A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries

Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predictin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy science & engineering Ročník 12; číslo 8; s. 3390 - 3400
Hlavní autori: Xia, Wei, Xu, Jinli, Liu, Baolei, Duan, Huiyun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London John Wiley & Sons, Inc 01.08.2024
Wiley
Predmet:
ISSN:2050-0505, 2050-0505
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies. A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries.
AbstractList Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies.
Abstract Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies.
Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies.
Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods have been proved to be an effective method for identifying the complex degradation process of batteries. To augment the precision of predicting the remaining useful life (RUL), this paper introduces a pioneering architecture for a denoising autoencoder (DAE). This architecture integrates a stacked convolutional neural network with subsequent layers of bidirectional gated recurrent units within an encoder–decoder framework. The utilization of the DAE network is employed as a means to effectively capture and represent the intricate and nonlinear knowledge associated with degradation data acquired from measured sources. Simultaneously, the reconstruction loss is incorporated into the total loss to improve the accuracy and generalization of the prediction model. The efficacy of the proposed approach is substantiated through the utilization of data sets sourced from the NASA Ames Prognostics Data Repository. The comparative findings suggest that the proposed approach demonstrates an exceptional ability to achieve precise and robust estimation in predicting the RUL, surpassing other advanced methodologies. A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries.
Author Xia, Wei
Xu, Jinli
Duan, Huiyun
Liu, Baolei
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-7947-4625
  surname: Xia
  fullname: Xia, Wei
  email: fighterxw@163.com
  organization: Wuhan University of Technology
– sequence: 2
  givenname: Jinli
  surname: Xu
  fullname: Xu, Jinli
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Baolei
  orcidid: 0000-0002-3015-6888
  surname: Liu
  fullname: Liu, Baolei
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Huiyun
  surname: Duan
  fullname: Duan, Huiyun
  organization: Jiujiang Vocational and Technical College
BookMark eNp1UUtOHDEUtBBIfBfcwFJWWQz40-2eXiI0BCQkFoS15c8zeNJjE9sdNDuOkDNyEtwzREJRsnjyU6mqVH51iHZDDIDQKSVnlBB2Dhn4GZ0zvoMOGGnJrE67-2nfRyc5LwkhtKFNT-gBGi5wiL9gwBZC9NmHR6zGEiGYaCHhp7VO3uIA5SWmH9jFhBOslA8TcczgxgEP3gGGXPxKFR8Djq5C5cmPq7fX3xOgVSmQPORjtOfUkOHk4z1CD1eL75fXs9u7bzeXF7cz0_COzyizSpCWzTVruKUdA6c6RqhmZg6WO96zeWs7IoyhirdCO-sAaGe5taLjwI_QzdbXRrWUz6kmS2sZlZcbIKZHqVLxZgBJhQbW98YJY5tOOQ2i6cHq3nWNbimvXl-2Xs8p_hzrN-UyjinU-JKTvq3X7oWorPMty6SYcwInjS-bc5Sk_CApkVNDcmpITg1Vxde_FH9y_ov74f7iB1j_nygX9wu-UbwDKbqklA
CitedBy_id crossref_primary_10_3390_batteries11080288
crossref_primary_10_1016_j_engappai_2025_110285
Cites_doi 10.1016/j.est.2020.101741
10.1016/j.jclepro.2018.09.065
10.1016/j.energy.2021.120114
10.1109/TIM.2020.2996004
10.1016/j.jpowsour.2018.10.019
10.1016/j.ress.2021.107542
10.1109/TMECH.2022.3202642
10.3390/en13040830
10.1016/j.ress.2024.109950
10.1016/j.asoc.2021.107195
10.1109/TII.2019.2915536
10.1109/TVT.2021.3055811
10.3390/s16010115
10.1016/j.apenergy.2016.04.057
10.1016/j.jpowsour.2021.230823
10.1016/j.jpowsour.2022.231027
10.1109/TPEL.2020.3033297
10.1016/j.microrel.2017.12.036
10.1016/j.est.2023.109160
10.1109/MIM.2008.4579269
10.1145/3386580
10.1109/TTE.2020.3017090
10.20517/energymater.2022.14
10.1016/j.measurement.2021.109057
10.1016/j.est.2021.103558
10.1016/j.apenergy.2020.115646
10.1016/j.apenergy.2020.116167
10.1109/TTE.2017.2739344
10.1007/978-3-319-49409-8_35
10.1109/TTE.2016.2571778
10.1109/TII.2020.3008223
10.1016/j.jpowsour.2020.228863
10.1016/j.est.2021.103115
10.1109/TII.2023.3266403
ContentType Journal Article
Copyright 2024 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/ese3.1823
DatabaseName Wiley Online Library Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-0505
EndPage 3400
ExternalDocumentID oai_doaj_org_article_16be299cf6cd47afbe649edb9f74b513
10_1002_ese3_1823
ESE31823
Genre article
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
ITC
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IVC
PHGZM
PHGZT
PQGLB
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KR7
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4373-12da60528b243d172efa7201b2c8ed3f39285d706cc1a356bfdfee17d3dd673e3
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271635400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-0505
IngestDate Fri Oct 03 12:27:23 EDT 2025
Wed Aug 13 09:40:31 EDT 2025
Sat Nov 29 07:06:55 EST 2025
Tue Nov 18 19:39:44 EST 2025
Wed Jan 22 17:16:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4373-12da60528b243d172efa7201b2c8ed3f39285d706cc1a356bfdfee17d3dd673e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3015-6888
0000-0002-7947-4625
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1823
PQID 3095182966
PQPubID 2034362
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_16be299cf6cd47afbe649edb9f74b513
proquest_journals_3095182966
crossref_citationtrail_10_1002_ese3_1823
crossref_primary_10_1002_ese3_1823
wiley_primary_10_1002_ese3_1823_ESE31823
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
20240801
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Energy science & engineering
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 73
2021; 7
2021; 43
2017; 3
2018; 205
2021; 223
2018; 405
2021; 104
2018; 81
2020; 16
2022; 47
2021; 282
2020; 13
2021; 482
2024; 244
2008; 11
2020; 32
2016; 16
2022; 28
2021; 70
2021; 36
2023; 20
2016; 2
2020; 1
2021; 17
2020; 69
2021; 174
2021; 210
2014
2022; 2
2020; 278
2022; 525
2016; 173
2022; 520
Eigen D (e_1_2_6_35_1) 2014
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 11
  start-page: 33
  year: 2008
  end-page: 40
  article-title: Prognostics in battery health management
  publication-title: IEEE Instrum Meas Mag
– volume: 81
  start-page: 288
  year: 2018
  end-page: 298
  article-title: An improved unscented particle filter approach for lithium‐ion battery remaining useful life prediction
  publication-title: Microelectron Reliab
– volume: 210
  year: 2021
  article-title: Remaining useful life estimation of lithium‐ion battery based on interacting multiple model particle filter and support vector regression
  publication-title: Reliab Eng Syst Saf
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
– volume: 13
  start-page: 830
  issue: 4
  year: 2020
  article-title: A new lithium‐ion battery SOH estimation method based on an indirect enhanced health indicator and support vector regression in PHMs
  publication-title: Energies
– volume: 282
  year: 2021
  article-title: A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li‐ion power batteries
  publication-title: Appl Energy
– volume: 16
  start-page: 87
  issue: 1
  year: 2020
  end-page: 96
  article-title: Simultaneous bearing fault recognition and remaining useful life prediction using joint‐loss convolutional neural network
  publication-title: IEEE Trans Ind Inform
– volume: 205
  start-page: 115
  year: 2018
  end-page: 133
  article-title: A review of state of health and remaining useful life estimation methods for lithium‐ion battery in electric vehicles: challenges and recommendations
  publication-title: J Clean Prod
– volume: 1
  start-page: 1
  issue: 3
  year: 2020
  end-page: 18
  article-title: Augmenting DL with adversarial training for robust prediction of epilepsy seizures
  publication-title: ACM Trans Comput Healthc
– volume: 520
  year: 2022
  article-title: End‐to‐end capacity estimation of lithium‐ion batteries with an enhanced long short‐term memory network considering domain adaptation
  publication-title: J Power Sources
– volume: 2
  start-page: 417
  issue: 4
  year: 2016
  end-page: 431
  article-title: On the suitability of electrochemical‐based modeling for lithium‐ion batteries
  publication-title: IEEE Trans Transp Electrif
– volume: 69
  start-page: 8831
  issue: 11
  year: 2020
  end-page: 8843
  article-title: Remaining useful life prediction of lithium‐ion batteries based on conditional variational autoencoders‐particle filter
  publication-title: IEEE Trans Instrum Meas
– volume: 32
  year: 2020
  article-title: A novel deep learning framework for state of health estimation of lithium‐ion battery
  publication-title: J Energy Storage
– volume: 73
  year: 2023
  article-title: A machine learning method for prediction of remaining useful life of supercapacitors with multi‐stage modification
  publication-title: J Energy Storage
– volume: 278
  year: 2020
  article-title: Towards the swift prediction of the remaining useful life of lithium‐ion batteries with end‐to‐end deep learning
  publication-title: Appl Energy
– volume: 244
  year: 2024
  article-title: Multi‐hop graph pooling adversarial network for cross‐domain remaining useful life prediction: A distributed federated learning perspective
  publication-title: Reliab Eng Syst Saf
– volume: 70
  start-page: 1269
  issue: 2
  year: 2021
  end-page: 1277
  article-title: Predictive battery health management with transfer learning and online model correction
  publication-title: IEEE Trans Veh Technol
– volume: 17
  start-page: 3478
  issue: 5
  year: 2021
  end-page: 3487
  article-title: A data‐driven auto‐CNN‐LSTM prediction model for lithium‐ion battery remaining useful life
  publication-title: IEEE Trans Ind Inform
– volume: 20
  start-page: 1144
  issue: 2
  year: 2023
  end-page: 1154
  article-title: A data‐model interactive remaining useful life prediction approach of lithium‐ion batteries based on PF‐BiGRU‐TSAM
  publication-title: IEEE Trans Ind Inform
– start-page: 2366
  year: 2014
  end-page: 2374
  article-title: Depth map prediction from a single image using a multi‐scale deep network
  publication-title: Adv Neural Inf Process Syst
– volume: 3
  start-page: 589
  issue: 3
  year: 2017
  end-page: 599
  article-title: Enhanced equivalent electrical circuit model of lithium‐based batteries accounting for charge redistribution, state‐of‐health, and temperature effects
  publication-title: IEEE Trans Transp Electrif
– volume: 28
  start-page: 632
  issue: 2
  year: 2022
  end-page: 643
  article-title: Remaining useful life prediction of lithium‐ion battery with adaptive noise estimation and capacity regeneration detection
  publication-title: IEEE/ASME Trans Mechatron
– volume: 173
  start-page: 134
  year: 2016
  end-page: 140
  article-title: An online method for lithium‐ion battery remaining useful life estimation using importance sampling and neural networks
  publication-title: Appl Energy
– volume: 223
  year: 2021
  article-title: Voltage‐temperature health feature extraction to improve prognostics and health management of lithium‐ion batteries
  publication-title: Energy
– volume: 104
  year: 2021
  article-title: An RUL prediction approach for lithium‐ion battery based on SADE‐MESN
  publication-title: Appl Soft Comput
– volume: 525
  year: 2022
  article-title: Battery health estimation with degradation pattern recognition and transfer learning
  publication-title: J Power Sources
– volume: 43
  year: 2021
  article-title: A remaining capacity estimation approach of lithium‐ion batteries based on partial charging curve and health feature fusion
  publication-title: J Energy Storage
– volume: 36
  start-page: 6228
  issue: 6
  year: 2021
  end-page: 6240
  article-title: Li‐ion battery state of health estimation and remaining useful life prediction through a model‐data‐fusion method
  publication-title: IEEE Trans Power Electron
– volume: 7
  start-page: 382
  issue: 2
  year: 2021
  end-page: 398
  article-title: Battery health prediction using fusion‐based feature selection and machine learning
  publication-title: IEEE Trans Transp Electrif
– volume: 405
  start-page: 18
  year: 2018
  end-page: 29
  article-title: Towards a smarter battery management system: a critical review on battery state of health monitoring methods
  publication-title: J Power Sources
– volume: 482
  year: 2021
  article-title: Online capacity estimation of lithium‐ion batteries with deep long short‐term memory networks
  publication-title: J Power Sources
– volume: 2
  issue: 3
  year: 2022
  article-title: Accelerating perovskite materials discovery and correlated energy applications through artificial intelligence
  publication-title: Energy Mater
– volume: 47
  year: 2022
  article-title: Remaining useful life prediction of lithium‐ion batteries based on stacked autoencoder and gaussian mixture regression
  publication-title: J Energy Storage
– volume: 174
  year: 2021
  article-title: A review on state of health estimations and remaining useful life prognostics of lithium‐ion batteries
  publication-title: Measurement
– ident: e_1_2_6_18_1
  doi: 10.1016/j.est.2020.101741
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jclepro.2018.09.065
– ident: e_1_2_6_15_1
  doi: 10.1016/j.energy.2021.120114
– ident: e_1_2_6_25_1
  doi: 10.1109/TIM.2020.2996004
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jpowsour.2018.10.019
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ress.2021.107542
– ident: e_1_2_6_11_1
  doi: 10.1109/TMECH.2022.3202642
– ident: e_1_2_6_14_1
  doi: 10.3390/en13040830
– ident: e_1_2_6_30_1
  doi: 10.1016/j.ress.2024.109950
– ident: e_1_2_6_19_1
  doi: 10.1016/j.asoc.2021.107195
– ident: e_1_2_6_24_1
  doi: 10.1109/TII.2019.2915536
– ident: e_1_2_6_31_1
  doi: 10.1109/TVT.2021.3055811
– ident: e_1_2_6_22_1
  doi: 10.3390/s16010115
– start-page: 2366
  year: 2014
  ident: e_1_2_6_35_1
  article-title: Depth map prediction from a single image using a multi‐scale deep network
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_6_12_1
  doi: 10.1016/j.apenergy.2016.04.057
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jpowsour.2021.230823
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jpowsour.2022.231027
– ident: e_1_2_6_2_1
  doi: 10.1109/TPEL.2020.3033297
– ident: e_1_2_6_9_1
  doi: 10.1016/j.microrel.2017.12.036
– ident: e_1_2_6_13_1
  doi: 10.1016/j.est.2023.109160
– ident: e_1_2_6_36_1
  doi: 10.1109/MIM.2008.4579269
– ident: e_1_2_6_23_1
  doi: 10.1145/3386580
– ident: e_1_2_6_16_1
  doi: 10.1109/TTE.2020.3017090
– ident: e_1_2_6_3_1
  doi: 10.20517/energymater.2022.14
– ident: e_1_2_6_6_1
  doi: 10.1016/j.measurement.2021.109057
– ident: e_1_2_6_34_1
  doi: 10.1016/j.est.2021.103558
– ident: e_1_2_6_26_1
  doi: 10.1016/j.apenergy.2020.115646
– ident: e_1_2_6_32_1
  doi: 10.1016/j.apenergy.2020.116167
– ident: e_1_2_6_8_1
  doi: 10.1109/TTE.2017.2739344
– ident: e_1_2_6_20_1
  doi: 10.1007/978-3-319-49409-8_35
– ident: e_1_2_6_7_1
  doi: 10.1109/TTE.2016.2571778
– ident: e_1_2_6_27_1
  doi: 10.1109/TII.2020.3008223
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jpowsour.2020.228863
– ident: e_1_2_6_17_1
  doi: 10.1016/j.est.2021.103115
– ident: e_1_2_6_33_1
  doi: 10.1109/TII.2023.3266403
SSID ssj0001414901
Score 2.2844064
Snippet Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven methods...
Abstract Monitoring the health of lithium batteries is a crucial undertaking in ensuring the safe and dependable functioning of electric vehicles. Data‐driven...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3390
SubjectTerms Algorithms
Artificial neural networks
CNN‐BiGRU
Data acquisition
Degradation
denoising autoencoder
Design
Effectiveness
Electric vehicles
Life prediction
Lithium
Lithium batteries
Lithium-ion batteries
Methods
Neural networks
Noise reduction
Prediction models
reconstruction loss
remaining useful life
Useful life
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07axwxEMdFMC6SIth5kPMLYVK42Xgl7UNb2uZMCmMCSYw7occIH6x3zd3tgbt8hHzGfJJopD1zhoQ06RahYhiNpP8smt8Q8pFpybWxLJNN6bEkR2amLERmcq4bZ5gvI8D05qq-vpa3t82XjVZf-CYs4YGT405ZZSAcmdZX1hW19gaqogFnGl8Xpoz9anleNxvJVPy7UgTln7M1Sijnp7AA8SmIafHsAoqc_mficlOixjvmcoe8HsUhPUtG7ZIX0L0hrzaQgW9Je0a7fgUtDedFP8NEn-ph2SOO0sGc3j1iBRbt0uNuGhQpncN96gJBhwX4oaXtzANFuEaqWqS9D0PLu9lw_-vHTxwwkbkZUuh35Pvl9NvF52zsmJBZRBRljDsd8hMuDS-EC9oEvK7DFW-4leCED2JIlq7OK2uZFmVlvPMArHbCuaoWIN6Tra7v4AOhDVisJJTWe1uUvtGyBF1AEGgCiTxsQk7WblR2xIljV4tWJRAyV-hxhR6fkOOnqQ-JofGnSee4Fk8TEHsdB0IwqDEY1L-CYUIO1iupxr24UAJVpOQhrws2x9X9uxVq-nUq8GPvf5izT17yoIHSe8EDsrWcD3BItu1qOVvMj2LE_gaXnPQc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEMct2HKAQ8tTbCnIQhy4hI3tPJwTaqutQIJqJR4qJ8uPcbtSmpRkU4kbH4HPyCepJ8n2IQEnbpFlWSONPf7b8fyGkFdMS66NZZEsUo8pOTIyaSIiE3NdOMN82gNMv37IDw_l0VGxGNOj2_FZ5Tom9oF6oD3ju-0QhGeutnhjPhOoDCQPWv3t2fcIa0jhv9axoMZtsoHgrXhCNhbvPy6-Xd25JOE8ELM1YCjmM2hBvAkDiRvbUk_vvyE5rwvXfuc52Pq_Nt8nm6MCpbvDlHlAbkH1kNy7xiV8RMpdWtXnUNIQlOol3iZQ3a1qZF46aOjJD0zzotXwgpwG2UsbOB1KTdCuBd-VtFx6oEjwGFIjae1D0-pk2Z3-_vkLG0wP9gzn9Mfky8H88_67aCzLEFnkIEWMOx0OQVwanggXBBB4nQcdYbiV4IQPikumLo8za5kWaWa88wAsd8K5LBcgnpBJVVfwlNACLKYrSuu9TVJfaJmCTiCoQIHYHzYlr9deUXZklmPpjFINtGWu0IEKHTglLy-7ng2gjj912kPXXnZAtnbfUDfHalyqimUGwiZtfWZdkmtvIEsKcKbweWKCZVOys_a2Ghd8q66cG2zuJ8vfrVDzT3OBH9v_HukZucuDhBqeG-6Qyarp4Dm5Y89Xy7Z5MU7uCxYxDeA
  priority: 102
  providerName: ProQuest
Title A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium‐ion batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1823
https://www.proquest.com/docview/3095182966
https://doaj.org/article/16be299cf6cd47afbe649edb9f74b513
Volume 12
WOSCitedRecordID wos001271635400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: PCBAR
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: M7S
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: BENPR
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: PIMPY
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKywEOvBELZWUhDlxC13Yejji1aCsqwSqiPMop8mNMV0oTlGwqceMn8Bv5JXic7LaVQELilowm0siesT9PPN8Q8pwpyZU2LJJ54rAkR0Y6iUWkZ1zlVjOXBALTT2-zxUKenOTFFnm1roUZ-CE2CTeMjLBeY4Ar3e1dkIZCB-KlR8fiGtlhTGTo0jwuLhIssQf_of0xnyX4w3eWrJmFZnxv8_WV_SjQ9l_BmpcRa9hyDm__l7F3yK0RadL9wTXuki2o75Gbl_gH75Nqn9bNOVTULz7NErMGVPWrBrktLbT09DuWc9F6uClOPbylLZwNLSVo34HrK1otHVBk6hhKIGnjvGh1uuzPfv34iQIdCDz9efwB-Xg4__D6TTS2X4gM8h1FjFvlDztcah4L64EOOJV5vKC5kWCF88hKJjabpcYwJZJUO-sAWGaFtWkmQDwk23VTwyNCczBYliiNcyZOXK5kAioGj_YE0vuwCXmxnoTSjNzk2CKjKgdWZV7iAJY4gBPybKP6bSDk-JPSAc7kRgE5tIOgab-WY0iWLNXgN2PjUmPjTDkNaZyD1bnLYu0tm5DdtR-UY2B3pUBIKrk_JHqbw4z_3YpyfjwX-PD431WfkBvcw6bhiuEu2V61PTwl1835atm10-DhU7JzMF8U76chfzDF26rHXlYcvSu--LfPR4vfa6oGEw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKiwQseKMOFLAQIDahEzsPZ8FiWqZq1WFUQUHdubF93UZKk5LMFHXHJ_AlfBRfgm8efUjArgt2kWVZln1877Fz77mEvPRTwVKlfU8kocWUHOGpMOCeGrI0Mcq3YSNg-mUST6diby_ZWSA_-1wYDKvsbWJjqE2p8Y18lSMXEMyx8y6CchtOv7n7Wf1u673bzFeMbYx31ze9roSAp1Gzx_OZSR1hZ0KxgBvnrMGmsfN5imkBhlvHDkRo4mGktZ_yMFLWWAA_NtyYKObA3bivj796WKUK_-Z2JTuukSURJYE7V0s762ujj-evOoG7cQz9XsJoyFahBv7WTZxfcnxNfYBLpPYiNW5828ad_21V7pLbHYumoxb298gCFPfJrQvaig9IPqJFeQI5dYa1zPBFhKbzWYm6nQYqeniKqWq0aKPgqaPutIKjtlwGnddg5znNMwsUVUja9E5aWtc0O8zmR7--_8AG1YiTZlA_JJ-vZAUekcWiLGCZ0AQ0plwKba0OQpukIoQ0AMdkOUoX-QPypt93qTvddSz_kctWMZpJhIhEiAzIi7Oux63YyJ86rSF4zjqgPnjTUFYHsjM30o8UOKKhbaRNEKdWQRQkYFRi40C5mQ3ISo8n2RmtWp6Dyc25gePfZyHHn8YcPx7_e6Tn5Mbm7oeJnGxNt5-Qm8xRwjZ8coUszqo5PCXX9cksq6tn3VGiZP-qofsbYMpfBQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxELXCBCFyYEcZCGAhkLg0M2334j4glJAZESUajdiUm_FSJi1NpkP3TFBufALfw-fwJZR7ySIBtxy4tSzLsrufq57dVa8IeRYqwZQ2YSCy2PmUHBHoOOKBHjKVWR26uBYw_bSXTiZifz-brpCfXS6MD6vsbGJtqG1h_B35gHsuIBiy84FrwyKm2-PXR18DX0HK_2ntymk0ENmFk294fKte7Wzjt37O2Hj04c3boK0wEBgv6ROEzCrk80xoFnGLvhycStElamYEWO6QPIjYpsPEmFDxONHOOoAwtdzaJOXAcdwrZDXleOjpkdWt0WT67uyGJ8LTxzDs5IyGbAAV8Je4CH7BCda1Ai4Q3PM0ufZz45v_8xu6RW607JpuNtvhNlmB-R2ydk5z8S6ZbdJ5cQwziga3yP1NCVXLReH1PC2U9ODEp7DReRMdT5HS0xIOmzIadFkBrpnOcgfUq5M0aZ-0cNi0OMiXh7--__ANuhYtzaG6Rz5eynLvk968mMM6oRkYn4opjHMmil2mRAwqAmS43EsahX3yosOANK0euy8LMpONkjSTHi7Sw6VPnp52PWpESP7UacsD6bSD1w2vG4ryi2zNkAwTDUhAjEuMjVLlNCRRBlZnLo00zqxPNjpsydaYVfIMWDjnGpp_n4UcvR9x__Dg3yM9IdcQnHJvZ7L7kFxnyBSbqMoN0luUS3hErprjRV6Vj9tdRcnny4bpb17aZ94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+denoising+autoencoder+hybrid+network+for+remaining+useful+life+estimation+of+lithium%E2%80%90ion+batteries&rft.jtitle=Energy+science+%26+engineering&rft.au=Xia%2C+Wei&rft.au=Xu%2C+Jinli&rft.au=Liu%2C+Baolei&rft.au=Duan%2C+Huiyun&rft.date=2024-08-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=12&rft.issue=8&rft.spage=3390&rft.epage=3400&rft_id=info:doi/10.1002%2Fese3.1823&rft.externalDBID=10.1002%252Fese3.1823&rft.externalDocID=ESE31823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon