Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm
Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance. The purpose of this study is to propose a novel hybrid forecast model in view of the Volterra adaptive filter and an improved whale optimizatio...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 87; s. 103323 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.01.2020
|
| Témata: | |
| ISSN: | 0952-1976, 1873-6769 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance. The purpose of this study is to propose a novel hybrid forecast model in view of the Volterra adaptive filter and an improved whale optimization algorithm to predict the short-term natural gas consumption. Firstly, Gauss smoothing and C–C method is adopted to pretreat and reconstruct short-term natural gas consumption time series; secondly, to improve the performance of whale optimization algorithm, adaptive search-surround mechanism and spiral position and jumping behavior are introduced into it; Thirdly, Volterra adaptive filter is used to predict the short-term natural gas consumption, and the important parameters (e.g. embedding dimension) is optimized by improved whale optimization algorithm. Finally, an actual example is given to test the performance of the developed prediction model. The results indicate that (1) short-term natural gas consumption time series has chaotic characteristics; (2) performance of the improved whale optimization algorithm is better than some comparative algorithms (i.e. cuckoo optimization algorithm, etc. ) based on the different evaluation indicators; (3) exploration factor is the main operational factor; (4) the performance of the proposed prediction model is better than some advanced prediction models (e.g. back propagation neural network). It can be concluded that such an innovative hybrid prediction model may provide a reference for natural gas companies to achieve intelligent scheduling.
[Display omitted]
•The ability obtained the global optimal solution by applying IWOA is better.•The exploration in IWOA is the main operating factor.•The developed hybrid prediction model has higher forecasting accuracy. |
|---|---|
| AbstractList | Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance. The purpose of this study is to propose a novel hybrid forecast model in view of the Volterra adaptive filter and an improved whale optimization algorithm to predict the short-term natural gas consumption. Firstly, Gauss smoothing and C–C method is adopted to pretreat and reconstruct short-term natural gas consumption time series; secondly, to improve the performance of whale optimization algorithm, adaptive search-surround mechanism and spiral position and jumping behavior are introduced into it; Thirdly, Volterra adaptive filter is used to predict the short-term natural gas consumption, and the important parameters (e.g. embedding dimension) is optimized by improved whale optimization algorithm. Finally, an actual example is given to test the performance of the developed prediction model. The results indicate that (1) short-term natural gas consumption time series has chaotic characteristics; (2) performance of the improved whale optimization algorithm is better than some comparative algorithms (i.e. cuckoo optimization algorithm, etc. ) based on the different evaluation indicators; (3) exploration factor is the main operational factor; (4) the performance of the proposed prediction model is better than some advanced prediction models (e.g. back propagation neural network). It can be concluded that such an innovative hybrid prediction model may provide a reference for natural gas companies to achieve intelligent scheduling.
[Display omitted]
•The ability obtained the global optimal solution by applying IWOA is better.•The exploration in IWOA is the main operating factor.•The developed hybrid prediction model has higher forecasting accuracy. |
| ArticleNumber | 103323 |
| Author | Qiao, Weibiao Kang, Zhangyang Yang, Zhe Pan, Zhen |
| Author_xml | – sequence: 1 givenname: Weibiao surname: Qiao fullname: Qiao, Weibiao email: kaishirensheng@sina.com organization: School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 2 givenname: Zhe surname: Yang fullname: Yang, Zhe organization: School of Computer Science, The University of Manchester, Manchester, M13 9PL, UK – sequence: 3 givenname: Zhangyang surname: Kang fullname: Kang, Zhangyang organization: School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China – sequence: 4 givenname: Zhen surname: Pan fullname: Pan, Zhen organization: College of Petroleum and Natural Gas Engineering, Liaoning Shihua University, Fushun 113001, China |
| BookMark | eNqFkMtqwzAQRUVJoUnaXyj6AaeyZcs2dNES-oJAFw3dirE8ThRsy0hKSvr1VZJ2001WMwz3XJgzIaPe9EjIbcxmMYvF3WaG_QqGAfQsYXEZjpwn_IKM4yLnkchFOSJjVmZJFJe5uCIT5zaMMV6kYkz2H2tjfeTRdrQHv7XQ0hU4qkzvtt3gtenpYLHW6rhW4LCmYfk0bWAsUKghpHZIG324UOhrqrvBml0Ifq2hRWpCoNPfcGyAdmWs9uvumlw20Dq8-Z1Tsnx-Ws5fo8X7y9v8cRGplAsfNSVXWQOsyrMkjXPMsMCkEDlnLE1UAiIRVVEJXlW1EhwaEHXKeQZ5iqLMMz4l4lSrrHHOYiMHqzuwexkzefAnN_LPnzz4kyd_Abz_Byrtjz94C7o9jz-ccAy_7TRa6ZTGXgWVFpWXtdHnKn4AZz6WNQ |
| CitedBy_id | crossref_primary_10_1177_0144598720911158 crossref_primary_10_1155_2020_2476789 crossref_primary_10_1016_j_engappai_2023_106005 crossref_primary_10_1007_s11053_020_09732_1 crossref_primary_10_1007_s10644_023_09500_0 crossref_primary_10_1016_j_engappai_2022_104981 crossref_primary_10_1155_2021_8130378 crossref_primary_10_1016_j_jpse_2025_100319 crossref_primary_10_1016_j_eneco_2024_107608 crossref_primary_10_1016_j_knosys_2021_107483 crossref_primary_10_1007_s11831_023_09928_7 crossref_primary_10_1007_s10706_020_01388_1 crossref_primary_10_1016_j_asoc_2023_111099 crossref_primary_10_1016_j_engappai_2021_104229 crossref_primary_10_7717_peerj_cs_1557 crossref_primary_10_1007_s00366_020_00981_5 crossref_primary_10_1016_j_energy_2022_124722 crossref_primary_10_1109_ACCESS_2021_3129601 crossref_primary_10_1016_j_icheatmasstransfer_2020_104546 crossref_primary_10_1002_dac_4891 crossref_primary_10_1016_j_energy_2021_121216 crossref_primary_10_3390_fractalfract7060422 crossref_primary_10_1007_s00521_020_04849_z crossref_primary_10_1016_j_asoc_2024_111409 crossref_primary_10_1080_15567249_2022_2154412 crossref_primary_10_1155_2022_1562942 crossref_primary_10_1038_s41598_020_61855_w crossref_primary_10_1007_s10644_023_09483_y crossref_primary_10_1016_j_ceramint_2024_11_325 crossref_primary_10_1016_j_ijdrr_2023_104068 crossref_primary_10_1007_s12665_025_12190_8 crossref_primary_10_1016_j_jngse_2020_103683 crossref_primary_10_1016_j_jclepro_2021_127215 crossref_primary_10_1016_j_tws_2020_106683 crossref_primary_10_1007_s10973_020_09490_5 crossref_primary_10_1177_1077546320923930 crossref_primary_10_1007_s00521_021_06635_x crossref_primary_10_1016_j_jclepro_2019_119386 crossref_primary_10_1007_s10479_021_04089_x crossref_primary_10_1080_15397734_2020_1748052 crossref_primary_10_1109_ACCESS_2019_2958456 crossref_primary_10_1007_s13202_022_01490_5 crossref_primary_10_1109_ACCESS_2020_2982418 crossref_primary_10_1109_ACCESS_2020_2981689 crossref_primary_10_3389_feart_2023_1264883 crossref_primary_10_1016_j_eswa_2023_121202 crossref_primary_10_1016_j_jngse_2021_103930 crossref_primary_10_3390_en14196021 crossref_primary_10_1016_j_engappai_2022_104685 crossref_primary_10_1109_ACCESS_2020_3012686 crossref_primary_10_3390_pr8010092 crossref_primary_10_1016_j_energy_2020_117333 crossref_primary_10_1007_s00521_022_08139_8 crossref_primary_10_1002_ese3_1553 crossref_primary_10_3390_en17010253 crossref_primary_10_1007_s00366_020_01002_1 crossref_primary_10_1007_s10479_022_04781_6 crossref_primary_10_1002_er_7293 crossref_primary_10_1016_j_energy_2021_122562 crossref_primary_10_1080_15397734_2020_1719509 crossref_primary_10_1007_s12665_024_11923_5 crossref_primary_10_1016_j_renene_2025_122591 crossref_primary_10_1016_j_jobe_2022_105772 crossref_primary_10_1016_j_energy_2023_127376 crossref_primary_10_1016_j_jer_2023_100127 crossref_primary_10_1016_j_ress_2021_107651 crossref_primary_10_3389_feart_2021_815616 crossref_primary_10_1007_s00500_021_05889_w crossref_primary_10_1155_2020_8863425 crossref_primary_10_1007_s00366_020_01004_z crossref_primary_10_1016_j_energy_2021_120968 crossref_primary_10_1016_j_jestch_2024_101669 crossref_primary_10_3390_su151310660 crossref_primary_10_3390_en14020489 crossref_primary_10_1007_s00366_020_00957_5 crossref_primary_10_1016_j_oceaneng_2023_116238 crossref_primary_10_1016_j_jpse_2021_11_001 crossref_primary_10_1109_ACCESS_2020_3038570 crossref_primary_10_1016_j_energy_2022_125976 crossref_primary_10_1016_j_fuel_2022_123348 crossref_primary_10_1007_s13201_022_01794_1 crossref_primary_10_1016_j_jclepro_2019_119637 crossref_primary_10_1016_j_energy_2020_119586 crossref_primary_10_1016_j_jngse_2021_104175 crossref_primary_10_1016_j_seppur_2024_127536 crossref_primary_10_1061__ASCE_PS_1949_1204_0000665 crossref_primary_10_3390_s20174662 crossref_primary_10_1016_j_renene_2023_06_021 crossref_primary_10_3390_en16031295 crossref_primary_10_1016_j_energy_2024_130880 crossref_primary_10_1016_j_measurement_2019_107389 crossref_primary_10_1007_s00366_020_00949_5 crossref_primary_10_1007_s00366_020_01038_3 crossref_primary_10_1038_s41598_024_63739_9 crossref_primary_10_1016_j_jscs_2023_101708 crossref_primary_10_1109_ACCESS_2020_2967078 crossref_primary_10_1016_j_cageo_2024_105667 crossref_primary_10_3389_feart_2021_822322 crossref_primary_10_1016_j_measurement_2020_107576 crossref_primary_10_1109_ACCESS_2021_3096532 crossref_primary_10_1016_j_matcom_2022_05_023 crossref_primary_10_1002_ese3_1218 crossref_primary_10_1016_j_measurement_2020_107577 crossref_primary_10_1016_j_saa_2021_119899 crossref_primary_10_1109_ACCESS_2020_3016277 crossref_primary_10_1016_j_snb_2024_135879 crossref_primary_10_3390_en16104060 crossref_primary_10_1016_j_egyr_2020_02_002 crossref_primary_10_1016_j_energy_2020_117171 crossref_primary_10_1016_j_asoc_2020_106891 crossref_primary_10_1080_15567036_2021_1875082 crossref_primary_10_3390_e24111668 crossref_primary_10_1007_s13369_021_06042_3 crossref_primary_10_1016_j_diamond_2025_112821 crossref_primary_10_1109_ACCESS_2020_2991435 crossref_primary_10_1016_j_energy_2019_116704 crossref_primary_10_1016_j_jocs_2024_102323 crossref_primary_10_1007_s00366_020_01000_3 crossref_primary_10_3390_en13071565 crossref_primary_10_3390_su12219114 crossref_primary_10_1007_s10479_021_04492_4 crossref_primary_10_1016_j_energy_2021_121036 crossref_primary_10_3390_en15010348 crossref_primary_10_1002_cpe_5949 crossref_primary_10_1016_j_jenvman_2021_112438 crossref_primary_10_1016_j_asoc_2020_106620 crossref_primary_10_3390_s21051769 crossref_primary_10_1109_ACCESS_2020_2966006 crossref_primary_10_1155_2020_6590397 crossref_primary_10_1155_2020_3743089 crossref_primary_10_3390_en15197035 crossref_primary_10_1007_s11356_022_25080_4 crossref_primary_10_3390_rs15143654 crossref_primary_10_1016_j_engappai_2023_107644 crossref_primary_10_1016_j_energy_2023_128022 crossref_primary_10_1016_j_measurement_2019_107365 crossref_primary_10_1016_j_enconman_2020_112660 crossref_primary_10_1007_s10614_023_10528_7 crossref_primary_10_1002_ese3_650 crossref_primary_10_1109_ACCESS_2020_2973458 crossref_primary_10_1007_s00603_023_03364_6 crossref_primary_10_1007_s11708_020_0672_5 crossref_primary_10_1109_ACCESS_2022_3174814 crossref_primary_10_1016_j_egyai_2025_100535 crossref_primary_10_1007_s11069_021_05076_y |
| Cites_doi | 10.1007/s00500-016-2442-1 10.20964/2019.08.05 10.1016/j.apenergy.2011.11.003 10.1016/j.enpol.2012.11.047 10.1016/j.jclepro.2019.118612 10.1016/j.advengsoft.2016.01.008 10.1109/ACCESS.2019.2918156 10.1016/j.sigpro.2019.01.013 10.1016/j.petrol.2019.106187 10.1016/j.sbspro.2016.11.066 10.1109/ACCESS.2019.2931910 10.1016/j.enconman.2010.10.037 10.1016/j.rser.2011.08.014 10.1016/j.enbuild.2013.11.032 10.1016/S0167-2789(97)00118-8 10.1016/0167-2789(93)90009-P 10.1016/j.ijforecast.2008.08.005 10.1016/j.asoc.2017.11.006 10.1016/j.jngse.2017.10.028 10.1016/j.apenergy.2019.05.023 10.3390/en11082008 10.1016/j.future.2018.03.020 10.1016/j.enconman.2017.07.065 10.1109/59.910780 10.1016/j.energy.2019.07.014 10.1016/j.jhydrol.2016.06.028 10.3390/pr7010007 10.4028/b-7b2tVy 10.1016/j.procs.2011.07.100 10.1016/j.engappai.2019.07.019 10.1109/ACCESS.2019.2942169 10.1016/j.enbuild.2016.06.020 10.1016/j.procs.2019.01.235 10.1016/j.knosys.2018.03.024 10.1016/j.apenergy.2014.04.102 10.1016/j.enbuild.2012.10.023 10.1109/72.839015 10.1115/1.4041413 10.1016/j.energy.2018.01.112 10.1007/s00521-011-0715-2 10.3390/en12010112 10.1016/j.energy.2014.11.083 10.1016/j.energy.2018.12.084 10.1016/j.energy.2015.03.084 10.1007/s10845-017-1311-9 10.1016/j.enpol.2009.11.036 10.1007/s12667-014-0128-2 10.3390/en12020218 10.1016/j.apenergy.2014.07.104 10.1016/j.jclepro.2019.03.253 10.1109/ACCESS.2019.2944755 10.1037/met0000197 10.1016/j.neucom.2017.04.053 10.1016/0167-2789(85)90011-9 10.1016/j.energy.2016.12.033 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2019.103323 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2019_103323 S0952197619302738 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c436t-f93c5fa0b752417e5e8e286730042c2a626b8b63bbdc63afa6d4335a74e69753 |
| ISICitedReferencesCount | 169 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506715100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:06:23 EST 2025 Tue Nov 18 21:48:13 EST 2025 Fri Feb 23 02:48:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Improved whale optimization algorithm Phase space reconstruction Short-term natural gas consumption Chaotic character recognition Forecast Volterra adaptive filter |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c436t-f93c5fa0b752417e5e8e286730042c2a626b8b63bbdc63afa6d4335a74e69753 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2019_103323 crossref_citationtrail_10_1016_j_engappai_2019_103323 elsevier_sciencedirect_doi_10_1016_j_engappai_2019_103323 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mirjalili, Lewis (b34) 2016; 95 Malakoti-Moghadam, Askarzadeh, Rashidinejad (b31) 2019 Soldo, Potočnik, Šimunović, Šarić, Govekar (b51) 2014; 69 Karimi, Dastranj (b20) 2014; 5 Khotanzad, Elragal (b22) 1999; vol. 6 Shi (b49) 2013 Merkel, Povinelli, Brown (b33) 2018; 11 Yu, Wang, Xu (b64) 2014 Khotanzad, Elragal, Lu (b23) 2000; 11 Bai, Li (b7) 2016; 127 Azadeh, Asadzadeh, Ghanbari (b5) 2010; 38 Taşpınar, Celebi, Tutkun (b55) 2013; 56 Aljarah, Faris, Mirjalili (b3) 2018; 22 Dai, Guo, Yang, You (b11) 2019; 147 Abdel-Basset, Manogaran, El-Shahat, Mirjalili (b1) 2018; 85 Du, Wang, Guo, Yang (b14) 2017; 150 Rosenstein, Collins, De Luca (b47) 1993; 65 Sabo, Scitovski, Vazler, Zekić-Sušac (b48) 2011; 52 Zeng, Bao, Wen, Zhu (b66) 2019; 12 Liu, Zhang, Chen, Fan, Jiang, Jjk, Li (b27) 2019; 185 Qiao, Tian, Tian, Yang, Wang, Zhang (b43) 2019; 7 Akpinar, Adak, Yumusak (b2) 2016 Yu, Xu (b65) 2014; 134 Wolf, Swift, Swinney, Vastano (b63) 1985; 16 Panapakidis, Dagoumas (b37) 2017; 118 Zhang, Liu, Zhang, Huang, Zhu (b67) 2010 Azari, Shariaty-Niassar, Alborzi (b6) 2012; 31 Qiao, Lu, Zhou, Azimi, Yang, Tian (b42) 2020; 244 Szoplik (b54) 2015; 85 Liu, Li, Sun (b26) 2013; 22 Zhu, Wang (b70) 2019; 85 Soldo (b50) 2012; 92 Su, Liu, Xu, Xie, Shang, Zhu (b52) 2019; 74 Qiao, Wang (b44) 2018; 50 Kashani, Ghorbani, Dinpashoh, Shahmorad (b21) 2016; 540 Lu, Hong, Xu (b28) 2019; 170 Peng, Chen, Zheng, Liu (b38) 2019; 2019 Mousavi, Alikar, Tavana, Di Caprio (b35) 2019; 30 Cao (b10) 1997; 110 Ervural, Beyca, Zaim (b16) 2016; 235 Bai, Li, Zeng, Li, Zhang (b8) 2019; 224 Du, Wang, Yang, Niu (b15) 2019; 2019 Viet, Mandziuk (b57) 2003 Qiao, Yang (b45) 2019; 7 Qiao, Bingfan, Zhangyang (b40) 2019; 14 Wei, Li, Peng, Li, Zeng (b61) 2019; 250 Potočnik, Soldo, Šimunović, Šarić, Jeromen, Govekar (b39) 2014; 129 Demirel, Zaim, Çalişkan, Özuyar (b13) 2012; 20 Mehne, Mirjalili (b32) 2018; 151 Ivezić (b19) 2006; 34 Wei, Li, Li, Xie, Du, Zhang, Zeng (b60) 2019; 141 Qiao, Huang, Azimi, Han (b41) 2019; 7 Wang, Yang, Du, Li (b58) 2018; 148 Mafarja, Mirjalili (b29) 2017; 260 Zhou, Su, Li (b68) 2011; 5 Wei, Li, Duan, Liu, Zeng (b59) 2019; 12 Deetman, Hof, Pfluger, van Vuuren, Girod, van Ruijven (b12) 2013; 55 Guo, He, Jiang, Chu, Malekian, Li (b17) 2019; 12 Mafarja, Mirjalili (b30) 2018; 62 Packard, Crutchfield, Farmer, Shaw (b36) 1980; 45 Zhu, Li, Wu, Jiang (b69) 2015; 80 Tronarp, Särkkä (b56) 2019; 159 Wei, Li, Peng, Zeng, Lu (b62) 2019 Brabec, Konár, Pelikán, Malý (b9) 2008; 24 Liu, Li, Cai, Peng (b25) 2019; 7 Suganthi, Samuel (b53) 2012; 16 Augusteijn, van Aert, van Assen (b4) 2019; 24 Kizilaslan, Karlik (b24) 2008 Qiao, Yang (b46) 2019; 7 Hippert, Pedreira, Souza (b18) 2001; 16 Mehne (10.1016/j.engappai.2019.103323_b32) 2018; 151 Qiao (10.1016/j.engappai.2019.103323_b44) 2018; 50 Zhu (10.1016/j.engappai.2019.103323_b70) 2019; 85 Yu (10.1016/j.engappai.2019.103323_b64) 2014 Viet (10.1016/j.engappai.2019.103323_b57) 2003 Wang (10.1016/j.engappai.2019.103323_b58) 2018; 148 Mafarja (10.1016/j.engappai.2019.103323_b30) 2018; 62 Liu (10.1016/j.engappai.2019.103323_b26) 2013; 22 Khotanzad (10.1016/j.engappai.2019.103323_b23) 2000; 11 Qiao (10.1016/j.engappai.2019.103323_b40) 2019; 14 Wei (10.1016/j.engappai.2019.103323_b62) 2019 Liu (10.1016/j.engappai.2019.103323_b27) 2019; 185 Mafarja (10.1016/j.engappai.2019.103323_b29) 2017; 260 Mirjalili (10.1016/j.engappai.2019.103323_b34) 2016; 95 Tronarp (10.1016/j.engappai.2019.103323_b56) 2019; 159 Cao (10.1016/j.engappai.2019.103323_b10) 1997; 110 Guo (10.1016/j.engappai.2019.103323_b17) 2019; 12 Zeng (10.1016/j.engappai.2019.103323_b66) 2019; 12 Zhang (10.1016/j.engappai.2019.103323_b67) 2010 Ervural (10.1016/j.engappai.2019.103323_b16) 2016; 235 Zhou (10.1016/j.engappai.2019.103323_b68) 2011; 5 Abdel-Basset (10.1016/j.engappai.2019.103323_b1) 2018; 85 Khotanzad (10.1016/j.engappai.2019.103323_b22) 1999; vol. 6 Bai (10.1016/j.engappai.2019.103323_b7) 2016; 127 Qiao (10.1016/j.engappai.2019.103323_b45) 2019; 7 Du (10.1016/j.engappai.2019.103323_b15) 2019; 2019 Qiao (10.1016/j.engappai.2019.103323_b41) 2019; 7 Mousavi (10.1016/j.engappai.2019.103323_b35) 2019; 30 Hippert (10.1016/j.engappai.2019.103323_b18) 2001; 16 Sabo (10.1016/j.engappai.2019.103323_b48) 2011; 52 Brabec (10.1016/j.engappai.2019.103323_b9) 2008; 24 Ivezić (10.1016/j.engappai.2019.103323_b19) 2006; 34 Liu (10.1016/j.engappai.2019.103323_b25) 2019; 7 Qiao (10.1016/j.engappai.2019.103323_b43) 2019; 7 Qiao (10.1016/j.engappai.2019.103323_b46) 2019; 7 Suganthi (10.1016/j.engappai.2019.103323_b53) 2012; 16 Yu (10.1016/j.engappai.2019.103323_b65) 2014; 134 Kashani (10.1016/j.engappai.2019.103323_b21) 2016; 540 Azari (10.1016/j.engappai.2019.103323_b6) 2012; 31 Karimi (10.1016/j.engappai.2019.103323_b20) 2014; 5 Shi (10.1016/j.engappai.2019.103323_b49) 2013 Dai (10.1016/j.engappai.2019.103323_b11) 2019; 147 Panapakidis (10.1016/j.engappai.2019.103323_b37) 2017; 118 Wolf (10.1016/j.engappai.2019.103323_b63) 1985; 16 Qiao (10.1016/j.engappai.2019.103323_b42) 2020; 244 Packard (10.1016/j.engappai.2019.103323_b36) 1980; 45 Bai (10.1016/j.engappai.2019.103323_b8) 2019; 224 Aljarah (10.1016/j.engappai.2019.103323_b3) 2018; 22 Taşpınar (10.1016/j.engappai.2019.103323_b55) 2013; 56 Merkel (10.1016/j.engappai.2019.103323_b33) 2018; 11 Zhu (10.1016/j.engappai.2019.103323_b69) 2015; 80 Malakoti-Moghadam (10.1016/j.engappai.2019.103323_b31) 2019 Potočnik (10.1016/j.engappai.2019.103323_b39) 2014; 129 Demirel (10.1016/j.engappai.2019.103323_b13) 2012; 20 Peng (10.1016/j.engappai.2019.103323_b38) 2019; 2019 Kizilaslan (10.1016/j.engappai.2019.103323_b24) 2008 Azadeh (10.1016/j.engappai.2019.103323_b5) 2010; 38 Wei (10.1016/j.engappai.2019.103323_b59) 2019; 12 Augusteijn (10.1016/j.engappai.2019.103323_b4) 2019; 24 Wei (10.1016/j.engappai.2019.103323_b61) 2019; 250 Soldo (10.1016/j.engappai.2019.103323_b50) 2012; 92 Deetman (10.1016/j.engappai.2019.103323_b12) 2013; 55 Szoplik (10.1016/j.engappai.2019.103323_b54) 2015; 85 Wei (10.1016/j.engappai.2019.103323_b60) 2019; 141 Akpinar (10.1016/j.engappai.2019.103323_b2) 2016 Soldo (10.1016/j.engappai.2019.103323_b51) 2014; 69 Lu (10.1016/j.engappai.2019.103323_b28) 2019; 170 Du (10.1016/j.engappai.2019.103323_b14) 2017; 150 Rosenstein (10.1016/j.engappai.2019.103323_b47) 1993; 65 Su (10.1016/j.engappai.2019.103323_b52) 2019; 74 |
| References_xml | – volume: 150 start-page: 90 year: 2017 end-page: 107 ident: b14 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manage. – start-page: 448 year: 2008 end-page: 453 ident: b24 article-title: Comparison neural networks models for short term forecasting of natural gas consumption in Istanbul publication-title: 2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT) – volume: 7 start-page: 88218 year: 2019 end-page: 88230 ident: b41 article-title: A novel hybrid prediction model for hourly gas consumption in supply side based on improved whale optimization algorithm and relevance vector machine publication-title: IEEE Access – start-page: 423 year: 2013 end-page: 427 ident: b49 article-title: Research on gas load forecasting using artificial neural network publication-title: Advanced Materials Research, Vol. 717 – volume: 16 start-page: 1223 year: 2012 end-page: 1240 ident: b53 article-title: Energy models for demand forecasting—A review publication-title: Renew. Sustain. Energy Rev. – start-page: 79 year: 2014 end-page: 85 ident: b64 article-title: Short-term gas load forecasting based on wavelet BP neural network optimized by genetic algorithm publication-title: Applied Mechanics and Materials, Vol. 631 – volume: 110 start-page: 43 year: 1997 end-page: 50 ident: b10 article-title: Practical method for determining the minimum embedding dimension of a scalar time series publication-title: Physica D – volume: 16 start-page: 285 year: 1985 end-page: 317 ident: b63 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D – volume: 118 start-page: 231 year: 2017 end-page: 245 ident: b37 article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model publication-title: Energy – volume: 5 start-page: 571 year: 2014 end-page: 581 ident: b20 article-title: Artificial neural network-based genetic algorithm to predict natural gas consumption publication-title: Energy Syst. – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b29 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 11 start-page: 2008 year: 2018 ident: b33 article-title: Short-term load forecasting of natural gas with deep neural network regression publication-title: Energies – volume: 69 start-page: 498 year: 2014 end-page: 506 ident: b51 article-title: Improving the residential natural gas consumption forecasting models by using solar radiation publication-title: Energy Build. – start-page: 390 year: 2010 end-page: 399 ident: b67 article-title: Research on short-term gas load forecasting based on support vector machine model publication-title: Life System Modeling and Intelligent Computing – volume: 2019 year: 2019 ident: b38 article-title: Analysis of particle deposition in a new-type rectifying plate system during shale gas extraction publication-title: Energy Sci. Eng. – volume: 92 start-page: 26 year: 2012 end-page: 37 ident: b50 article-title: Forecasting natural gas consumption publication-title: Appl. Energy – volume: 224 start-page: 739 year: 2019 end-page: 750 ident: b8 article-title: Hourly PM2. 5 concentration forecast using stacked autoencoder model with emphasis on seasonality publication-title: J. Cleaner Prod. – volume: 16 start-page: 44 year: 2001 end-page: 55 ident: b18 article-title: Neural networks for short-term load forecasting: A review and evaluation publication-title: IEEE Trans. Power Syst. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b34 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – start-page: 1 year: 2016 end-page: 6 ident: b2 article-title: Forecasting natural gas consumption with hybrid neural networks—Artificial bee colony publication-title: 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS) – volume: 141 year: 2019 ident: b60 article-title: Short-term forecasting of natural gas consumption using factor selection algorithm and optimized support vector regression publication-title: J. Energy Resour. Technol. – volume: 14 start-page: 7389 year: 2019 end-page: 7400 ident: b40 article-title: Differential scanning calorimetry and electrochemical tests for the analysis of delamination of 3PE coatings publication-title: Int. J. Electrochem. Sci. – volume: 7 start-page: 7 year: 2019 ident: b25 article-title: Formation mechanism of trailing oil in product oil pipeline publication-title: Processes – volume: 74 year: 2019 ident: b52 article-title: Flow field and noise characteristics of manifold in natural gas transportation station publication-title: Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv. – volume: 235 start-page: 537 year: 2016 end-page: 545 ident: b16 article-title: Model estimation of ARMA using genetic algorithms: A case study of forecasting natural gas consumption publication-title: Proc.-Soc. Behav. Sci. – volume: 129 start-page: 94 year: 2014 end-page: 103 ident: b39 article-title: Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia publication-title: Appl. Energy – volume: 80 start-page: 428 year: 2015 end-page: 436 ident: b69 article-title: Short-term natural gas demand prediction based on support vector regression with false neighbours filtered publication-title: Energy – volume: 11 start-page: 464 year: 2000 end-page: 473 ident: b23 article-title: Combination of artificial neural-network forecasters for prediction of natural gas consumption publication-title: IEEE Trans. Neural Netw. – volume: 127 start-page: 571 year: 2016 end-page: 579 ident: b7 article-title: Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach publication-title: Energy Build. – volume: 7 start-page: 110472 year: 2019 end-page: 110486 ident: b45 article-title: Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems publication-title: IEEE Access – start-page: 759 year: 2003 end-page: 768 ident: b57 article-title: Neural and fuzzy neural networks for natural gas consumption prediction publication-title: 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No. 03TH8718) – volume: 5 start-page: 754 year: 2011 end-page: 758 ident: b68 article-title: Forecasting daily gas load with OIHF-Elman neural network publication-title: Procedia Comput. Sci. – start-page: 1 year: 2019 end-page: 15 ident: b31 article-title: Transmission and generation expansion planning of energy hub by an improved genetic algorithm publication-title: Energy Sources A – volume: 38 start-page: 1529 year: 2010 end-page: 1536 ident: b5 article-title: An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: uncertain and complex environments publication-title: Energy Policy – volume: 7 start-page: 142814 year: 2019 end-page: 142825 ident: b43 article-title: The forecasting of PM 2.5 using a hybrid model based on wavelet transform and an improved deep learning algorithm publication-title: IEEE Access – volume: 147 start-page: 519 year: 2019 end-page: 527 ident: b11 article-title: A new approach of intelligent physical health evaluation based on GRNN and BPNN by using a wearable smart bracelet system publication-title: Procedia Comput. Sci. – volume: 55 start-page: 152 year: 2013 end-page: 164 ident: b12 article-title: Deep greenhouse gas emission reductions in Europe: Exploring different options publication-title: Energy Policy – volume: 151 start-page: 114 year: 2018 end-page: 123 ident: b32 article-title: A parallel numerical method for solving optimal control problems based on whale optimization algorithm publication-title: Knowl.-Based Syst. – volume: 7 start-page: 138972 year: 2019 end-page: 138989 ident: b46 article-title: Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm publication-title: IEEE Access – volume: 45 start-page: 12 year: 1980 end-page: 18 ident: b36 article-title: Controlling chaos publication-title: Phys. Rev. Lett. – volume: 50 start-page: 43 year: 2018 end-page: 54 ident: b44 article-title: Analysis of the wellhead growth in HPHT gas wells considering the multiple annuli pressure during production publication-title: J. Nat. Gas Sci. Eng. – volume: 148 start-page: 59 year: 2018 end-page: 78 ident: b58 article-title: Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system publication-title: Energy – volume: 20 start-page: 695 year: 2012 end-page: 711 ident: b13 article-title: Forecasting natural gas consumption in Istanbul using neural networks and multivariate time series methods publication-title: Turkish J. Electr. Eng. Comput. Sci. – volume: 22 start-page: 271 year: 2013 end-page: 277 ident: b26 article-title: A novel method of short-term load forecasting based on multiwavelet transform and multiple neural networks publication-title: Neural Comput. Appl. – volume: 540 start-page: 340 year: 2016 end-page: 354 ident: b21 article-title: Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran publication-title: J. Hydrol. – volume: 31 start-page: 77 year: 2012 end-page: 84 ident: b6 article-title: Short-term and medium-term gas demand load forecasting by neural networks publication-title: Iranian J. Chem. Chem. Eng. (IJCCE) – volume: 2019 year: 2019 ident: b15 article-title: A novel hybrid model for short-term wind power forecasting publication-title: Appl. Soft Comput. J. – volume: 244 year: 2020 ident: b42 article-title: A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer publication-title: J. Cleaner Prod. – volume: vol. 6 start-page: 4069 year: 1999 end-page: 4072 ident: b22 article-title: Natural gas load forecasting with combination of adaptive neural networks publication-title: International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339) – volume: 85 start-page: 208 year: 2015 end-page: 220 ident: b54 article-title: Forecasting of natural gas consumption with artificial neural networks publication-title: Energy – volume: 12 start-page: 218 year: 2019 ident: b59 article-title: Daily natural gas load forecasting based on a hybrid deep learning model publication-title: Energies – volume: 34 start-page: 165 year: 2006 end-page: 169 ident: b19 article-title: Short-term natural gas consumption forecast publication-title: FME Trans. – volume: 185 start-page: 682 year: 2019 end-page: 694 ident: b27 article-title: Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens publication-title: Energy – volume: 159 start-page: 1 year: 2019 end-page: 12 ident: b56 article-title: Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems publication-title: Signal Process. – volume: 65 start-page: 117 year: 1993 end-page: 134 ident: b47 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Physica D – volume: 170 start-page: 40 year: 2019 end-page: 52 ident: b28 article-title: Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power generation systems publication-title: Energy – volume: 62 start-page: 441 year: 2018 end-page: 453 ident: b30 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl. Soft Comput. – volume: 85 start-page: 740 year: 2019 end-page: 753 ident: b70 article-title: Cuckoo search algorithm with onlooker bee search for modeling PEMFCs using T2FNN publication-title: Eng. Appl. Artif. Intell. – volume: 22 start-page: 1 year: 2018 end-page: 15 ident: b3 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. – volume: 24 start-page: 116 year: 2019 ident: b4 article-title: The effect of publication bias on the q test and assessment of heterogeneity publication-title: Psychol. Methods – volume: 12 start-page: 6 year: 2019 end-page: 19 ident: b66 article-title: Object tracking using the particle filter optimized by the improved artificial fish swarm algorithm publication-title: Int. J. Intell. Inf. Database Syst. – volume: 12 start-page: 112 year: 2019 ident: b17 article-title: An improved LSSVM model for intelligent prediction of the daily water level publication-title: Energies – volume: 134 start-page: 102 year: 2014 end-page: 113 ident: b65 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl. Energy – volume: 250 start-page: 358 year: 2019 end-page: 368 ident: b61 article-title: Daily natural gas consumption forecasting via the application of a novel hybrid model publication-title: Appl. Energy – volume: 24 start-page: 659 year: 2008 end-page: 678 ident: b9 article-title: A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers publication-title: Int. J. Forecast. – year: 2019 ident: b62 article-title: Conventional models and artificial intelligence-based models for energy consumption forecasting: A review publication-title: J. Pet. Sci. Eng. – volume: 52 start-page: 1721 year: 2011 end-page: 1727 ident: b48 article-title: Mathematical models of natural gas consumption publication-title: Energy Convers. Manage. – volume: 85 start-page: 129 year: 2018 end-page: 145 ident: b1 article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem publication-title: Future Gener. Comput. Syst. – volume: 30 start-page: 1175 year: 2019 end-page: 1194 ident: b35 article-title: An improved particle swarm optimization model for solving homogeneous discounted series-parallel redundancy allocation problems publication-title: J. Intell. Manuf. – volume: 56 start-page: 23 year: 2013 end-page: 31 ident: b55 article-title: Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods publication-title: Energy Build. – volume: 22 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.engappai.2019.103323_b3 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-016-2442-1 – volume: 14 start-page: 7389 year: 2019 ident: 10.1016/j.engappai.2019.103323_b40 article-title: Differential scanning calorimetry and electrochemical tests for the analysis of delamination of 3PE coatings publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2019.08.05 – volume: 92 start-page: 26 year: 2012 ident: 10.1016/j.engappai.2019.103323_b50 article-title: Forecasting natural gas consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.11.003 – volume: 55 start-page: 152 year: 2013 ident: 10.1016/j.engappai.2019.103323_b12 article-title: Deep greenhouse gas emission reductions in Europe: Exploring different options publication-title: Energy Policy doi: 10.1016/j.enpol.2012.11.047 – volume: 244 year: 2020 ident: 10.1016/j.engappai.2019.103323_b42 article-title: A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.118612 – volume: 20 start-page: 695 issue: 5 year: 2012 ident: 10.1016/j.engappai.2019.103323_b13 article-title: Forecasting natural gas consumption in Istanbul using neural networks and multivariate time series methods publication-title: Turkish J. Electr. Eng. Comput. Sci. – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.engappai.2019.103323_b34 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 7 start-page: 88218 year: 2019 ident: 10.1016/j.engappai.2019.103323_b41 article-title: A novel hybrid prediction model for hourly gas consumption in supply side based on improved whale optimization algorithm and relevance vector machine publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918156 – volume: 159 start-page: 1 year: 2019 ident: 10.1016/j.engappai.2019.103323_b56 article-title: Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.01.013 – volume: 74 issue: 70 year: 2019 ident: 10.1016/j.engappai.2019.103323_b52 article-title: Flow field and noise characteristics of manifold in natural gas transportation station publication-title: Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv. – year: 2019 ident: 10.1016/j.engappai.2019.103323_b62 article-title: Conventional models and artificial intelligence-based models for energy consumption forecasting: A review publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.106187 – volume: 235 start-page: 537 year: 2016 ident: 10.1016/j.engappai.2019.103323_b16 article-title: Model estimation of ARMA using genetic algorithms: A case study of forecasting natural gas consumption publication-title: Proc.-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2016.11.066 – volume: 7 start-page: 110472 year: 2019 ident: 10.1016/j.engappai.2019.103323_b45 article-title: Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931910 – volume: 52 start-page: 1721 issue: 3 year: 2011 ident: 10.1016/j.engappai.2019.103323_b48 article-title: Mathematical models of natural gas consumption publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.10.037 – volume: 16 start-page: 1223 issue: 2 year: 2012 ident: 10.1016/j.engappai.2019.103323_b53 article-title: Energy models for demand forecasting—A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.08.014 – start-page: 759 year: 2003 ident: 10.1016/j.engappai.2019.103323_b57 article-title: Neural and fuzzy neural networks for natural gas consumption prediction – volume: 69 start-page: 498 year: 2014 ident: 10.1016/j.engappai.2019.103323_b51 article-title: Improving the residential natural gas consumption forecasting models by using solar radiation publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.11.032 – volume: 110 start-page: 43 issue: 1–2 year: 1997 ident: 10.1016/j.engappai.2019.103323_b10 article-title: Practical method for determining the minimum embedding dimension of a scalar time series publication-title: Physica D doi: 10.1016/S0167-2789(97)00118-8 – volume: 65 start-page: 117 issue: 1–2 year: 1993 ident: 10.1016/j.engappai.2019.103323_b47 article-title: A practical method for calculating largest Lyapunov exponents from small data sets publication-title: Physica D doi: 10.1016/0167-2789(93)90009-P – volume: 31 start-page: 77 issue: 4 year: 2012 ident: 10.1016/j.engappai.2019.103323_b6 article-title: Short-term and medium-term gas demand load forecasting by neural networks publication-title: Iranian J. Chem. Chem. Eng. (IJCCE) – volume: 24 start-page: 659 issue: 4 year: 2008 ident: 10.1016/j.engappai.2019.103323_b9 article-title: A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2008.08.005 – volume: vol. 6 start-page: 4069 year: 1999 ident: 10.1016/j.engappai.2019.103323_b22 article-title: Natural gas load forecasting with combination of adaptive neural networks – volume: 62 start-page: 441 year: 2018 ident: 10.1016/j.engappai.2019.103323_b30 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.006 – volume: 50 start-page: 43 year: 2018 ident: 10.1016/j.engappai.2019.103323_b44 article-title: Analysis of the wellhead growth in HPHT gas wells considering the multiple annuli pressure during production publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.10.028 – volume: 250 start-page: 358 year: 2019 ident: 10.1016/j.engappai.2019.103323_b61 article-title: Daily natural gas consumption forecasting via the application of a novel hybrid model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.05.023 – volume: 11 start-page: 2008 issue: 8 year: 2018 ident: 10.1016/j.engappai.2019.103323_b33 article-title: Short-term load forecasting of natural gas with deep neural network regression publication-title: Energies doi: 10.3390/en11082008 – volume: 85 start-page: 129 year: 2018 ident: 10.1016/j.engappai.2019.103323_b1 article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.020 – start-page: 390 year: 2010 ident: 10.1016/j.engappai.2019.103323_b67 article-title: Research on short-term gas load forecasting based on support vector machine model – volume: 150 start-page: 90 year: 2017 ident: 10.1016/j.engappai.2019.103323_b14 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.07.065 – volume: 16 start-page: 44 issue: 1 year: 2001 ident: 10.1016/j.engappai.2019.103323_b18 article-title: Neural networks for short-term load forecasting: A review and evaluation publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.910780 – volume: 185 start-page: 682 year: 2019 ident: 10.1016/j.engappai.2019.103323_b27 article-title: Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens publication-title: Energy doi: 10.1016/j.energy.2019.07.014 – volume: 45 start-page: 12 year: 1980 ident: 10.1016/j.engappai.2019.103323_b36 article-title: Controlling chaos publication-title: Phys. Rev. Lett. – volume: 540 start-page: 340 year: 2016 ident: 10.1016/j.engappai.2019.103323_b21 article-title: Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.06.028 – volume: 7 start-page: 7 issue: 1 year: 2019 ident: 10.1016/j.engappai.2019.103323_b25 article-title: Formation mechanism of trailing oil in product oil pipeline publication-title: Processes doi: 10.3390/pr7010007 – start-page: 423 year: 2013 ident: 10.1016/j.engappai.2019.103323_b49 article-title: Research on gas load forecasting using artificial neural network doi: 10.4028/b-7b2tVy – volume: 5 start-page: 754 year: 2011 ident: 10.1016/j.engappai.2019.103323_b68 article-title: Forecasting daily gas load with OIHF-Elman neural network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2011.07.100 – volume: 85 start-page: 740 year: 2019 ident: 10.1016/j.engappai.2019.103323_b70 article-title: Cuckoo search algorithm with onlooker bee search for modeling PEMFCs using T2FNN publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.07.019 – start-page: 1 year: 2016 ident: 10.1016/j.engappai.2019.103323_b2 article-title: Forecasting natural gas consumption with hybrid neural networks—Artificial bee colony – volume: 7 start-page: 138972 year: 2019 ident: 10.1016/j.engappai.2019.103323_b46 article-title: Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942169 – volume: 12 start-page: 6 issue: 1–2 year: 2019 ident: 10.1016/j.engappai.2019.103323_b66 article-title: Object tracking using the particle filter optimized by the improved artificial fish swarm algorithm publication-title: Int. J. Intell. Inf. Database Syst. – volume: 127 start-page: 571 year: 2016 ident: 10.1016/j.engappai.2019.103323_b7 article-title: Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.06.020 – volume: 147 start-page: 519 year: 2019 ident: 10.1016/j.engappai.2019.103323_b11 article-title: A new approach of intelligent physical health evaluation based on GRNN and BPNN by using a wearable smart bracelet system publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.01.235 – volume: 151 start-page: 114 year: 2018 ident: 10.1016/j.engappai.2019.103323_b32 article-title: A parallel numerical method for solving optimal control problems based on whale optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.03.024 – volume: 129 start-page: 94 year: 2014 ident: 10.1016/j.engappai.2019.103323_b39 article-title: Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.102 – volume: 56 start-page: 23 year: 2013 ident: 10.1016/j.engappai.2019.103323_b55 article-title: Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.10.023 – volume: 11 start-page: 464 issue: 2 year: 2000 ident: 10.1016/j.engappai.2019.103323_b23 article-title: Combination of artificial neural-network forecasters for prediction of natural gas consumption publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.839015 – start-page: 1 year: 2019 ident: 10.1016/j.engappai.2019.103323_b31 article-title: Transmission and generation expansion planning of energy hub by an improved genetic algorithm publication-title: Energy Sources A – start-page: 448 year: 2008 ident: 10.1016/j.engappai.2019.103323_b24 article-title: Comparison neural networks models for short term forecasting of natural gas consumption in Istanbul – volume: 141 issue: 3 year: 2019 ident: 10.1016/j.engappai.2019.103323_b60 article-title: Short-term forecasting of natural gas consumption using factor selection algorithm and optimized support vector regression publication-title: J. Energy Resour. Technol. doi: 10.1115/1.4041413 – volume: 148 start-page: 59 year: 2018 ident: 10.1016/j.engappai.2019.103323_b58 article-title: Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system publication-title: Energy doi: 10.1016/j.energy.2018.01.112 – volume: 22 start-page: 271 issue: 2 year: 2013 ident: 10.1016/j.engappai.2019.103323_b26 article-title: A novel method of short-term load forecasting based on multiwavelet transform and multiple neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-011-0715-2 – volume: 12 start-page: 112 issue: 1 year: 2019 ident: 10.1016/j.engappai.2019.103323_b17 article-title: An improved LSSVM model for intelligent prediction of the daily water level publication-title: Energies doi: 10.3390/en12010112 – volume: 80 start-page: 428 year: 2015 ident: 10.1016/j.engappai.2019.103323_b69 article-title: Short-term natural gas demand prediction based on support vector regression with false neighbours filtered publication-title: Energy doi: 10.1016/j.energy.2014.11.083 – volume: 170 start-page: 40 year: 2019 ident: 10.1016/j.engappai.2019.103323_b28 article-title: Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power generation systems publication-title: Energy doi: 10.1016/j.energy.2018.12.084 – volume: 34 start-page: 165 issue: 3 year: 2006 ident: 10.1016/j.engappai.2019.103323_b19 article-title: Short-term natural gas consumption forecast publication-title: FME Trans. – volume: 85 start-page: 208 year: 2015 ident: 10.1016/j.engappai.2019.103323_b54 article-title: Forecasting of natural gas consumption with artificial neural networks publication-title: Energy doi: 10.1016/j.energy.2015.03.084 – volume: 2019 year: 2019 ident: 10.1016/j.engappai.2019.103323_b38 article-title: Analysis of particle deposition in a new-type rectifying plate system during shale gas extraction publication-title: Energy Sci. Eng. – volume: 30 start-page: 1175 issue: 3 year: 2019 ident: 10.1016/j.engappai.2019.103323_b35 article-title: An improved particle swarm optimization model for solving homogeneous discounted series-parallel redundancy allocation problems publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1311-9 – volume: 38 start-page: 1529 issue: 3 year: 2010 ident: 10.1016/j.engappai.2019.103323_b5 article-title: An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: uncertain and complex environments publication-title: Energy Policy doi: 10.1016/j.enpol.2009.11.036 – volume: 5 start-page: 571 issue: 3 year: 2014 ident: 10.1016/j.engappai.2019.103323_b20 article-title: Artificial neural network-based genetic algorithm to predict natural gas consumption publication-title: Energy Syst. doi: 10.1007/s12667-014-0128-2 – start-page: 79 year: 2014 ident: 10.1016/j.engappai.2019.103323_b64 article-title: Short-term gas load forecasting based on wavelet BP neural network optimized by genetic algorithm – volume: 12 start-page: 218 issue: 2 year: 2019 ident: 10.1016/j.engappai.2019.103323_b59 article-title: Daily natural gas load forecasting based on a hybrid deep learning model publication-title: Energies doi: 10.3390/en12020218 – volume: 2019 year: 2019 ident: 10.1016/j.engappai.2019.103323_b15 article-title: A novel hybrid model for short-term wind power forecasting publication-title: Appl. Soft Comput. J. – volume: 134 start-page: 102 year: 2014 ident: 10.1016/j.engappai.2019.103323_b65 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.07.104 – volume: 224 start-page: 739 year: 2019 ident: 10.1016/j.engappai.2019.103323_b8 article-title: Hourly PM2. 5 concentration forecast using stacked autoencoder model with emphasis on seasonality publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.03.253 – volume: 7 start-page: 142814 year: 2019 ident: 10.1016/j.engappai.2019.103323_b43 article-title: The forecasting of PM 2.5 using a hybrid model based on wavelet transform and an improved deep learning algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944755 – volume: 24 start-page: 116 issue: 1 year: 2019 ident: 10.1016/j.engappai.2019.103323_b4 article-title: The effect of publication bias on the q test and assessment of heterogeneity publication-title: Psychol. Methods doi: 10.1037/met0000197 – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.engappai.2019.103323_b29 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 16 start-page: 285 issue: 3 year: 1985 ident: 10.1016/j.engappai.2019.103323_b63 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D doi: 10.1016/0167-2789(85)90011-9 – volume: 118 start-page: 231 year: 2017 ident: 10.1016/j.engappai.2019.103323_b37 article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model publication-title: Energy doi: 10.1016/j.energy.2016.12.033 |
| SSID | ssj0003846 |
| Score | 2.6078799 |
| Snippet | Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103323 |
| SubjectTerms | Chaotic character recognition Forecast Improved whale optimization algorithm Phase space reconstruction Short-term natural gas consumption Volterra adaptive filter |
| Title | Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.engappai.2019.103323 |
| Volume | 87 |
| WOSCitedRecordID | wos000506715100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMXKC9RoJUP3FYpSZyHfaxQEQ-pQmIFKy6RHTu7qbbZVXap2p_Vf9jxK0mhaumBS2RZsTfJfDsznidC76JIUCZ1jX2qeJBEQgWcyjSgTAgaZlUSUm6aTeTHx3Q6Zd9Go0ufC3O2yJuGnp-z1X8lNcwBsXXq7D3I3W0KEzAGosMVyA7XfyL89zlo1IHmuGNTtRNoMONrHV4OT2EZxKrV7hkz1FJMao_Bj6X2m7d8zCVf2WLgtZ6x3gVjetCR6nOuoxHhhlOXwDnmi9myrTfz02tG_r7M4XjoIzdhB62JTzLdQgYFQTsTbM2N-fan0tksy44tOcP2r3l359duCgYX3Mlg4w9r3K3N0KoRhwOrhjdPxkHEbG8Yz6mdaLasNgoJsanKf0kBa5A4OVDNDF6R1zqCjx30C66X3f5DHHZBij7-7aTw-xR6n8Lu8wBtx3nKgJFuH34-mn7pxD-hNjvMv8AgLf3mJ7pZIxpoOZMd9NgdT_ChhdVTNFLNM_TEHVWwEwRrmPLdQPzcc3TRAw874GEAHh4AD_fAwwZ4GAYeeNgDD1vgYQAe9sDDBnh4CDzcAe8Fmnw8mnz4FLjGHkGZkGwTVIyUacVDkaegQOYqVVTFNNOtE5K4jDkcsgUVGRFClhnhFc9kQkjK80RlOhH8Jdpqlo16hTCcF_KYSPjkoEirMGal4qGEI0hGqkRIuotS_22L0hW9171XFsXt1N1F77t1K1v25c4VzJOucMqrVUoLQOUda1_f-9feoEf9v-Yt2tq0v9Ueeliebep1u-8geQXnvcZX |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+natural+gas+consumption+prediction+based+on+Volterra+adaptive+filter+and+improved+whale+optimization+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Qiao%2C+Weibiao&rft.au=Yang%2C+Zhe&rft.au=Kang%2C+Zhangyang&rft.au=Pan%2C+Zhen&rft.date=2020-01-01&rft.issn=0952-1976&rft.volume=87&rft.spage=103323&rft_id=info:doi/10.1016%2Fj.engappai.2019.103323&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2019_103323 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |