A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries
Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predictin...
Uložené v:
| Vydané v: | Energy science & engineering Ročník 12; číslo 8; s. 3390 - 3400 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
John Wiley & Sons, Inc
01.08.2024
Wiley |
| Predmet: | |
| ISSN: | 2050-0505, 2050-0505 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies.
A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries. |
|---|---|
| AbstractList | Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies. Abstract Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies. Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies. Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies. A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries. |
| Author | Xia, Wei Xu, Jinli Duan, Huiyun Liu, Baolei |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-7947-4625 surname: Xia fullname: Xia, Wei email: fighterxw@163.com organization: Wuhan University of Technology – sequence: 2 givenname: Jinli surname: Xu fullname: Xu, Jinli organization: Wuhan University of Technology – sequence: 3 givenname: Baolei orcidid: 0000-0002-3015-6888 surname: Liu fullname: Liu, Baolei organization: Wuhan University of Technology – sequence: 4 givenname: Huiyun surname: Duan fullname: Duan, Huiyun organization: Jiujiang Vocational and Technical College |
| BookMark | eNp1UUtOHDEUtBBIfBfcwFJWWQz40-2eXiI0BCQkFoS15c8zeNJjE9sdNDuOkDNyEtwzREJRsnjyU6mqVH51iHZDDIDQKSVnlBB2Dhn4GZ0zvoMOGGnJrE67-2nfRyc5LwkhtKFNT-gBGi5wiL9gwBZC9NmHR6zGEiGYaCHhp7VO3uIA5SWmH9jFhBOslA8TcczgxgEP3gGGXPxKFR8Djq5C5cmPq7fX3xOgVSmQPORjtOfUkOHk4z1CD1eL75fXs9u7bzeXF7cz0_COzyizSpCWzTVruKUdA6c6RqhmZg6WO96zeWs7IoyhirdCO-sAaGe5taLjwI_QzdbXRrWUz6kmS2sZlZcbIKZHqVLxZgBJhQbW98YJY5tOOQ2i6cHq3nWNbimvXl-2Xs8p_hzrN-UyjinU-JKTvq3X7oWorPMty6SYcwInjS-bc5Sk_CApkVNDcmpITg1Vxde_FH9y_ov74f7iB1j_nygX9wu-UbwDKbqklA |
| CitedBy_id | crossref_primary_10_3390_batteries11080288 crossref_primary_10_1016_j_engappai_2025_110285 |
| Cites_doi | 10.1016/j.est.2020.101741 10.1016/j.jclepro.2018.09.065 10.1016/j.energy.2021.120114 10.1109/TIM.2020.2996004 10.1016/j.jpowsour.2018.10.019 10.1016/j.ress.2021.107542 10.1109/TMECH.2022.3202642 10.3390/en13040830 10.1016/j.ress.2024.109950 10.1016/j.asoc.2021.107195 10.1109/TII.2019.2915536 10.1109/TVT.2021.3055811 10.3390/s16010115 10.1016/j.apenergy.2016.04.057 10.1016/j.jpowsour.2021.230823 10.1016/j.jpowsour.2022.231027 10.1109/TPEL.2020.3033297 10.1016/j.microrel.2017.12.036 10.1016/j.est.2023.109160 10.1109/MIM.2008.4579269 10.1145/3386580 10.1109/TTE.2020.3017090 10.20517/energymater.2022.14 10.1016/j.measurement.2021.109057 10.1016/j.est.2021.103558 10.1016/j.apenergy.2020.115646 10.1016/j.apenergy.2020.116167 10.1109/TTE.2017.2739344 10.1007/978-3-319-49409-8_35 10.1109/TTE.2016.2571778 10.1109/TII.2020.3008223 10.1016/j.jpowsour.2020.228863 10.1016/j.est.2021.103115 10.1109/TII.2023.3266403 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KR7 L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1002/ese3.1823 |
| DatabaseName | Wiley Online Library Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2050-0505 |
| EndPage | 3400 |
| ExternalDocumentID | oai_doaj_org_article_16be299cf6cd47afbe649edb9f74b513 10_1002_ese3_1823 ESE31823 |
| Genre | article |
| GroupedDBID | 0R~ 1OC 24P 31~ 5VS 8-1 8FE 8FG 8FH AAHHS AAZKR ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU D-9 EBS EJD GODZA GROUPED_DOAJ HCIFZ HZ~ IAO IGS ITC KQ8 L6V L8X LK5 M7R M7S M~E O9- OK1 PCBAR PIMPY PROAC PTHSS TUS WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IVC PHGZM PHGZT PQGLB 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D KR7 L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4373-12da60528b243d172efa7201b2c8ed3f39285d706cc1a356bfdfee17d3dd673e3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271635400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-0505 |
| IngestDate | Fri Oct 03 12:27:23 EDT 2025 Wed Aug 13 09:40:31 EDT 2025 Sat Nov 29 07:06:55 EST 2025 Tue Nov 18 19:39:44 EST 2025 Wed Jan 22 17:16:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4373-12da60528b243d172efa7201b2c8ed3f39285d706cc1a356bfdfee17d3dd673e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3015-6888 0000-0002-7947-4625 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1823 |
| PQID | 3095182966 |
| PQPubID | 2034362 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_16be299cf6cd47afbe649edb9f74b513 proquest_journals_3095182966 crossref_citationtrail_10_1002_ese3_1823 crossref_primary_10_1002_ese3_1823 wiley_primary_10_1002_ese3_1823_ESE31823 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 20240801 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Energy science & engineering |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2023; 73 2021; 7 2021; 43 2017; 3 2018; 205 2021; 223 2018; 405 2021; 104 2018; 81 2020; 16 2022; 47 2021; 282 2020; 13 2021; 482 2024; 244 2008; 11 2020; 32 2016; 16 2022; 28 2021; 70 2021; 36 2023; 20 2016; 2 2020; 1 2021; 17 2020; 69 2021; 174 2021; 210 2014 2022; 2 2020; 278 2022; 525 2016; 173 2022; 520 Eigen D (e_1_2_6_35_1) 2014 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 11 start-page: 33 year: 2008 end-page: 40 article-title: Prognostics in battery health management publication-title: IEEE Instrum Meas Mag – volume: 81 start-page: 288 year: 2018 end-page: 298 article-title: An improved unscented particle filter approach for lithium‐ion battery remaining useful life prediction publication-title: Microelectron Reliab – volume: 210 year: 2021 article-title: Remaining useful life estimation of lithium‐ion battery based on interacting multiple model particle filter and support vector regression publication-title: Reliab Eng Syst Saf – volume: 16 start-page: 115 issue: 1 year: 2016 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors – volume: 13 start-page: 830 issue: 4 year: 2020 article-title: A new lithium‐ion battery SOH estimation method based on an indirect enhanced health indicator and support vector regression in PHMs publication-title: Energies – volume: 282 year: 2021 article-title: A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li‐ion power batteries publication-title: Appl Energy – volume: 16 start-page: 87 issue: 1 year: 2020 end-page: 96 article-title: Simultaneous bearing fault recognition and remaining useful life prediction using joint‐loss convolutional neural network publication-title: IEEE Trans Ind Inform – volume: 205 start-page: 115 year: 2018 end-page: 133 article-title: A review of state of health and remaining useful life estimation methods for lithium‐ion battery in electric vehicles: challenges and recommendations publication-title: J Clean Prod – volume: 1 start-page: 1 issue: 3 year: 2020 end-page: 18 article-title: Augmenting DL with adversarial training for robust prediction of epilepsy seizures publication-title: ACM Trans Comput Healthc – volume: 520 year: 2022 article-title: End‐to‐end capacity estimation of lithium‐ion batteries with an enhanced long short‐term memory network considering domain adaptation publication-title: J Power Sources – volume: 2 start-page: 417 issue: 4 year: 2016 end-page: 431 article-title: On the suitability of electrochemical‐based modeling for lithium‐ion batteries publication-title: IEEE Trans Transp Electrif – volume: 69 start-page: 8831 issue: 11 year: 2020 end-page: 8843 article-title: Remaining useful life prediction of lithium‐ion batteries based on conditional variational autoencoders‐particle filter publication-title: IEEE Trans Instrum Meas – volume: 32 year: 2020 article-title: A novel deep learning framework for state of health estimation of lithium‐ion battery publication-title: J Energy Storage – volume: 73 year: 2023 article-title: A machine learning method for prediction of remaining useful life of supercapacitors with multi‐stage modification publication-title: J Energy Storage – volume: 278 year: 2020 article-title: Towards the swift prediction of the remaining useful life of lithium‐ion batteries with end‐to‐end deep learning publication-title: Appl Energy – volume: 244 year: 2024 article-title: Multi‐hop graph pooling adversarial network for cross‐domain remaining useful life prediction: A distributed federated learning perspective publication-title: Reliab Eng Syst Saf – volume: 70 start-page: 1269 issue: 2 year: 2021 end-page: 1277 article-title: Predictive battery health management with transfer learning and online model correction publication-title: IEEE Trans Veh Technol – volume: 17 start-page: 3478 issue: 5 year: 2021 end-page: 3487 article-title: A data‐driven auto‐CNN‐LSTM prediction model for lithium‐ion battery remaining useful life publication-title: IEEE Trans Ind Inform – volume: 20 start-page: 1144 issue: 2 year: 2023 end-page: 1154 article-title: A data‐model interactive remaining useful life prediction approach of lithium‐ion batteries based on PF‐BiGRU‐TSAM publication-title: IEEE Trans Ind Inform – start-page: 2366 year: 2014 end-page: 2374 article-title: Depth map prediction from a single image using a multi‐scale deep network publication-title: Adv Neural Inf Process Syst – volume: 3 start-page: 589 issue: 3 year: 2017 end-page: 599 article-title: Enhanced equivalent electrical circuit model of lithium‐based batteries accounting for charge redistribution, state‐of‐health, and temperature effects publication-title: IEEE Trans Transp Electrif – volume: 28 start-page: 632 issue: 2 year: 2022 end-page: 643 article-title: Remaining useful life prediction of lithium‐ion battery with adaptive noise estimation and capacity regeneration detection publication-title: IEEE/ASME Trans Mechatron – volume: 173 start-page: 134 year: 2016 end-page: 140 article-title: An online method for lithium‐ion battery remaining useful life estimation using importance sampling and neural networks publication-title: Appl Energy – volume: 223 year: 2021 article-title: Voltage‐temperature health feature extraction to improve prognostics and health management of lithium‐ion batteries publication-title: Energy – volume: 104 year: 2021 article-title: An RUL prediction approach for lithium‐ion battery based on SADE‐MESN publication-title: Appl Soft Comput – volume: 525 year: 2022 article-title: Battery health estimation with degradation pattern recognition and transfer learning publication-title: J Power Sources – volume: 43 year: 2021 article-title: A remaining capacity estimation approach of lithium‐ion batteries based on partial charging curve and health feature fusion publication-title: J Energy Storage – volume: 36 start-page: 6228 issue: 6 year: 2021 end-page: 6240 article-title: Li‐ion battery state of health estimation and remaining useful life prediction through a model‐data‐fusion method publication-title: IEEE Trans Power Electron – volume: 7 start-page: 382 issue: 2 year: 2021 end-page: 398 article-title: Battery health prediction using fusion‐based feature selection and machine learning publication-title: IEEE Trans Transp Electrif – volume: 405 start-page: 18 year: 2018 end-page: 29 article-title: Towards a smarter battery management system: a critical review on battery state of health monitoring methods publication-title: J Power Sources – volume: 482 year: 2021 article-title: Online capacity estimation of lithium‐ion batteries with deep long short‐term memory networks publication-title: J Power Sources – volume: 2 issue: 3 year: 2022 article-title: Accelerating perovskite materials discovery and correlated energy applications through artificial intelligence publication-title: Energy Mater – volume: 47 year: 2022 article-title: Remaining useful life prediction of lithium‐ion batteries based on stacked autoencoder and gaussian mixture regression publication-title: J Energy Storage – volume: 174 year: 2021 article-title: A review on state of health estimations and remaining useful life prognostics of lithium‐ion batteries publication-title: Measurement – ident: e_1_2_6_18_1 doi: 10.1016/j.est.2020.101741 – ident: e_1_2_6_5_1 doi: 10.1016/j.jclepro.2018.09.065 – ident: e_1_2_6_15_1 doi: 10.1016/j.energy.2021.120114 – ident: e_1_2_6_25_1 doi: 10.1109/TIM.2020.2996004 – ident: e_1_2_6_4_1 doi: 10.1016/j.jpowsour.2018.10.019 – ident: e_1_2_6_10_1 doi: 10.1016/j.ress.2021.107542 – ident: e_1_2_6_11_1 doi: 10.1109/TMECH.2022.3202642 – ident: e_1_2_6_14_1 doi: 10.3390/en13040830 – ident: e_1_2_6_30_1 doi: 10.1016/j.ress.2024.109950 – ident: e_1_2_6_19_1 doi: 10.1016/j.asoc.2021.107195 – ident: e_1_2_6_24_1 doi: 10.1109/TII.2019.2915536 – ident: e_1_2_6_31_1 doi: 10.1109/TVT.2021.3055811 – ident: e_1_2_6_22_1 doi: 10.3390/s16010115 – start-page: 2366 year: 2014 ident: e_1_2_6_35_1 article-title: Depth map prediction from a single image using a multi‐scale deep network publication-title: Adv Neural Inf Process Syst – ident: e_1_2_6_12_1 doi: 10.1016/j.apenergy.2016.04.057 – ident: e_1_2_6_21_1 doi: 10.1016/j.jpowsour.2021.230823 – ident: e_1_2_6_29_1 doi: 10.1016/j.jpowsour.2022.231027 – ident: e_1_2_6_2_1 doi: 10.1109/TPEL.2020.3033297 – ident: e_1_2_6_9_1 doi: 10.1016/j.microrel.2017.12.036 – ident: e_1_2_6_13_1 doi: 10.1016/j.est.2023.109160 – ident: e_1_2_6_36_1 doi: 10.1109/MIM.2008.4579269 – ident: e_1_2_6_23_1 doi: 10.1145/3386580 – ident: e_1_2_6_16_1 doi: 10.1109/TTE.2020.3017090 – ident: e_1_2_6_3_1 doi: 10.20517/energymater.2022.14 – ident: e_1_2_6_6_1 doi: 10.1016/j.measurement.2021.109057 – ident: e_1_2_6_34_1 doi: 10.1016/j.est.2021.103558 – ident: e_1_2_6_26_1 doi: 10.1016/j.apenergy.2020.115646 – ident: e_1_2_6_32_1 doi: 10.1016/j.apenergy.2020.116167 – ident: e_1_2_6_8_1 doi: 10.1109/TTE.2017.2739344 – ident: e_1_2_6_20_1 doi: 10.1007/978-3-319-49409-8_35 – ident: e_1_2_6_7_1 doi: 10.1109/TTE.2016.2571778 – ident: e_1_2_6_27_1 doi: 10.1109/TII.2020.3008223 – ident: e_1_2_6_28_1 doi: 10.1016/j.jpowsour.2020.228863 – ident: e_1_2_6_17_1 doi: 10.1016/j.est.2021.103115 – ident: e_1_2_6_33_1 doi: 10.1109/TII.2023.3266403 |
| SSID | ssj0001414901 |
| Score | 2.2844064 |
| Snippet | Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods... Abstract Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3390 |
| SubjectTerms | Algorithms Artificial neural networks CNN‐BiGRU Data acquisition Degradation denoising autoencoder Design Effectiveness Electric vehicles Life prediction Lithium Lithium batteries Lithium-ion batteries Methods Neural networks Noise reduction Prediction models reconstruction loss remaining useful life Useful life |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07axwxEMdFMC6SIth5kPMLYVK42Xgl7UNb2uZMCmMCSYw7occIH6x3zd3tgbt8hHzGfJJopD1zhoQ06RahYhiNpP8smt8Q8pFpybWxLJNN6bEkR2amLERmcq4bZ5gvI8D05qq-vpa3t82XjVZf-CYs4YGT405ZZSAcmdZX1hW19gaqogFnGl8Xpoz9anleNxvJVPy7UgTln7M1Sijnp7AA8SmIafHsAoqc_mficlOixjvmcoe8HsUhPUtG7ZIX0L0hrzaQgW9Je0a7fgUtDedFP8NEn-ph2SOO0sGc3j1iBRbt0uNuGhQpncN96gJBhwX4oaXtzANFuEaqWqS9D0PLu9lw_-vHTxwwkbkZUuh35Pvl9NvF52zsmJBZRBRljDsd8hMuDS-EC9oEvK7DFW-4leCED2JIlq7OK2uZFmVlvPMArHbCuaoWIN6Tra7v4AOhDVisJJTWe1uUvtGyBF1AEGgCiTxsQk7WblR2xIljV4tWJRAyV-hxhR6fkOOnqQ-JofGnSee4Fk8TEHsdB0IwqDEY1L-CYUIO1iupxr24UAJVpOQhrws2x9X9uxVq-nUq8GPvf5izT17yoIHSe8EDsrWcD3BItu1qOVvMj2LE_gaXnPQc priority: 102 providerName: Directory of Open Access Journals – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEMct2HKAQ8tTbCnIQhy4hI3tPJwTaqutQIJqJR4qJ8uPcbtSmpRkU4kbH4HPyCepJ8n2IQEnbpFlWSONPf7b8fyGkFdMS66NZZEsUo8pOTIyaSIiE3NdOMN82gNMv37IDw_l0VGxGNOj2_FZ5Tom9oF6oD3ju-0QhGeutnhjPhOoDCQPWv3t2fcIa0jhv9axoMZtsoHgrXhCNhbvPy6-Xd25JOE8ELM1YCjmM2hBvAkDiRvbUk_vvyE5rwvXfuc52Pq_Nt8nm6MCpbvDlHlAbkH1kNy7xiV8RMpdWtXnUNIQlOol3iZQ3a1qZF46aOjJD0zzotXwgpwG2UsbOB1KTdCuBd-VtFx6oEjwGFIjae1D0-pk2Z3-_vkLG0wP9gzn9Mfky8H88_67aCzLEFnkIEWMOx0OQVwanggXBBB4nQcdYbiV4IQPikumLo8za5kWaWa88wAsd8K5LBcgnpBJVVfwlNACLKYrSuu9TVJfaJmCTiCoQIHYHzYlr9deUXZklmPpjFINtGWu0IEKHTglLy-7ng2gjj912kPXXnZAtnbfUDfHalyqimUGwiZtfWZdkmtvIEsKcKbweWKCZVOys_a2Ghd8q66cG2zuJ8vfrVDzT3OBH9v_HukZucuDhBqeG-6Qyarp4Dm5Y89Xy7Z5MU7uCxYxDeA priority: 102 providerName: ProQuest |
| Title | A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1823 https://www.proquest.com/docview/3095182966 https://doaj.org/article/16be299cf6cd47afbe649edb9f74b513 |
| Volume | 12 |
| WOSCitedRecordID | wos001271635400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: PCBAR dateStart: 20130401 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: M7S dateStart: 20130401 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: BENPR dateStart: 20130401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: PIMPY dateStart: 20130401 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKywEOvBELZWUhDlxC13Yejji1aCsqwSqiPMop8mNMV0oTlGwqceMn8Bv5JXic7LaVQELilowm0siesT9PPN8Q8pwpyZU2LJJ54rAkR0Y6iUWkZ1zlVjOXBALTT2-zxUKenOTFFnm1roUZ-CE2CTeMjLBeY4Ar3e1dkIZCB-KlR8fiGtlhTGTo0jwuLhIssQf_of0xnyX4w3eWrJmFZnxv8_WV_SjQ9l_BmpcRa9hyDm__l7F3yK0RadL9wTXuki2o75Gbl_gH75Nqn9bNOVTULz7NErMGVPWrBrktLbT09DuWc9F6uClOPbylLZwNLSVo34HrK1otHVBk6hhKIGnjvGh1uuzPfv34iQIdCDz9efwB-Xg4__D6TTS2X4gM8h1FjFvlDztcah4L64EOOJV5vKC5kWCF88hKJjabpcYwJZJUO-sAWGaFtWkmQDwk23VTwyNCczBYliiNcyZOXK5kAioGj_YE0vuwCXmxnoTSjNzk2CKjKgdWZV7iAJY4gBPybKP6bSDk-JPSAc7kRgE5tIOgab-WY0iWLNXgN2PjUmPjTDkNaZyD1bnLYu0tm5DdtR-UY2B3pUBIKrk_JHqbw4z_3YpyfjwX-PD431WfkBvcw6bhiuEu2V61PTwl1835atm10-DhU7JzMF8U76chfzDF26rHXlYcvSu--LfPR4vfa6oGEw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKiwQseKMOFLAQIDahEzsPZ8FiWqZq1WFUQUHdubF93UZKk5LMFHXHJ_AlfBRfgm8efUjArgt2kWVZln1877Fz77mEvPRTwVKlfU8kocWUHOGpMOCeGrI0Mcq3YSNg-mUST6diby_ZWSA_-1wYDKvsbWJjqE2p8Y18lSMXEMyx8y6CchtOv7n7Wf1u673bzFeMbYx31ze9roSAp1Gzx_OZSR1hZ0KxgBvnrMGmsfN5imkBhlvHDkRo4mGktZ_yMFLWWAA_NtyYKObA3bivj796WKUK_-Z2JTuukSURJYE7V0s762ujj-evOoG7cQz9XsJoyFahBv7WTZxfcnxNfYBLpPYiNW5828ad_21V7pLbHYumoxb298gCFPfJrQvaig9IPqJFeQI5dYa1zPBFhKbzWYm6nQYqeniKqWq0aKPgqaPutIKjtlwGnddg5znNMwsUVUja9E5aWtc0O8zmR7--_8AG1YiTZlA_JJ-vZAUekcWiLGCZ0AQ0plwKba0OQpukIoQ0AMdkOUoX-QPypt93qTvddSz_kctWMZpJhIhEiAzIi7Oux63YyJ86rSF4zjqgPnjTUFYHsjM30o8UOKKhbaRNEKdWQRQkYFRi40C5mQ3ISo8n2RmtWp6Dyc25gePfZyHHn8YcPx7_e6Tn5Mbm7oeJnGxNt5-Qm8xRwjZ8coUszqo5PCXX9cksq6tn3VGiZP-qofsbYMpfBQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxELXCBCFyYEcZCGAhkLg0M2334j4glJAZESUajdiUm_FSJi1NpkP3TFBufALfw-fwJZR7ySIBtxy4tSzLsrufq57dVa8IeRYqwZQ2YSCy2PmUHBHoOOKBHjKVWR26uBYw_bSXTiZifz-brpCfXS6MD6vsbGJtqG1h_B35gHsuIBiy84FrwyKm2-PXR18DX0HK_2ntymk0ENmFk294fKte7Wzjt37O2Hj04c3boK0wEBgv6ROEzCrk80xoFnGLvhycStElamYEWO6QPIjYpsPEmFDxONHOOoAwtdzaJOXAcdwrZDXleOjpkdWt0WT67uyGJ8LTxzDs5IyGbAAV8Je4CH7BCda1Ai4Q3PM0ufZz45v_8xu6RW607JpuNtvhNlmB-R2ydk5z8S6ZbdJ5cQwziga3yP1NCVXLReH1PC2U9ODEp7DReRMdT5HS0xIOmzIadFkBrpnOcgfUq5M0aZ-0cNi0OMiXh7--__ANuhYtzaG6Rz5eynLvk968mMM6oRkYn4opjHMmil2mRAwqAmS43EsahX3yosOANK0euy8LMpONkjSTHi7Sw6VPnp52PWpESP7UacsD6bSD1w2vG4ryi2zNkAwTDUhAjEuMjVLlNCRRBlZnLo00zqxPNjpsydaYVfIMWDjnGpp_n4UcvR9x__Dg3yM9IdcQnHJvZ7L7kFxnyBSbqMoN0luUS3hErprjRV6Vj9tdRcnny4bpb17aZ94 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+denoising+autoencoder+hybrid+network+for+remaining+useful+life+estimation+of+lithium%E2%80%90ion+batteries&rft.jtitle=Energy+science+%26+engineering&rft.au=Xia%2C+Wei&rft.au=Xu%2C+Jinli&rft.au=Liu%2C+Baolei&rft.au=Duan%2C+Huiyun&rft.date=2024-08-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=12&rft.issue=8&rft.spage=3390&rft.epage=3400&rft_id=info:doi/10.1002%2Fese3.1823&rft.externalDBID=10.1002%252Fese3.1823&rft.externalDocID=ESE31823 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon |