DRAC: a delta recurrent neural network-based arithmetic coding algorithm for edge computing
This paper develops an arithmetic coding algorithm based on delta recurrent neural network for edge computing devices called DRAC. Our algorithm is implemented on a Xilinx Zynq 7000 Soc board. We evaluate DRAC with four datasets and compare it with the state-of-the-art compressor DeepZip. The experi...
Saved in:
| Published in: | Complex & intelligent systems Vol. 8; no. 5; pp. 3675 - 3681 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.10.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2199-4536, 2198-6053 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper develops an arithmetic coding algorithm based on delta recurrent neural network for edge computing devices called DRAC. Our algorithm is implemented on a Xilinx Zynq 7000 Soc board. We evaluate DRAC with four datasets and compare it with the state-of-the-art compressor DeepZip. The experimental results show that DRAC outperforms DeepZip and achieves 5X speedup ratio and 20X power consumption saving. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2199-4536 2198-6053 |
| DOI: | 10.1007/s40747-021-00455-1 |