Lin, Shi, He, Yu, Wang, Gao, Tang (CR55) 2016; 7 Xiao, Sk, Thia, Ge, Lim, Wang, Lim, Wang (CR57) 2014; 7 Jaramillo, Jørgensen, Bonde, Nielsen, Horch, Chorkendorff (CR16) 2007; 317 Xu, Sun, Chen, Zhao, Yang, Zhang, Li (CR75) 2018; 43 He, Li, Lv, Wen, Chen, Zhang, Li, Qin, He (CR12) 2016; 215 Hinnemann, Moses, Bonde, Jørgensen, Nielsen, Horch, Chorkendorff, Nørskov (CR21) 2005; 127 Zhang, Zhou, Pan, Liang, Wang (CR60) 2018; 28 Zheng, Xu, Yan, Wang, Wang, Yang (CR32) 2014; 26 Zhu, Du, Zhang, Zou, Yang, Fu, Yao (CR31) 2014; 2 Wan, Regmi, Leonard (CR53) 2014; 53 Zhao, Wang, Wang, Rui, Chen, Yu, Ma, Dou, Sun (CR46) 2019; 14 2017; 5 2017; 7 2017; 8 2013; 25 2019; 10 2019; 12 2019; 14 2014; 26 2020; 447 1984; 29 2016; 304 2017; 355 2013; 5 2018; 43 2012; 11 2008; 140 2012; 51 2018; 6 2014; 5 2014; 2 2017; 37 2013; 13 2015; 44 2014; 16 2014; 8 2014; 7 2014; 6 2012; 22 2018; 37 2016; 45 2014; 53 2012; 142 2018; 28 2015; 6 2019; 3 2015; 5 2015; 3 2016; 10 2019; 38 2017; 29 2015; 7 2017; 139 2016; 55 2018; 24 2016; 4 2016; 7 2007; 317 2017; 15 2015; 115 2017; 17 2020 2005; 127 2017; 56 2013; 135 2015; 119 2016; 215 2018; 11 2016; 28 2016; 27 2016; 26 2017; 544 2016; 9 2018; 57 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 Bonde J (e_1_2_6_27_1) 2008; 140 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – volume: 51 start-page: 12703 issue: 51 year: 2012 ident: CR48 article-title: Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions publication-title: Angew Chem Int Ed – volume: 11 start-page: 963 issue: 11 year: 2012 ident: CR22 article-title: Engineering the surface structure of MoS to preferentially expose active edge sites for electrocatalysis publication-title: Nat Mater – volume: 135 start-page: 17881 issue: 47 year: 2013 ident: CR29 article-title: Controllable disorder engineering in oxygen-incorporated MoS ultrathin nanosheets for efficient hydrogen evolution publication-title: J Am Chem Soc – volume: 27 start-page: 247 year: 2016 ident: CR18 article-title: Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions publication-title: Nano Energy – volume: 10 start-page: 8851 issue: 9 year: 2016 ident: CR50 article-title: Pomegranate-like N, P-doped Mo C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution publication-title: ACS Nano – volume: 3 start-page: 131 issue: 1 year: 2015 ident: CR35 article-title: Vertically oriented MoS and WS nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes publication-title: J Mater Chem A – volume: 215 start-page: 12 year: 2016 ident: CR12 article-title: Three-dimensional hierarchically structured aerogels constructed with layered MoS /graphene nanosheets as free-standing anodes for high-performance lithium ion batteries publication-title: Electrochim Acta – volume: 13 start-page: 6222 issue: 12 year: 2013 ident: CR25 article-title: Conducting MoS nanosheets as catalysts for hydrogen evolution reaction publication-title: Nano Lett – volume: 5 start-page: 24193 issue: 46 year: 2017 ident: CR66 article-title: Salt-templated synthesis of defect-rich MoN nanosheets for boosted hydrogen evolution reaction publication-title: J Mater Chem A – volume: 7 start-page: 7040 issue: 16 year: 2015 ident: CR70 article-title: Flawed MoO belts transformed from MoO on a graphene template for the hydrogen evolution reaction publication-title: Nanoscale – volume: 2 start-page: 5597 issue: 16 year: 2014 ident: CR43 article-title: Ultrathin S-doped MoSe nanosheets for efficient hydrogen evolution publication-title: J Mater Chem A – volume: 28 start-page: 1804600 issue: 43 year: 2018 ident: CR60 article-title: General construction of molybdenum-based nanowire arrays for pH-universal hydrogen evolution electrocatalysis publication-title: Adv Funct Mater – volume: 544 start-page: 80 issue: 7648 year: 2017 ident: CR9 article-title: Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts publication-title: Nature – volume: 12 start-page: 344 issue: 1 year: 2019 ident: CR13 article-title: Freestanding 1T MoS /graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries publication-title: Energy Environ Sci – volume: 127 start-page: 5308 issue: 15 year: 2005 ident: CR21 article-title: Biomimetic hydrogen evolution: MoS nanoparticles as catalyst for hydrogen evolution publication-title: J Am Chem Soc – volume: 51 start-page: 6131 issue: 25 year: 2012 ident: CR64 article-title: Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets publication-title: Angew Chem Int Ed – volume: 7 start-page: 433 issue: 12 year: 2017 ident: CR77 article-title: Self-supported Ni(P, O) ·MoO nanowire array on nickel foam as an efficient and durable electrocatalyst for alkaline hydrogen evolution publication-title: Nanomaterials – volume: 38 start-page: 1 issue: 1 year: 2019 ident: CR10 article-title: Recovery and regeneration of Al O with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al O publication-title: Rare Met – volume: 9 start-page: 2789 issue: 9 year: 2016 ident: CR37 article-title: Engineering water dissociation sites in MoS nanosheets for accelerated electrocatalytic hydrogen production publication-title: Energy Environ Sci – volume: 5 start-page: 7768 issue: 17 year: 2013 ident: CR30 article-title: Facile synthesis of low crystalline MoS nanosheet-coated CNTs for enhanced hydrogen evolution reaction publication-title: Nanoscale – volume: 55 start-page: 12854 issue: 41 year: 2016 ident: CR59 article-title: Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution publication-title: Angew Chem Int Ed – volume: 22 start-page: 128 year: 2012 ident: CR33 article-title: Nanocomposite of MoS on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution publication-title: Electrochim Commun – volume: 16 start-page: 13156 issue: 26 year: 2014 ident: CR41 article-title: Active edge sites in MoSe and WSe catalysts for the hydrogen evolution reaction: a density functional study publication-title: Phys Chem Chem Phys – volume: 10 start-page: 1217 issue: 1 year: 2019 ident: CR38 article-title: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability publication-title: Nat Commun – volume: 57 start-page: 496 issue: 2 year: 2018 ident: CR63 article-title: MoB/g-C N interface materials as a schottky catalyst to boost hydrogen evolution publication-title: Angew Chem Int Ed – volume: 14 start-page: 301 issue: 2 year: 2019 ident: CR46 article-title: Heteroatom-doped MoSe nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting publication-title: Chem Asian J – volume: 7 start-page: 387 issue: 1 year: 2014 ident: CR49 article-title: A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction publication-title: Energy Environ Sci – volume: 115 start-page: 11941 issue: 21 year: 2015 ident: CR7 article-title: Electrochemistry of nanostructured layered transition-metal dichalcogenides publication-title: Chem Rev – volume: 304 start-page: 146 year: 2016 ident: CR69 article-title: MoO nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst publication-title: J Power Sour – volume: 25 start-page: 5807 issue: 40 year: 2013 ident: CR23 article-title: Defect-rich MoS ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution publication-title: Adv Mater – volume: 26 start-page: 2344 issue: 7 year: 2014 ident: CR32 article-title: Space-confined growth of MoS nanosheets within graphite: the layered hybrid of MoS and graphene as an active catalyst for hydrogen evolution reaction publication-title: Chem Mater – volume: 6 start-page: 6512 issue: 1 year: 2015 ident: CR52 article-title: Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production publication-title: Nat Commun – volume: 53 start-page: 6407 issue: 25 year: 2014 ident: CR53 article-title: Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction publication-title: Angew Chem Int Ed – volume: 7 start-page: 2624 issue: 8 year: 2014 ident: CR57 article-title: Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction publication-title: Energy Environ Sci – volume: 44 start-page: 5148 issue: 15 year: 2015 ident: CR6 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem Soc Rev – volume: 8 start-page: 4940 issue: 5 year: 2014 ident: CR36 article-title: Electrochemical tuning of MoS nanoparticles on three-dimensional substrate for efficient hydrogen evolution publication-title: ACS Nano – volume: 5 start-page: 4615 issue: 12 year: 2014 ident: CR65 article-title: Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution publication-title: Chem Sci – volume: 13 start-page: 1341 issue: 3 year: 2013 ident: CR42 article-title: Synthesis of MoS and MoSe films with vertically aligned layers publication-title: Nano Lett – year: 2020 ident: CR3 article-title: Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review publication-title: Rare Met doi: 10.1007/s12598-020-01369-6 – volume: 56 start-page: 5575 issue: 20 year: 2017 ident: CR61 article-title: Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction publication-title: Angew Chem Int Ed – volume: 29 start-page: 1700311 issue: 28 year: 2017 ident: CR45 article-title: Synergistic phase and disorder engineering in 1T-MoSe nanosheets for enhanced hydrogen-evolution reaction publication-title: Adv Mater – volume: 24 start-page: 11158 issue: 43 year: 2018 ident: CR47 article-title: CoSe /MoSe heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction publication-title: Chem Eur J – volume: 140 start-page: 9 year: 2008 ident: CR26 article-title: Hydrogen evolution on nano-particulate transition metal sulfide publication-title: Faraday Discuss – volume: 5 start-page: 24453 issue: 46 year: 2017 ident: CR73 article-title: Integrated 3D self-supported Ni decorated MoO nanowires as highly efficient electrocatalysts for ultra-highly stable and large-current-density hydrogen evolution publication-title: J Mater Chem A – volume: 317 start-page: 100 issue: 5834 year: 2007 ident: CR16 article-title: Identification of active edge sites for electrochemical H evolution from MoS nanocatalysts publication-title: Science – volume: 135 start-page: 10274 issue: 28 year: 2013 ident: CR24 article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets publication-title: J Am Chem Soc – volume: 43 start-page: 20721 issue: 45 year: 2018 ident: CR75 article-title: Facile and large-scale preparation of Co/Ni-MoO composite as high-performance electrocatalyst for hydrogen evolution reaction publication-title: Int J Hydrog Energy – volume: 28 start-page: 3785 issue: 19 year: 2016 ident: CR72 article-title: Porous MoO nanosheets as non-noble bifunctional electrocatalysts for overall water splitting publication-title: Adv Mater – volume: 6 start-page: 13419 issue: 27 year: 2018 ident: CR11 article-title: Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS /N-doped carbon nanowires publication-title: J Mater Chem A – volume: 5 start-page: 246 issue: 1 year: 2015 ident: CR27 article-title: Rational design of MoS catalysts: tuning the structure and activity via transition metal doping publication-title: Catal Sci Technol – volume: 5 start-page: 2213 issue: 4 year: 2015 ident: CR44 article-title: Ultrathin MoS Se alloy nanoflakes for electrocatalytic hydrogen evolution reaction publication-title: ACS Catal – volume: 26 start-page: 5702 issue: 32 year: 2014 ident: CR58 article-title: Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water publication-title: Adv Mater – volume: 135 start-page: 19186 issue: 51 year: 2013 ident: CR67 article-title: Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction publication-title: J Am Chem Soc – volume: 17 start-page: 1825 issue: 3 year: 2017 ident: CR8 article-title: Two-dimensional water-coupled metallic MoS with nanochannels for ultrafast supercapacitors publication-title: Nano Lett – volume: 3 start-page: 1800287 issue: 2 year: 2019 ident: CR15 article-title: Mo C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage publication-title: Small Methods – volume: 142 start-page: 1413 issue: 12 year: 2012 ident: CR56 article-title: Metal phosphides: preparation, characterization and catalytic reactivity publication-title: Catal Lett – volume: 6 start-page: 5217 issue: 12 year: 2018 ident: CR76 article-title: Bimetallic Co Mo O suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte publication-title: J Mater Chem A – volume: 11 start-page: 3198 issue: 18 year: 2018 ident: CR68 article-title: Bimetallic NiMoN nanowires with preferential reactive facet: an ultra-efficient bifunctional electrocatalyst for overall water splitting publication-title: Chemsuschem – volume: 37 start-page: 459 issue: 6 year: 2018 ident: CR2 article-title: Rechargeable solid-state Li-air batteries: a status report publication-title: Rare Met – volume: 3 start-page: 20080 issue: 40 year: 2015 ident: CR71 article-title: Nanoflower-like metallic conductive MoO as a high-performance non-precious metal electrocatalyst for the hydrogen evolution reaction publication-title: J Mater Chem A – volume: 447 start-page: 227364 year: 2020 ident: CR14 article-title: 1T-MoS nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries publication-title: J Power Sour – volume: 6 start-page: 5624 issue: 11 year: 2014 ident: CR34 article-title: MoS nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction publication-title: Nanoscale – volume: 26 start-page: 5590 issue: 31 year: 2016 ident: CR54 article-title: Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution publication-title: Adv Funct Mater – volume: 4 start-page: 1647 issue: 5 year: 2016 ident: CR74 article-title: P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction publication-title: J Mater Chem A – volume: 10 start-page: 11337 issue: 12 year: 2016 ident: CR51 article-title: Mo C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution publication-title: ACS Nano – volume: 119 start-page: 204 year: 2015 ident: CR20 article-title: Effect of hydrogen on the growth of MoS thin layers by thermal decomposition method publication-title: Vacuum – volume: 8 start-page: 15437 issue: 1 year: 2017 ident: CR19 article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics publication-title: Nat Commun – volume: 37 start-page: 74 year: 2017 ident: CR39 article-title: Interface engineering: the Ni(OH) /MoS heterostructure for highly efficient alkaline hydrogen evolution publication-title: Nano Energy – volume: 7 start-page: 3399 issue: 5 year: 2016 ident: CR55 article-title: Heteronanowires of MoC-Mo C as efficient electrocatalysts for hydrogen evolution reaction publication-title: Chem Sci – volume: 29 start-page: 1551 issue: 11 year: 1984 ident: CR17 article-title: Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions publication-title: Electrochim Acta – volume: 45 start-page: 1529 issue: 6 year: 2016 ident: CR5 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem Soc Rev – volume: 6 start-page: 8359 issue: 14 year: 2014 ident: CR28 article-title: Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution publication-title: Nanoscale – volume: 139 start-page: 12915 issue: 37 year: 2017 ident: CR62 article-title: Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo B for hydrogen evolution publication-title: J Am Chem Soc – volume: 2 start-page: 7680 issue: 21 year: 2014 ident: CR31 article-title: The design and construction of 3D rose-petal-shaped MoS hierarchical nanostructures with structure-sensitive properties publication-title: J Mater Chem A – volume: 55 start-page: 6701 issue: 23 year: 2016 ident: CR40 article-title: Interface engineering of MoS /Ni S heterostructures for highly enhanced electrochemical overall-water-splitting activity publication-title: Angew Chem Int Ed – volume: 355 start-page: eaad4998 issue: 6321 year: 2017 ident: CR1 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 15 start-page: 26 year: 2017 ident: CR4 article-title: Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting publication-title: Nano Today – volume: 119 start-page: 204 year: 2015 article-title: Effect of hydrogen on the growth of MoS thin layers by thermal decomposition method publication-title: Vacuum – volume: 37 start-page: 74 year: 2017 article-title: Interface engineering: the Ni(OH) /MoS heterostructure for highly efficient alkaline hydrogen evolution publication-title: Nano Energy – volume: 28 start-page: 1804600 issue: 43 year: 2018 article-title: General construction of molybdenum‐based nanowire arrays for pH‐universal hydrogen evolution electrocatalysis publication-title: Adv Funct Mater – volume: 6 start-page: 6512 issue: 1 year: 2015 article-title: Porous molybdenum carbide nano‐octahedrons synthesized via confined carburization in metal‐organic frameworks for efficient hydrogen production publication-title: Nat Commun – volume: 38 start-page: 1 issue: 1 year: 2019 article-title: Recovery and regeneration of Al O with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al O publication-title: Rare Met – volume: 3 start-page: 20080 issue: 40 year: 2015 article-title: Nanoflower‐like metallic conductive MoO as a high‐performance non‐precious metal electrocatalyst for the hydrogen evolution reaction publication-title: J Mater Chem A – volume: 7 start-page: 3399 issue: 5 year: 2016 article-title: Heteronanowires of MoC‐Mo C as efficient electrocatalysts for hydrogen evolution reaction publication-title: Chem Sci – volume: 56 start-page: 5575 issue: 20 year: 2017 article-title: Boron‐dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction publication-title: Angew Chem Int Ed – volume: 6 start-page: 8359 issue: 14 year: 2014 article-title: Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution publication-title: Nanoscale – volume: 8 start-page: 15437 issue: 1 year: 2017 article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics publication-title: Nat Commun – volume: 139 start-page: 12915 issue: 37 year: 2017 article-title: Graphene‐ and phosphorene‐like boron layers with contrasting activities in highly active Mo B for hydrogen evolution publication-title: J Am Chem Soc – volume: 6 start-page: 5217 issue: 12 year: 2018 article-title: Bimetallic Co Mo O suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte publication-title: J Mater Chem A – volume: 215 start-page: 12 year: 2016 article-title: Three‐dimensional hierarchically structured aerogels constructed with layered MoS /graphene nanosheets as free‐standing anodes for high‐performance lithium ion batteries publication-title: Electrochim Acta – volume: 5 start-page: 246 issue: 1 year: 2015 article-title: Rational design of MoS catalysts: tuning the structure and activity via transition metal doping publication-title: Catal Sci Technol – volume: 51 start-page: 12703 issue: 51 year: 2012 article-title: Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions publication-title: Angew Chem Int Ed – volume: 26 start-page: 5590 issue: 31 year: 2016 article-title: Cobalt‐doping in molybdenum‐carbide nanowires toward efficient electrocatalytic hydrogen evolution publication-title: Adv Funct Mater – volume: 140 start-page: 9 year: 2008 article-title: Hydrogen evolution on nano‐particulate transition metal sulfide publication-title: Faraday Discuss – volume: 10 start-page: 1217 issue: 1 year: 2019 article-title: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability publication-title: Nat Commun – volume: 115 start-page: 11941 issue: 21 year: 2015 article-title: Electrochemistry of nanostructured layered transition‐metal dichalcogenides publication-title: Chem Rev – volume: 544 start-page: 80 issue: 7648 year: 2017 article-title: Low‐temperature hydrogen production from water and methanol using Pt/α‐MoC catalysts publication-title: Nature – volume: 135 start-page: 19186 issue: 51 year: 2013 article-title: Mixed close‐packed cobalt molybdenum nitrides as non‐noble metal electrocatalysts for the hydrogen evolution reaction publication-title: J Am Chem Soc – volume: 55 start-page: 12854 issue: 41 year: 2016 article-title: Porous molybdenum phosphide nano‐octahedrons derived from confined phosphorization in UIO‐66 for efficient hydrogen evolution publication-title: Angew Chem Int Ed – volume: 37 start-page: 459 issue: 6 year: 2018 article-title: Rechargeable solid‐state Li‐air batteries: a status report publication-title: Rare Met – volume: 5 start-page: 24453 issue: 46 year: 2017 article-title: Integrated 3D self‐supported Ni decorated MoO nanowires as highly efficient electrocatalysts for ultra‐highly stable and large‐current‐density hydrogen evolution publication-title: J Mater Chem A – volume: 22 start-page: 128 year: 2012 article-title: Nanocomposite of MoS on ordered mesoporous carbon nanospheres: a highly active catalyst for electrochemical hydrogen evolution publication-title: Electrochim Commun – volume: 45 start-page: 1529 issue: 6 year: 2016 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem Soc Rev – volume: 11 start-page: 3198 issue: 18 year: 2018 article-title: Bimetallic NiMoN nanowires with preferential reactive facet: an ultra‐efficient bifunctional electrocatalyst for overall water splitting publication-title: Chemsuschem – volume: 7 start-page: 387 issue: 1 year: 2014 article-title: A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction publication-title: Energy Environ Sci – volume: 14 start-page: 301 issue: 2 year: 2019 article-title: Heteroatom‐doped MoSe nanosheets with enhanced hydrogen evolution kinetics for alkaline water splitting publication-title: Chem Asian J – volume: 26 start-page: 5702 issue: 32 year: 2014 article-title: Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water publication-title: Adv Mater – volume: 25 start-page: 5807 issue: 40 year: 2013 article-title: Defect‐rich MoS ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution publication-title: Adv Mater – volume: 53 start-page: 6407 issue: 25 year: 2014 article-title: Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction publication-title: Angew Chem Int Ed – volume: 11 start-page: 963 issue: 11 year: 2012 article-title: Engineering the surface structure of MoS to preferentially expose active edge sites for electrocatalysis publication-title: Nat Mater – volume: 57 start-page: 496 issue: 2 year: 2018 article-title: MoB/g‐C N interface materials as a schottky catalyst to boost hydrogen evolution publication-title: Angew Chem Int Ed – volume: 5 start-page: 24193 issue: 46 year: 2017 article-title: Salt‐templated synthesis of defect‐rich MoN nanosheets for boosted hydrogen evolution reaction publication-title: J Mater Chem A – volume: 135 start-page: 17881 issue: 47 year: 2013 article-title: Controllable disorder engineering in oxygen‐incorporated MoS ultrathin nanosheets for efficient hydrogen evolution publication-title: J Am Chem Soc – volume: 10 start-page: 11337 issue: 12 year: 2016 article-title: Mo C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution publication-title: ACS Nano – volume: 3 start-page: 131 issue: 1 year: 2015 article-title: Vertically oriented MoS and WS nanosheets directly grown on carbon cloth as efficient and stable 3‐dimensional hydrogen‐evolving cathodes publication-title: J Mater Chem A – volume: 8 start-page: 4940 issue: 5 year: 2014 article-title: Electrochemical tuning of MoS nanoparticles on three‐dimensional substrate for efficient hydrogen evolution publication-title: ACS Nano – volume: 55 start-page: 6701 issue: 23 year: 2016 article-title: Interface engineering of MoS /Ni S heterostructures for highly enhanced electrochemical overall‐water‐splitting activity publication-title: Angew Chem Int Ed – volume: 7 start-page: 2624 issue: 8 year: 2014 article-title: Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction publication-title: Energy Environ Sci – volume: 16 start-page: 13156 issue: 26 year: 2014 article-title: Active edge sites in MoSe and WSe catalysts for the hydrogen evolution reaction: a density functional study publication-title: Phys Chem Chem Phys – volume: 15 start-page: 26 year: 2017 article-title: Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting publication-title: Nano Today – volume: 3 start-page: 1800287 issue: 2 year: 2019 article-title: Mo C nanodots anchored on N‐doped porous CNT microspheres as electrode for efficient Li‐ion storage publication-title: Small Methods – volume: 10 start-page: 8851 issue: 9 year: 2016 article-title: Pomegranate‐like N, P‐doped Mo C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution publication-title: ACS Nano – volume: 12 start-page: 344 issue: 1 year: 2019 article-title: Freestanding 1T MoS /graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries publication-title: Energy Environ Sci – volume: 2 start-page: 5597 issue: 16 year: 2014 article-title: Ultrathin S‐doped MoSe nanosheets for efficient hydrogen evolution publication-title: J Mater Chem A – volume: 27 start-page: 247 year: 2016 article-title: Hierarchical NiMo‐based 3D electrocatalysts for highly‐efficient hydrogen evolution in alkaline conditions publication-title: Nano Energy – volume: 5 start-page: 2213 issue: 4 year: 2015 article-title: Ultrathin MoS Se alloy nanoflakes for electrocatalytic hydrogen evolution reaction publication-title: ACS Catal – volume: 6 start-page: 13419 issue: 27 year: 2018 article-title: Ultrafast lithium energy storage enabled by interfacial construction of interlayer‐expanded MoS /N‐doped carbon nanowires publication-title: J Mater Chem A – volume: 142 start-page: 1413 issue: 12 year: 2012 article-title: Metal phosphides: preparation, characterization and catalytic reactivity publication-title: Catal Lett – volume: 51 start-page: 6131 issue: 25 year: 2012 article-title: Hydrogen‐evolution catalysts based on non‐noble metal nickel‐molybdenum nitride nanosheets publication-title: Angew Chem Int Ed – volume: 17 start-page: 1825 issue: 3 year: 2017 article-title: Two‐dimensional water‐coupled metallic MoS with nanochannels for ultrafast supercapacitors publication-title: Nano Lett – volume: 29 start-page: 1700311 issue: 28 year: 2017 article-title: Synergistic phase and disorder engineering in 1T‐MoSe nanosheets for enhanced hydrogen‐evolution reaction publication-title: Adv Mater – volume: 304 start-page: 146 year: 2016 article-title: MoO nanoparticles on reduced graphene oxide/polyimide‐carbon nanotube film as efficient hydrogen evolution electrocatalyst publication-title: J Power Sour – volume: 7 start-page: 433 issue: 12 year: 2017 article-title: Self‐supported Ni(P, O) ·MoO nanowire array on nickel foam as an efficient and durable electrocatalyst for alkaline hydrogen evolution publication-title: Nanomaterials – volume: 447 start-page: 227364 year: 2020 article-title: 1T‐MoS nanotubes wrapped with N‐doped graphene as highly‐efficient absorbent and electrocatalyst for Li–S batteries publication-title: J Power Sour – volume: 43 start-page: 20721 issue: 45 year: 2018 article-title: Facile and large‐scale preparation of Co/Ni‐MoO composite as high‐performance electrocatalyst for hydrogen evolution reaction publication-title: Int J Hydrog Energy – volume: 317 start-page: 100 issue: 5834 year: 2007 article-title: Identification of active edge sites for electrochemical H evolution from MoS nanocatalysts publication-title: Science – volume: 5 start-page: 7768 issue: 17 year: 2013 article-title: Facile synthesis of low crystalline MoS nanosheet‐coated CNTs for enhanced hydrogen evolution reaction publication-title: Nanoscale – volume: 6 start-page: 5624 issue: 11 year: 2014 article-title: MoS nanoflower‐decorated reduced graphene oxide paper for high‐performance hydrogen evolution reaction publication-title: Nanoscale – volume: 13 start-page: 6222 issue: 12 year: 2013 article-title: Conducting MoS nanosheets as catalysts for hydrogen evolution reaction publication-title: Nano Lett – volume: 24 start-page: 11158 issue: 43 year: 2018 article-title: CoSe /MoSe heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction publication-title: Chem Eur J – volume: 7 start-page: 7040 issue: 16 year: 2015 article-title: Flawed MoO belts transformed from MoO on a graphene template for the hydrogen evolution reaction publication-title: Nanoscale – year: 2020 – volume: 29 start-page: 1551 issue: 11 year: 1984 article-title: Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions publication-title: Electrochim Acta – volume: 127 start-page: 5308 issue: 15 year: 2005 article-title: Biomimetic hydrogen evolution: MoS nanoparticles as catalyst for hydrogen evolution publication-title: J Am Chem Soc – volume: 13 start-page: 1341 issue: 3 year: 2013 article-title: Synthesis of MoS and MoSe films with vertically aligned layers publication-title: Nano Lett – volume: 5 start-page: 4615 issue: 12 year: 2014 article-title: Atomically‐thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution publication-title: Chem Sci – volume: 355 start-page: eaad4998 issue: 6321 year: 2017 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 44 start-page: 5148 issue: 15 year: 2015 article-title: Noble metal‐free hydrogen evolution catalysts for water splitting publication-title: Chem Soc Rev – volume: 4 start-page: 1647 issue: 5 year: 2016 article-title: P doped molybdenum dioxide on Mo foil with high electrocatalytic activity for the hydrogen evolution reaction publication-title: J Mater Chem A – volume: 2 start-page: 7680 issue: 21 year: 2014 article-title: The design and construction of 3D rose‐petal‐shaped MoS hierarchical nanostructures with structure‐sensitive properties publication-title: J Mater Chem A – volume: 26 start-page: 2344 issue: 7 year: 2014 article-title: Space‐confined growth of MoS nanosheets within graphite: the layered hybrid of MoS and graphene as an active catalyst for hydrogen evolution reaction publication-title: Chem Mater – volume: 135 start-page: 10274 issue: 28 year: 2013 article-title: Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS nanosheets publication-title: J Am Chem Soc – volume: 9 start-page: 2789 issue: 9 year: 2016 article-title: Engineering water dissociation sites in MoS nanosheets for accelerated electrocatalytic hydrogen production publication-title: Energy Environ Sci – volume: 28 start-page: 3785 issue: 19 year: 2016 article-title: Porous MoO nanosheets as non‐noble bifunctional electrocatalysts for overall water splitting publication-title: Adv Mater – ident: e_1_2_6_42_1 doi: 10.1039/C4CP01237B – ident: e_1_2_6_40_1 doi: 10.1016/j.nanoen.2017.05.011 – ident: e_1_2_6_55_1 doi: 10.1002/adfm.201600915 – ident: e_1_2_6_37_1 doi: 10.1021/nn500959v – ident: e_1_2_6_15_1 doi: 10.1016/j.jpowsour.2019.227364 – ident: e_1_2_6_48_1 doi: 10.1002/chem.201801693 – ident: e_1_2_6_63_1 doi: 10.1021/jacs.7b07247 – ident: e_1_2_6_74_1 doi: 10.1039/C7TA08090E – ident: e_1_2_6_31_1 doi: 10.1039/c3nr02994h – ident: e_1_2_6_49_1 doi: 10.1002/anie.201207111 – ident: e_1_2_6_72_1 doi: 10.1039/C5TA06018D – ident: e_1_2_6_20_1 doi: 10.1038/ncomms15437 – ident: e_1_2_6_14_1 doi: 10.1039/C8EE03252A – ident: e_1_2_6_4_1 – ident: e_1_2_6_59_1 doi: 10.1002/adma.201401692 – volume: 140 start-page: 9 year: 2008 ident: e_1_2_6_27_1 article-title: Hydrogen evolution on nano‐particulate transition metal sulfide publication-title: Faraday Discuss – ident: e_1_2_6_70_1 doi: 10.1016/j.jpowsour.2015.11.013 – ident: e_1_2_6_56_1 doi: 10.1039/C6SC00077K – ident: e_1_2_6_21_1 doi: 10.1016/j.vacuum.2015.05.023 – ident: e_1_2_6_57_1 doi: 10.1007/s10562-012-0929-7 – ident: e_1_2_6_6_1 doi: 10.1039/C5CS00434A – ident: e_1_2_6_34_1 doi: 10.1016/j.elecom.2012.06.009 – ident: e_1_2_6_50_1 doi: 10.1039/C3EE42441C – ident: e_1_2_6_66_1 doi: 10.1039/C4SC02019G – ident: e_1_2_6_41_1 doi: 10.1002/anie.201602237 – ident: e_1_2_6_29_1 doi: 10.1039/C4NR01894J – ident: e_1_2_6_52_1 doi: 10.1021/acsnano.6b06580 – ident: e_1_2_6_2_1 doi: 10.1126/science.aad4998 – ident: e_1_2_6_12_1 doi: 10.1039/C8TA04852E – ident: e_1_2_6_43_1 doi: 10.1021/nl400258t – ident: e_1_2_6_8_1 doi: 10.1021/acs.chemrev.5b00287 – ident: e_1_2_6_9_1 doi: 10.1021/acs.nanolett.6b05134 – ident: e_1_2_6_18_1 doi: 10.1016/0013-4686(84)85008-2 – ident: e_1_2_6_78_1 doi: 10.3390/nano7120433 – ident: e_1_2_6_35_1 doi: 10.1039/c3nr04975b – ident: e_1_2_6_69_1 doi: 10.1002/cssc.201801337 – ident: e_1_2_6_67_1 doi: 10.1039/C7TA07566A – ident: e_1_2_6_16_1 doi: 10.1002/smtd.201800287 – ident: e_1_2_6_5_1 doi: 10.1016/j.nantod.2017.06.006 – ident: e_1_2_6_45_1 doi: 10.1021/cs501970w – ident: e_1_2_6_39_1 doi: 10.1038/s41467-019-09210-0 – ident: e_1_2_6_26_1 doi: 10.1021/nl403661s – ident: e_1_2_6_62_1 doi: 10.1002/anie.201611756 – ident: e_1_2_6_46_1 doi: 10.1002/adma.201700311 – ident: e_1_2_6_51_1 doi: 10.1021/acsnano.6b04725 – ident: e_1_2_6_54_1 doi: 10.1002/anie.201402998 – ident: e_1_2_6_17_1 doi: 10.1126/science.1141483 – ident: e_1_2_6_60_1 doi: 10.1002/anie.201604315 – ident: e_1_2_6_75_1 doi: 10.1039/C5TA08458J – ident: e_1_2_6_22_1 doi: 10.1021/ja0504690 – ident: e_1_2_6_11_1 doi: 10.1007/s12598-018-1164-1 – ident: e_1_2_6_3_1 doi: 10.1007/s12598-018-1036-8 – ident: e_1_2_6_44_1 doi: 10.1039/C4TA00458B – ident: e_1_2_6_68_1 doi: 10.1021/ja4081056 – ident: e_1_2_6_73_1 doi: 10.1002/adma.201506314 – ident: e_1_2_6_47_1 doi: 10.1002/asia.201801645 – ident: e_1_2_6_28_1 doi: 10.1039/C4CY01162G – ident: e_1_2_6_7_1 doi: 10.1039/C4CS00448E – ident: e_1_2_6_10_1 doi: 10.1038/nature21672 – ident: e_1_2_6_32_1 doi: 10.1039/c4ta01004c – ident: e_1_2_6_38_1 doi: 10.1039/C6EE01786J – ident: e_1_2_6_71_1 doi: 10.1039/C4NR06624C – ident: e_1_2_6_19_1 doi: 10.1016/j.nanoen.2016.07.005 – ident: e_1_2_6_77_1 doi: 10.1039/C7TA11401J – ident: e_1_2_6_36_1 doi: 10.1039/C4TA04858J – ident: e_1_2_6_61_1 doi: 10.1002/adfm.201804600 – ident: e_1_2_6_64_1 doi: 10.1002/anie.201708748 – ident: e_1_2_6_65_1 doi: 10.1002/anie.201200699 – ident: e_1_2_6_53_1 doi: 10.1038/ncomms7512 – ident: e_1_2_6_76_1 doi: 10.1016/j.ijhydene.2018.09.159 – ident: e_1_2_6_13_1 doi: 10.1016/j.electacta.2016.08.068 – ident: e_1_2_6_58_1 doi: 10.1039/C4EE00957F – ident: e_1_2_6_24_1 doi: 10.1002/adma.201302685 – ident: e_1_2_6_30_1 doi: 10.1021/ja408329q – ident: e_1_2_6_23_1 doi: 10.1038/nmat3439 – ident: e_1_2_6_25_1 doi: 10.1021/ja404523s – ident: e_1_2_6_33_1 doi: 10.1021/cm500347r |
| SSID | ssj0044660 |
| Score | 2.6072192 |
| SecondaryResourceType | review_article |
| Snippet | Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low-cost and... Water electrolysis has been considered as a sustainable way for producing renewable energy of hydrogen. However, this process requires a low‐cost and... |
| SourceID | proquest crossref wiley springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 335 |
| SubjectTerms | Biomaterials Borides Catalysts Catalytic activity Chemistry and Materials Science Electrocatalysts Electrolysis Energy Hydrogen evolution reaction Hydrogen evolution reactions Hydrogen-based energy Materials Engineering Materials Science Metallic Materials Molybdenum Molybdenum base alloys Molybdenum carbide Molybdenum oxides Molybdenum sulfides Mo‐based materials Nanoscale Science and Technology Phosphides Physical Chemistry Selenides Water splitting |
| Title | A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction |
| URI | https://link.springer.com/article/10.1007/s12598-020-01384-7 https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs12598-020-01384-7 https://www.proquest.com/docview/2391222631 |
| Volume | 39 |
| WOSCitedRecordID | wos000522932300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1867-7185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044660 issn: 1001-0521 databaseCode: RSV dateStart: 20090201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1itkoM3DTSbbbI5VrF4KlIfeJElTxR0K90q9N872UdXQUQ9b3ayTGYy3-y8EDpmUnvvuSXWa0HiWDDQOe-I012qJI2NinQxbEIMh8n9vbyqisLyOtu9DkkWN3VT7AZIPSHB3QnRtZiIRbQE5i4J6ji6vqvv3xCgLHsQBEcZrFNVKvM9ja_mqMGY87DoV9BaWJ3B-v--dwOtVSgT90ux2EQLLttCq596D26jhz4uy1awyix-bWou8TjDL-PnmbYhS54EM2dxNS2n-Nkzy6c5BqyLH2d2MgYBxO69EmAgWRZK7KDbwcXN-SWpZi0QE8MdQxT1kirRlU46p5hV4HcYQH_W9HRXxbznAfpID84Tt0J5yoRhlNuuBpU3ADLZLmpl48ztIZwIrR2gHmUSgIPgwChumWGsl3AvqInaiNYsT03ViDzMw3hOmxbKgXUpsC4tWJeKNjqZv_NatuH4cXWnPsm0Usk8jZikAIY4o210Wp9Y8_gnanEhAb_YOB31R9HZAHCV5Pt_2-UArUSFrISkoA5qTSdv7hAtm_fpUz45KiT8Az8U8e0 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB9aW6g-VG0Vr1Wbh77ZwGWzt9k8XouHoj3kasWXEvKJgu7J7Sncf9_JfrgKIrbPm50sk5nMb3a-AL5yaUIImaMuGEHTVHDUueCpN32mJUutTkw1bEKMx_n5uTxpisLKNtu9DUlWN3VX7IZIPafR3YnRtZSK1_AmRYsVE_kmv87a-zcGKOseBNFRRuvUlMo8TeOxOeow5n1Y9DForazOaPX_vncN3jcokwxrsViHV774ACsPeg9-hD9DUpetEF04ctPVXJJpQa6nVwvjYpY8jWbOkWZaTvWzZ1HOS4JYl1ws3GyKAkj8XSPASLIulNiA36P90x8HtJm1QG2KdwzVLEimRV966b3mTqPfYRH9OTswfZ1mg4DQRwZ0njIndGBcWM4y1zeo8hZBJt-EpWJa-C0guTDGI-rRNkc4iA6Mzhy3nA_yLAhmkx6wluXKNo3I4zyMK9W1UI6sU8g6VbFOiR7s3b9zU7fheHb1dnuSqlHJUiVcMgRDGWc9-NaeWPf4OWppJQEv2FhNhpPk-whxlcw-_dsuX-DdwenPY3V8OD76DMtJJTcxQWgbluazW78Db-3d_LKc7VbS_hedkvTR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB61KUL0wBs1JRQfuBWLeL1Zr4_pI2pVFCGgFRdk-Skq0U2UpEj59x3vgwWpQlQ9r9dejceeb3bmmwE44tKEEDJHXTCCpqngeOaCp970mZYstToxZbMJMR7nV1fy7AGLv8x2b0KSFachVmkqFidTF05a4hui9pxG1ydG2lIqXsKrNDYNiv76xY_mLo7ByqoeQXSa0VLVtJm_z_HYNLV48z5E-hjAlhZotPH_374J6zX6JMNKXbbghS-24fWDmoQ7cD0kFZ2F6MKRacvFJJOC_JrcLo2L2fM0mj9H6i465U-g5XwxJ4iByc3SzSaomMTf1YqNU1YEil34Pvp8-fELrXswUJvi3UM1C5Jp0Zdeeq-50-iPWESFzg5MX6fZICAkkgGdqswJHRgXlrPM9Q1eBRbBJ9-DTjEp_BsguTDGIxrSNkeYiI6Nzhy3nA_yLAhmky6wRvzK1gXKY5-MW9WWVo6iUyg6VYpOiS68v39nWpXneHJ0r9lVVR_VuUq4ZAiSMs66cNzsXvv4qdnSUhuesbA6H54nH0aIt2T29t9WOYTVs08jdfp1_G0f1pJSbWLeUA86i9lvfwAr9m7xcz57Vyr-H4ve_bU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+and+perspective+on+molybdenum-based+electrocatalysts+for+hydrogen+evolution+reaction&rft.jtitle=Rare+metals&rft.au=Hua%2C+Wei&rft.au=Huan-Huan%2C+Sun&rft.au=Xu%2C+Fei&rft.au=Jian-Gan%2C+Wang&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=39&rft.issue=4&rft.spage=335&rft.epage=351&rft_id=info:doi/10.1007%2Fs12598-020-01384-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0521&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0521&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0521&client=summon |