Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm

Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance. The purpose of this study is to propose a novel hybrid forecast model in view of the Volterra adaptive filter and an improved whale optimizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence Jg. 87; S. 103323
Hauptverfasser: Qiao, Weibiao, Yang, Zhe, Kang, Zhangyang, Pan, Zhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2020
Schlagworte:
ISSN:0952-1976, 1873-6769
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance. The purpose of this study is to propose a novel hybrid forecast model in view of the Volterra adaptive filter and an improved whale optimization algorithm to predict the short-term natural gas consumption. Firstly, Gauss smoothing and C–C method is adopted to pretreat and reconstruct short-term natural gas consumption time series; secondly, to improve the performance of whale optimization algorithm, adaptive search-surround mechanism and spiral position and jumping behavior are introduced into it; Thirdly, Volterra adaptive filter is used to predict the short-term natural gas consumption, and the important parameters (e.g. embedding dimension) is optimized by improved whale optimization algorithm. Finally, an actual example is given to test the performance of the developed prediction model. The results indicate that (1) short-term natural gas consumption time series has chaotic characteristics; (2) performance of the improved whale optimization algorithm is better than some comparative algorithms (i.e. cuckoo optimization algorithm, etc. ) based on the different evaluation indicators; (3) exploration factor is the main operational factor; (4) the performance of the proposed prediction model is better than some advanced prediction models (e.g. back propagation neural network). It can be concluded that such an innovative hybrid prediction model may provide a reference for natural gas companies to achieve intelligent scheduling. [Display omitted] •The ability obtained the global optimal solution by applying IWOA is better.•The exploration in IWOA is the main operating factor.•The developed hybrid prediction model has higher forecasting accuracy.
AbstractList Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance. The purpose of this study is to propose a novel hybrid forecast model in view of the Volterra adaptive filter and an improved whale optimization algorithm to predict the short-term natural gas consumption. Firstly, Gauss smoothing and C–C method is adopted to pretreat and reconstruct short-term natural gas consumption time series; secondly, to improve the performance of whale optimization algorithm, adaptive search-surround mechanism and spiral position and jumping behavior are introduced into it; Thirdly, Volterra adaptive filter is used to predict the short-term natural gas consumption, and the important parameters (e.g. embedding dimension) is optimized by improved whale optimization algorithm. Finally, an actual example is given to test the performance of the developed prediction model. The results indicate that (1) short-term natural gas consumption time series has chaotic characteristics; (2) performance of the improved whale optimization algorithm is better than some comparative algorithms (i.e. cuckoo optimization algorithm, etc. ) based on the different evaluation indicators; (3) exploration factor is the main operational factor; (4) the performance of the proposed prediction model is better than some advanced prediction models (e.g. back propagation neural network). It can be concluded that such an innovative hybrid prediction model may provide a reference for natural gas companies to achieve intelligent scheduling. [Display omitted] •The ability obtained the global optimal solution by applying IWOA is better.•The exploration in IWOA is the main operating factor.•The developed hybrid prediction model has higher forecasting accuracy.
ArticleNumber 103323
Author Qiao, Weibiao
Kang, Zhangyang
Yang, Zhe
Pan, Zhen
Author_xml – sequence: 1
  givenname: Weibiao
  surname: Qiao
  fullname: Qiao, Weibiao
  email: kaishirensheng@sina.com
  organization: School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
– sequence: 2
  givenname: Zhe
  surname: Yang
  fullname: Yang, Zhe
  organization: School of Computer Science, The University of Manchester, Manchester, M13 9PL, UK
– sequence: 3
  givenname: Zhangyang
  surname: Kang
  fullname: Kang, Zhangyang
  organization: School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
– sequence: 4
  givenname: Zhen
  surname: Pan
  fullname: Pan, Zhen
  organization: College of Petroleum and Natural Gas Engineering, Liaoning Shihua University, Fushun 113001, China
BookMark eNqFkMtqwzAQRUVJoUnaXyj6AaeyZcs2dNES-oJAFw3dirE8ThRsy0hKSvr1VZJ2001WMwz3XJgzIaPe9EjIbcxmMYvF3WaG_QqGAfQsYXEZjpwn_IKM4yLnkchFOSJjVmZJFJe5uCIT5zaMMV6kYkz2H2tjfeTRdrQHv7XQ0hU4qkzvtt3gtenpYLHW6rhW4LCmYfk0bWAsUKghpHZIG324UOhrqrvBml0Ifq2hRWpCoNPfcGyAdmWs9uvumlw20Dq8-Z1Tsnx-Ws5fo8X7y9v8cRGplAsfNSVXWQOsyrMkjXPMsMCkEDlnLE1UAiIRVVEJXlW1EhwaEHXKeQZ5iqLMMz4l4lSrrHHOYiMHqzuwexkzefAnN_LPnzz4kyd_Abz_Byrtjz94C7o9jz-ccAy_7TRa6ZTGXgWVFpWXtdHnKn4AZz6WNQ
CitedBy_id crossref_primary_10_1177_0144598720911158
crossref_primary_10_1155_2020_2476789
crossref_primary_10_1016_j_engappai_2023_106005
crossref_primary_10_1007_s11053_020_09732_1
crossref_primary_10_1007_s10644_023_09500_0
crossref_primary_10_1016_j_engappai_2022_104981
crossref_primary_10_1155_2021_8130378
crossref_primary_10_1016_j_jpse_2025_100319
crossref_primary_10_1016_j_eneco_2024_107608
crossref_primary_10_1016_j_knosys_2021_107483
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_1007_s10706_020_01388_1
crossref_primary_10_1016_j_asoc_2023_111099
crossref_primary_10_1016_j_engappai_2021_104229
crossref_primary_10_7717_peerj_cs_1557
crossref_primary_10_1007_s00366_020_00981_5
crossref_primary_10_1016_j_energy_2022_124722
crossref_primary_10_1109_ACCESS_2021_3129601
crossref_primary_10_1016_j_icheatmasstransfer_2020_104546
crossref_primary_10_1002_dac_4891
crossref_primary_10_1016_j_energy_2021_121216
crossref_primary_10_3390_fractalfract7060422
crossref_primary_10_1007_s00521_020_04849_z
crossref_primary_10_1016_j_asoc_2024_111409
crossref_primary_10_1080_15567249_2022_2154412
crossref_primary_10_1155_2022_1562942
crossref_primary_10_1038_s41598_020_61855_w
crossref_primary_10_1007_s10644_023_09483_y
crossref_primary_10_1016_j_ceramint_2024_11_325
crossref_primary_10_1016_j_ijdrr_2023_104068
crossref_primary_10_1007_s12665_025_12190_8
crossref_primary_10_1016_j_jngse_2020_103683
crossref_primary_10_1016_j_jclepro_2021_127215
crossref_primary_10_1016_j_tws_2020_106683
crossref_primary_10_1007_s10973_020_09490_5
crossref_primary_10_1177_1077546320923930
crossref_primary_10_1007_s00521_021_06635_x
crossref_primary_10_1016_j_jclepro_2019_119386
crossref_primary_10_1007_s10479_021_04089_x
crossref_primary_10_1080_15397734_2020_1748052
crossref_primary_10_1109_ACCESS_2019_2958456
crossref_primary_10_1007_s13202_022_01490_5
crossref_primary_10_1109_ACCESS_2020_2982418
crossref_primary_10_1109_ACCESS_2020_2981689
crossref_primary_10_3389_feart_2023_1264883
crossref_primary_10_1016_j_eswa_2023_121202
crossref_primary_10_1016_j_jngse_2021_103930
crossref_primary_10_3390_en14196021
crossref_primary_10_1016_j_engappai_2022_104685
crossref_primary_10_1109_ACCESS_2020_3012686
crossref_primary_10_3390_pr8010092
crossref_primary_10_1016_j_energy_2020_117333
crossref_primary_10_1007_s00521_022_08139_8
crossref_primary_10_1002_ese3_1553
crossref_primary_10_3390_en17010253
crossref_primary_10_1007_s00366_020_01002_1
crossref_primary_10_1007_s10479_022_04781_6
crossref_primary_10_1002_er_7293
crossref_primary_10_1016_j_energy_2021_122562
crossref_primary_10_1080_15397734_2020_1719509
crossref_primary_10_1007_s12665_024_11923_5
crossref_primary_10_1016_j_renene_2025_122591
crossref_primary_10_1016_j_jobe_2022_105772
crossref_primary_10_1016_j_energy_2023_127376
crossref_primary_10_1016_j_jer_2023_100127
crossref_primary_10_1016_j_ress_2021_107651
crossref_primary_10_3389_feart_2021_815616
crossref_primary_10_1007_s00500_021_05889_w
crossref_primary_10_1155_2020_8863425
crossref_primary_10_1007_s00366_020_01004_z
crossref_primary_10_1016_j_energy_2021_120968
crossref_primary_10_1016_j_jestch_2024_101669
crossref_primary_10_3390_su151310660
crossref_primary_10_3390_en14020489
crossref_primary_10_1007_s00366_020_00957_5
crossref_primary_10_1016_j_oceaneng_2023_116238
crossref_primary_10_1016_j_jpse_2021_11_001
crossref_primary_10_1109_ACCESS_2020_3038570
crossref_primary_10_1016_j_energy_2022_125976
crossref_primary_10_1016_j_fuel_2022_123348
crossref_primary_10_1007_s13201_022_01794_1
crossref_primary_10_1016_j_jclepro_2019_119637
crossref_primary_10_1016_j_energy_2020_119586
crossref_primary_10_1016_j_jngse_2021_104175
crossref_primary_10_1016_j_seppur_2024_127536
crossref_primary_10_1061__ASCE_PS_1949_1204_0000665
crossref_primary_10_3390_s20174662
crossref_primary_10_1016_j_renene_2023_06_021
crossref_primary_10_3390_en16031295
crossref_primary_10_1016_j_energy_2024_130880
crossref_primary_10_1016_j_measurement_2019_107389
crossref_primary_10_1007_s00366_020_00949_5
crossref_primary_10_1007_s00366_020_01038_3
crossref_primary_10_1038_s41598_024_63739_9
crossref_primary_10_1016_j_jscs_2023_101708
crossref_primary_10_1109_ACCESS_2020_2967078
crossref_primary_10_1016_j_cageo_2024_105667
crossref_primary_10_3389_feart_2021_822322
crossref_primary_10_1016_j_measurement_2020_107576
crossref_primary_10_1109_ACCESS_2021_3096532
crossref_primary_10_1016_j_matcom_2022_05_023
crossref_primary_10_1002_ese3_1218
crossref_primary_10_1016_j_measurement_2020_107577
crossref_primary_10_1016_j_saa_2021_119899
crossref_primary_10_1109_ACCESS_2020_3016277
crossref_primary_10_1016_j_snb_2024_135879
crossref_primary_10_3390_en16104060
crossref_primary_10_1016_j_egyr_2020_02_002
crossref_primary_10_1016_j_energy_2020_117171
crossref_primary_10_1016_j_asoc_2020_106891
crossref_primary_10_1080_15567036_2021_1875082
crossref_primary_10_3390_e24111668
crossref_primary_10_1007_s13369_021_06042_3
crossref_primary_10_1016_j_diamond_2025_112821
crossref_primary_10_1109_ACCESS_2020_2991435
crossref_primary_10_1016_j_energy_2019_116704
crossref_primary_10_1016_j_jocs_2024_102323
crossref_primary_10_1007_s00366_020_01000_3
crossref_primary_10_3390_en13071565
crossref_primary_10_3390_su12219114
crossref_primary_10_1007_s10479_021_04492_4
crossref_primary_10_1016_j_energy_2021_121036
crossref_primary_10_3390_en15010348
crossref_primary_10_1002_cpe_5949
crossref_primary_10_1016_j_jenvman_2021_112438
crossref_primary_10_1016_j_asoc_2020_106620
crossref_primary_10_3390_s21051769
crossref_primary_10_1109_ACCESS_2020_2966006
crossref_primary_10_1155_2020_6590397
crossref_primary_10_1155_2020_3743089
crossref_primary_10_3390_en15197035
crossref_primary_10_1007_s11356_022_25080_4
crossref_primary_10_3390_rs15143654
crossref_primary_10_1016_j_engappai_2023_107644
crossref_primary_10_1016_j_energy_2023_128022
crossref_primary_10_1016_j_measurement_2019_107365
crossref_primary_10_1016_j_enconman_2020_112660
crossref_primary_10_1007_s10614_023_10528_7
crossref_primary_10_1002_ese3_650
crossref_primary_10_1109_ACCESS_2020_2973458
crossref_primary_10_1007_s00603_023_03364_6
crossref_primary_10_1007_s11708_020_0672_5
crossref_primary_10_1109_ACCESS_2022_3174814
crossref_primary_10_1016_j_egyai_2025_100535
crossref_primary_10_1007_s11069_021_05076_y
Cites_doi 10.1007/s00500-016-2442-1
10.20964/2019.08.05
10.1016/j.apenergy.2011.11.003
10.1016/j.enpol.2012.11.047
10.1016/j.jclepro.2019.118612
10.1016/j.advengsoft.2016.01.008
10.1109/ACCESS.2019.2918156
10.1016/j.sigpro.2019.01.013
10.1016/j.petrol.2019.106187
10.1016/j.sbspro.2016.11.066
10.1109/ACCESS.2019.2931910
10.1016/j.enconman.2010.10.037
10.1016/j.rser.2011.08.014
10.1016/j.enbuild.2013.11.032
10.1016/S0167-2789(97)00118-8
10.1016/0167-2789(93)90009-P
10.1016/j.ijforecast.2008.08.005
10.1016/j.asoc.2017.11.006
10.1016/j.jngse.2017.10.028
10.1016/j.apenergy.2019.05.023
10.3390/en11082008
10.1016/j.future.2018.03.020
10.1016/j.enconman.2017.07.065
10.1109/59.910780
10.1016/j.energy.2019.07.014
10.1016/j.jhydrol.2016.06.028
10.3390/pr7010007
10.4028/b-7b2tVy
10.1016/j.procs.2011.07.100
10.1016/j.engappai.2019.07.019
10.1109/ACCESS.2019.2942169
10.1016/j.enbuild.2016.06.020
10.1016/j.procs.2019.01.235
10.1016/j.knosys.2018.03.024
10.1016/j.apenergy.2014.04.102
10.1016/j.enbuild.2012.10.023
10.1109/72.839015
10.1115/1.4041413
10.1016/j.energy.2018.01.112
10.1007/s00521-011-0715-2
10.3390/en12010112
10.1016/j.energy.2014.11.083
10.1016/j.energy.2018.12.084
10.1016/j.energy.2015.03.084
10.1007/s10845-017-1311-9
10.1016/j.enpol.2009.11.036
10.1007/s12667-014-0128-2
10.3390/en12020218
10.1016/j.apenergy.2014.07.104
10.1016/j.jclepro.2019.03.253
10.1109/ACCESS.2019.2944755
10.1037/met0000197
10.1016/j.neucom.2017.04.053
10.1016/0167-2789(85)90011-9
10.1016/j.energy.2016.12.033
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2019.103323
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2019_103323
S0952197619302738
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c436t-f93c5fa0b752417e5e8e286730042c2a626b8b63bbdc63afa6d4335a74e69753
ISICitedReferencesCount 169
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506715100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:06:23 EST 2025
Tue Nov 18 21:48:13 EST 2025
Fri Feb 23 02:48:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Improved whale optimization algorithm
Phase space reconstruction
Short-term natural gas consumption
Chaotic character recognition
Forecast
Volterra adaptive filter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-f93c5fa0b752417e5e8e286730042c2a626b8b63bbdc63afa6d4335a74e69753
ParticipantIDs crossref_primary_10_1016_j_engappai_2019_103323
crossref_citationtrail_10_1016_j_engappai_2019_103323
elsevier_sciencedirect_doi_10_1016_j_engappai_2019_103323
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mirjalili, Lewis (b34) 2016; 95
Malakoti-Moghadam, Askarzadeh, Rashidinejad (b31) 2019
Soldo, Potočnik, Šimunović, Šarić, Govekar (b51) 2014; 69
Karimi, Dastranj (b20) 2014; 5
Khotanzad, Elragal (b22) 1999; vol. 6
Shi (b49) 2013
Merkel, Povinelli, Brown (b33) 2018; 11
Yu, Wang, Xu (b64) 2014
Khotanzad, Elragal, Lu (b23) 2000; 11
Bai, Li (b7) 2016; 127
Azadeh, Asadzadeh, Ghanbari (b5) 2010; 38
Taşpınar, Celebi, Tutkun (b55) 2013; 56
Aljarah, Faris, Mirjalili (b3) 2018; 22
Dai, Guo, Yang, You (b11) 2019; 147
Abdel-Basset, Manogaran, El-Shahat, Mirjalili (b1) 2018; 85
Du, Wang, Guo, Yang (b14) 2017; 150
Rosenstein, Collins, De Luca (b47) 1993; 65
Sabo, Scitovski, Vazler, Zekić-Sušac (b48) 2011; 52
Zeng, Bao, Wen, Zhu (b66) 2019; 12
Liu, Zhang, Chen, Fan, Jiang, Jjk, Li (b27) 2019; 185
Qiao, Tian, Tian, Yang, Wang, Zhang (b43) 2019; 7
Akpinar, Adak, Yumusak (b2) 2016
Yu, Xu (b65) 2014; 134
Wolf, Swift, Swinney, Vastano (b63) 1985; 16
Panapakidis, Dagoumas (b37) 2017; 118
Zhang, Liu, Zhang, Huang, Zhu (b67) 2010
Azari, Shariaty-Niassar, Alborzi (b6) 2012; 31
Qiao, Lu, Zhou, Azimi, Yang, Tian (b42) 2020; 244
Szoplik (b54) 2015; 85
Liu, Li, Sun (b26) 2013; 22
Zhu, Wang (b70) 2019; 85
Soldo (b50) 2012; 92
Su, Liu, Xu, Xie, Shang, Zhu (b52) 2019; 74
Qiao, Wang (b44) 2018; 50
Kashani, Ghorbani, Dinpashoh, Shahmorad (b21) 2016; 540
Lu, Hong, Xu (b28) 2019; 170
Peng, Chen, Zheng, Liu (b38) 2019; 2019
Mousavi, Alikar, Tavana, Di Caprio (b35) 2019; 30
Cao (b10) 1997; 110
Ervural, Beyca, Zaim (b16) 2016; 235
Bai, Li, Zeng, Li, Zhang (b8) 2019; 224
Du, Wang, Yang, Niu (b15) 2019; 2019
Viet, Mandziuk (b57) 2003
Qiao, Yang (b45) 2019; 7
Qiao, Bingfan, Zhangyang (b40) 2019; 14
Wei, Li, Peng, Li, Zeng (b61) 2019; 250
Potočnik, Soldo, Šimunović, Šarić, Jeromen, Govekar (b39) 2014; 129
Demirel, Zaim, Çalişkan, Özuyar (b13) 2012; 20
Mehne, Mirjalili (b32) 2018; 151
Ivezić (b19) 2006; 34
Wei, Li, Li, Xie, Du, Zhang, Zeng (b60) 2019; 141
Qiao, Huang, Azimi, Han (b41) 2019; 7
Wang, Yang, Du, Li (b58) 2018; 148
Mafarja, Mirjalili (b29) 2017; 260
Zhou, Su, Li (b68) 2011; 5
Wei, Li, Duan, Liu, Zeng (b59) 2019; 12
Deetman, Hof, Pfluger, van Vuuren, Girod, van Ruijven (b12) 2013; 55
Guo, He, Jiang, Chu, Malekian, Li (b17) 2019; 12
Mafarja, Mirjalili (b30) 2018; 62
Packard, Crutchfield, Farmer, Shaw (b36) 1980; 45
Zhu, Li, Wu, Jiang (b69) 2015; 80
Tronarp, Särkkä (b56) 2019; 159
Wei, Li, Peng, Zeng, Lu (b62) 2019
Brabec, Konár, Pelikán, Malý (b9) 2008; 24
Liu, Li, Cai, Peng (b25) 2019; 7
Suganthi, Samuel (b53) 2012; 16
Augusteijn, van Aert, van Assen (b4) 2019; 24
Kizilaslan, Karlik (b24) 2008
Qiao, Yang (b46) 2019; 7
Hippert, Pedreira, Souza (b18) 2001; 16
Mehne (10.1016/j.engappai.2019.103323_b32) 2018; 151
Qiao (10.1016/j.engappai.2019.103323_b44) 2018; 50
Zhu (10.1016/j.engappai.2019.103323_b70) 2019; 85
Yu (10.1016/j.engappai.2019.103323_b64) 2014
Viet (10.1016/j.engappai.2019.103323_b57) 2003
Wang (10.1016/j.engappai.2019.103323_b58) 2018; 148
Mafarja (10.1016/j.engappai.2019.103323_b30) 2018; 62
Liu (10.1016/j.engappai.2019.103323_b26) 2013; 22
Khotanzad (10.1016/j.engappai.2019.103323_b23) 2000; 11
Qiao (10.1016/j.engappai.2019.103323_b40) 2019; 14
Wei (10.1016/j.engappai.2019.103323_b62) 2019
Liu (10.1016/j.engappai.2019.103323_b27) 2019; 185
Mafarja (10.1016/j.engappai.2019.103323_b29) 2017; 260
Mirjalili (10.1016/j.engappai.2019.103323_b34) 2016; 95
Tronarp (10.1016/j.engappai.2019.103323_b56) 2019; 159
Cao (10.1016/j.engappai.2019.103323_b10) 1997; 110
Guo (10.1016/j.engappai.2019.103323_b17) 2019; 12
Zeng (10.1016/j.engappai.2019.103323_b66) 2019; 12
Zhang (10.1016/j.engappai.2019.103323_b67) 2010
Ervural (10.1016/j.engappai.2019.103323_b16) 2016; 235
Zhou (10.1016/j.engappai.2019.103323_b68) 2011; 5
Abdel-Basset (10.1016/j.engappai.2019.103323_b1) 2018; 85
Khotanzad (10.1016/j.engappai.2019.103323_b22) 1999; vol. 6
Bai (10.1016/j.engappai.2019.103323_b7) 2016; 127
Qiao (10.1016/j.engappai.2019.103323_b45) 2019; 7
Du (10.1016/j.engappai.2019.103323_b15) 2019; 2019
Qiao (10.1016/j.engappai.2019.103323_b41) 2019; 7
Mousavi (10.1016/j.engappai.2019.103323_b35) 2019; 30
Hippert (10.1016/j.engappai.2019.103323_b18) 2001; 16
Sabo (10.1016/j.engappai.2019.103323_b48) 2011; 52
Brabec (10.1016/j.engappai.2019.103323_b9) 2008; 24
Ivezić (10.1016/j.engappai.2019.103323_b19) 2006; 34
Liu (10.1016/j.engappai.2019.103323_b25) 2019; 7
Qiao (10.1016/j.engappai.2019.103323_b43) 2019; 7
Qiao (10.1016/j.engappai.2019.103323_b46) 2019; 7
Suganthi (10.1016/j.engappai.2019.103323_b53) 2012; 16
Yu (10.1016/j.engappai.2019.103323_b65) 2014; 134
Kashani (10.1016/j.engappai.2019.103323_b21) 2016; 540
Azari (10.1016/j.engappai.2019.103323_b6) 2012; 31
Karimi (10.1016/j.engappai.2019.103323_b20) 2014; 5
Shi (10.1016/j.engappai.2019.103323_b49) 2013
Dai (10.1016/j.engappai.2019.103323_b11) 2019; 147
Panapakidis (10.1016/j.engappai.2019.103323_b37) 2017; 118
Wolf (10.1016/j.engappai.2019.103323_b63) 1985; 16
Qiao (10.1016/j.engappai.2019.103323_b42) 2020; 244
Packard (10.1016/j.engappai.2019.103323_b36) 1980; 45
Bai (10.1016/j.engappai.2019.103323_b8) 2019; 224
Aljarah (10.1016/j.engappai.2019.103323_b3) 2018; 22
Taşpınar (10.1016/j.engappai.2019.103323_b55) 2013; 56
Merkel (10.1016/j.engappai.2019.103323_b33) 2018; 11
Zhu (10.1016/j.engappai.2019.103323_b69) 2015; 80
Malakoti-Moghadam (10.1016/j.engappai.2019.103323_b31) 2019
Potočnik (10.1016/j.engappai.2019.103323_b39) 2014; 129
Demirel (10.1016/j.engappai.2019.103323_b13) 2012; 20
Peng (10.1016/j.engappai.2019.103323_b38) 2019; 2019
Kizilaslan (10.1016/j.engappai.2019.103323_b24) 2008
Azadeh (10.1016/j.engappai.2019.103323_b5) 2010; 38
Wei (10.1016/j.engappai.2019.103323_b59) 2019; 12
Augusteijn (10.1016/j.engappai.2019.103323_b4) 2019; 24
Wei (10.1016/j.engappai.2019.103323_b61) 2019; 250
Soldo (10.1016/j.engappai.2019.103323_b50) 2012; 92
Deetman (10.1016/j.engappai.2019.103323_b12) 2013; 55
Szoplik (10.1016/j.engappai.2019.103323_b54) 2015; 85
Wei (10.1016/j.engappai.2019.103323_b60) 2019; 141
Akpinar (10.1016/j.engappai.2019.103323_b2) 2016
Soldo (10.1016/j.engappai.2019.103323_b51) 2014; 69
Lu (10.1016/j.engappai.2019.103323_b28) 2019; 170
Du (10.1016/j.engappai.2019.103323_b14) 2017; 150
Rosenstein (10.1016/j.engappai.2019.103323_b47) 1993; 65
Su (10.1016/j.engappai.2019.103323_b52) 2019; 74
References_xml – volume: 150
  start-page: 90
  year: 2017
  end-page: 107
  ident: b14
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manage.
– start-page: 448
  year: 2008
  end-page: 453
  ident: b24
  article-title: Comparison neural networks models for short term forecasting of natural gas consumption in Istanbul
  publication-title: 2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)
– volume: 7
  start-page: 88218
  year: 2019
  end-page: 88230
  ident: b41
  article-title: A novel hybrid prediction model for hourly gas consumption in supply side based on improved whale optimization algorithm and relevance vector machine
  publication-title: IEEE Access
– start-page: 423
  year: 2013
  end-page: 427
  ident: b49
  article-title: Research on gas load forecasting using artificial neural network
  publication-title: Advanced Materials Research, Vol. 717
– volume: 16
  start-page: 1223
  year: 2012
  end-page: 1240
  ident: b53
  article-title: Energy models for demand forecasting—A review
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 79
  year: 2014
  end-page: 85
  ident: b64
  article-title: Short-term gas load forecasting based on wavelet BP neural network optimized by genetic algorithm
  publication-title: Applied Mechanics and Materials, Vol. 631
– volume: 110
  start-page: 43
  year: 1997
  end-page: 50
  ident: b10
  article-title: Practical method for determining the minimum embedding dimension of a scalar time series
  publication-title: Physica D
– volume: 16
  start-page: 285
  year: 1985
  end-page: 317
  ident: b63
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
– volume: 118
  start-page: 231
  year: 2017
  end-page: 245
  ident: b37
  article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model
  publication-title: Energy
– volume: 5
  start-page: 571
  year: 2014
  end-page: 581
  ident: b20
  article-title: Artificial neural network-based genetic algorithm to predict natural gas consumption
  publication-title: Energy Syst.
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b29
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 11
  start-page: 2008
  year: 2018
  ident: b33
  article-title: Short-term load forecasting of natural gas with deep neural network regression
  publication-title: Energies
– volume: 69
  start-page: 498
  year: 2014
  end-page: 506
  ident: b51
  article-title: Improving the residential natural gas consumption forecasting models by using solar radiation
  publication-title: Energy Build.
– start-page: 390
  year: 2010
  end-page: 399
  ident: b67
  article-title: Research on short-term gas load forecasting based on support vector machine model
  publication-title: Life System Modeling and Intelligent Computing
– volume: 2019
  year: 2019
  ident: b38
  article-title: Analysis of particle deposition in a new-type rectifying plate system during shale gas extraction
  publication-title: Energy Sci. Eng.
– volume: 92
  start-page: 26
  year: 2012
  end-page: 37
  ident: b50
  article-title: Forecasting natural gas consumption
  publication-title: Appl. Energy
– volume: 224
  start-page: 739
  year: 2019
  end-page: 750
  ident: b8
  article-title: Hourly PM2. 5 concentration forecast using stacked autoencoder model with emphasis on seasonality
  publication-title: J. Cleaner Prod.
– volume: 16
  start-page: 44
  year: 2001
  end-page: 55
  ident: b18
  article-title: Neural networks for short-term load forecasting: A review and evaluation
  publication-title: IEEE Trans. Power Syst.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b34
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b2
  article-title: Forecasting natural gas consumption with hybrid neural networks—Artificial bee colony
  publication-title: 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS)
– volume: 141
  year: 2019
  ident: b60
  article-title: Short-term forecasting of natural gas consumption using factor selection algorithm and optimized support vector regression
  publication-title: J. Energy Resour. Technol.
– volume: 14
  start-page: 7389
  year: 2019
  end-page: 7400
  ident: b40
  article-title: Differential scanning calorimetry and electrochemical tests for the analysis of delamination of 3PE coatings
  publication-title: Int. J. Electrochem. Sci.
– volume: 7
  start-page: 7
  year: 2019
  ident: b25
  article-title: Formation mechanism of trailing oil in product oil pipeline
  publication-title: Processes
– volume: 74
  year: 2019
  ident: b52
  article-title: Flow field and noise characteristics of manifold in natural gas transportation station
  publication-title: Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv.
– volume: 235
  start-page: 537
  year: 2016
  end-page: 545
  ident: b16
  article-title: Model estimation of ARMA using genetic algorithms: A case study of forecasting natural gas consumption
  publication-title: Proc.-Soc. Behav. Sci.
– volume: 129
  start-page: 94
  year: 2014
  end-page: 103
  ident: b39
  article-title: Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia
  publication-title: Appl. Energy
– volume: 80
  start-page: 428
  year: 2015
  end-page: 436
  ident: b69
  article-title: Short-term natural gas demand prediction based on support vector regression with false neighbours filtered
  publication-title: Energy
– volume: 11
  start-page: 464
  year: 2000
  end-page: 473
  ident: b23
  article-title: Combination of artificial neural-network forecasters for prediction of natural gas consumption
  publication-title: IEEE Trans. Neural Netw.
– volume: 127
  start-page: 571
  year: 2016
  end-page: 579
  ident: b7
  article-title: Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach
  publication-title: Energy Build.
– volume: 7
  start-page: 110472
  year: 2019
  end-page: 110486
  ident: b45
  article-title: Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems
  publication-title: IEEE Access
– start-page: 759
  year: 2003
  end-page: 768
  ident: b57
  article-title: Neural and fuzzy neural networks for natural gas consumption prediction
  publication-title: 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No. 03TH8718)
– volume: 5
  start-page: 754
  year: 2011
  end-page: 758
  ident: b68
  article-title: Forecasting daily gas load with OIHF-Elman neural network
  publication-title: Procedia Comput. Sci.
– start-page: 1
  year: 2019
  end-page: 15
  ident: b31
  article-title: Transmission and generation expansion planning of energy hub by an improved genetic algorithm
  publication-title: Energy Sources A
– volume: 38
  start-page: 1529
  year: 2010
  end-page: 1536
  ident: b5
  article-title: An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: uncertain and complex environments
  publication-title: Energy Policy
– volume: 7
  start-page: 142814
  year: 2019
  end-page: 142825
  ident: b43
  article-title: The forecasting of PM 2.5 using a hybrid model based on wavelet transform and an improved deep learning algorithm
  publication-title: IEEE Access
– volume: 147
  start-page: 519
  year: 2019
  end-page: 527
  ident: b11
  article-title: A new approach of intelligent physical health evaluation based on GRNN and BPNN by using a wearable smart bracelet system
  publication-title: Procedia Comput. Sci.
– volume: 55
  start-page: 152
  year: 2013
  end-page: 164
  ident: b12
  article-title: Deep greenhouse gas emission reductions in Europe: Exploring different options
  publication-title: Energy Policy
– volume: 151
  start-page: 114
  year: 2018
  end-page: 123
  ident: b32
  article-title: A parallel numerical method for solving optimal control problems based on whale optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 7
  start-page: 138972
  year: 2019
  end-page: 138989
  ident: b46
  article-title: Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm
  publication-title: IEEE Access
– volume: 45
  start-page: 12
  year: 1980
  end-page: 18
  ident: b36
  article-title: Controlling chaos
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 43
  year: 2018
  end-page: 54
  ident: b44
  article-title: Analysis of the wellhead growth in HPHT gas wells considering the multiple annuli pressure during production
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 148
  start-page: 59
  year: 2018
  end-page: 78
  ident: b58
  article-title: Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system
  publication-title: Energy
– volume: 20
  start-page: 695
  year: 2012
  end-page: 711
  ident: b13
  article-title: Forecasting natural gas consumption in Istanbul using neural networks and multivariate time series methods
  publication-title: Turkish J. Electr. Eng. Comput. Sci.
– volume: 22
  start-page: 271
  year: 2013
  end-page: 277
  ident: b26
  article-title: A novel method of short-term load forecasting based on multiwavelet transform and multiple neural networks
  publication-title: Neural Comput. Appl.
– volume: 540
  start-page: 340
  year: 2016
  end-page: 354
  ident: b21
  article-title: Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran
  publication-title: J. Hydrol.
– volume: 31
  start-page: 77
  year: 2012
  end-page: 84
  ident: b6
  article-title: Short-term and medium-term gas demand load forecasting by neural networks
  publication-title: Iranian J. Chem. Chem. Eng. (IJCCE)
– volume: 2019
  year: 2019
  ident: b15
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Appl. Soft Comput. J.
– volume: 244
  year: 2020
  ident: b42
  article-title: A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer
  publication-title: J. Cleaner Prod.
– volume: vol. 6
  start-page: 4069
  year: 1999
  end-page: 4072
  ident: b22
  article-title: Natural gas load forecasting with combination of adaptive neural networks
  publication-title: International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339)
– volume: 85
  start-page: 208
  year: 2015
  end-page: 220
  ident: b54
  article-title: Forecasting of natural gas consumption with artificial neural networks
  publication-title: Energy
– volume: 12
  start-page: 218
  year: 2019
  ident: b59
  article-title: Daily natural gas load forecasting based on a hybrid deep learning model
  publication-title: Energies
– volume: 34
  start-page: 165
  year: 2006
  end-page: 169
  ident: b19
  article-title: Short-term natural gas consumption forecast
  publication-title: FME Trans.
– volume: 185
  start-page: 682
  year: 2019
  end-page: 694
  ident: b27
  article-title: Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens
  publication-title: Energy
– volume: 159
  start-page: 1
  year: 2019
  end-page: 12
  ident: b56
  article-title: Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems
  publication-title: Signal Process.
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: b47
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D
– volume: 170
  start-page: 40
  year: 2019
  end-page: 52
  ident: b28
  article-title: Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power generation systems
  publication-title: Energy
– volume: 62
  start-page: 441
  year: 2018
  end-page: 453
  ident: b30
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl. Soft Comput.
– volume: 85
  start-page: 740
  year: 2019
  end-page: 753
  ident: b70
  article-title: Cuckoo search algorithm with onlooker bee search for modeling PEMFCs using T2FNN
  publication-title: Eng. Appl. Artif. Intell.
– volume: 22
  start-page: 1
  year: 2018
  end-page: 15
  ident: b3
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
– volume: 24
  start-page: 116
  year: 2019
  ident: b4
  article-title: The effect of publication bias on the q test and assessment of heterogeneity
  publication-title: Psychol. Methods
– volume: 12
  start-page: 6
  year: 2019
  end-page: 19
  ident: b66
  article-title: Object tracking using the particle filter optimized by the improved artificial fish swarm algorithm
  publication-title: Int. J. Intell. Inf. Database Syst.
– volume: 12
  start-page: 112
  year: 2019
  ident: b17
  article-title: An improved LSSVM model for intelligent prediction of the daily water level
  publication-title: Energies
– volume: 134
  start-page: 102
  year: 2014
  end-page: 113
  ident: b65
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Appl. Energy
– volume: 250
  start-page: 358
  year: 2019
  end-page: 368
  ident: b61
  article-title: Daily natural gas consumption forecasting via the application of a novel hybrid model
  publication-title: Appl. Energy
– volume: 24
  start-page: 659
  year: 2008
  end-page: 678
  ident: b9
  article-title: A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers
  publication-title: Int. J. Forecast.
– year: 2019
  ident: b62
  article-title: Conventional models and artificial intelligence-based models for energy consumption forecasting: A review
  publication-title: J. Pet. Sci. Eng.
– volume: 52
  start-page: 1721
  year: 2011
  end-page: 1727
  ident: b48
  article-title: Mathematical models of natural gas consumption
  publication-title: Energy Convers. Manage.
– volume: 85
  start-page: 129
  year: 2018
  end-page: 145
  ident: b1
  article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem
  publication-title: Future Gener. Comput. Syst.
– volume: 30
  start-page: 1175
  year: 2019
  end-page: 1194
  ident: b35
  article-title: An improved particle swarm optimization model for solving homogeneous discounted series-parallel redundancy allocation problems
  publication-title: J. Intell. Manuf.
– volume: 56
  start-page: 23
  year: 2013
  end-page: 31
  ident: b55
  article-title: Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods
  publication-title: Energy Build.
– volume: 22
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2019.103323_b3
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2442-1
– volume: 14
  start-page: 7389
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b40
  article-title: Differential scanning calorimetry and electrochemical tests for the analysis of delamination of 3PE coatings
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2019.08.05
– volume: 92
  start-page: 26
  year: 2012
  ident: 10.1016/j.engappai.2019.103323_b50
  article-title: Forecasting natural gas consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.11.003
– volume: 55
  start-page: 152
  year: 2013
  ident: 10.1016/j.engappai.2019.103323_b12
  article-title: Deep greenhouse gas emission reductions in Europe: Exploring different options
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.11.047
– volume: 244
  year: 2020
  ident: 10.1016/j.engappai.2019.103323_b42
  article-title: A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.118612
– volume: 20
  start-page: 695
  issue: 5
  year: 2012
  ident: 10.1016/j.engappai.2019.103323_b13
  article-title: Forecasting natural gas consumption in Istanbul using neural networks and multivariate time series methods
  publication-title: Turkish J. Electr. Eng. Comput. Sci.
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.engappai.2019.103323_b34
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 7
  start-page: 88218
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b41
  article-title: A novel hybrid prediction model for hourly gas consumption in supply side based on improved whale optimization algorithm and relevance vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918156
– volume: 159
  start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b56
  article-title: Iterative statistical linear regression for Gaussian smoothing in continuous-time non-linear stochastic dynamic systems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.01.013
– volume: 74
  issue: 70
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b52
  article-title: Flow field and noise characteristics of manifold in natural gas transportation station
  publication-title: Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv.
– year: 2019
  ident: 10.1016/j.engappai.2019.103323_b62
  article-title: Conventional models and artificial intelligence-based models for energy consumption forecasting: A review
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106187
– volume: 235
  start-page: 537
  year: 2016
  ident: 10.1016/j.engappai.2019.103323_b16
  article-title: Model estimation of ARMA using genetic algorithms: A case study of forecasting natural gas consumption
  publication-title: Proc.-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2016.11.066
– volume: 7
  start-page: 110472
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b45
  article-title: Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931910
– volume: 52
  start-page: 1721
  issue: 3
  year: 2011
  ident: 10.1016/j.engappai.2019.103323_b48
  article-title: Mathematical models of natural gas consumption
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.10.037
– volume: 16
  start-page: 1223
  issue: 2
  year: 2012
  ident: 10.1016/j.engappai.2019.103323_b53
  article-title: Energy models for demand forecasting—A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.08.014
– start-page: 759
  year: 2003
  ident: 10.1016/j.engappai.2019.103323_b57
  article-title: Neural and fuzzy neural networks for natural gas consumption prediction
– volume: 69
  start-page: 498
  year: 2014
  ident: 10.1016/j.engappai.2019.103323_b51
  article-title: Improving the residential natural gas consumption forecasting models by using solar radiation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.11.032
– volume: 110
  start-page: 43
  issue: 1–2
  year: 1997
  ident: 10.1016/j.engappai.2019.103323_b10
  article-title: Practical method for determining the minimum embedding dimension of a scalar time series
  publication-title: Physica D
  doi: 10.1016/S0167-2789(97)00118-8
– volume: 65
  start-page: 117
  issue: 1–2
  year: 1993
  ident: 10.1016/j.engappai.2019.103323_b47
  article-title: A practical method for calculating largest Lyapunov exponents from small data sets
  publication-title: Physica D
  doi: 10.1016/0167-2789(93)90009-P
– volume: 31
  start-page: 77
  issue: 4
  year: 2012
  ident: 10.1016/j.engappai.2019.103323_b6
  article-title: Short-term and medium-term gas demand load forecasting by neural networks
  publication-title: Iranian J. Chem. Chem. Eng. (IJCCE)
– volume: 24
  start-page: 659
  issue: 4
  year: 2008
  ident: 10.1016/j.engappai.2019.103323_b9
  article-title: A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2008.08.005
– volume: vol. 6
  start-page: 4069
  year: 1999
  ident: 10.1016/j.engappai.2019.103323_b22
  article-title: Natural gas load forecasting with combination of adaptive neural networks
– volume: 62
  start-page: 441
  year: 2018
  ident: 10.1016/j.engappai.2019.103323_b30
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.006
– volume: 50
  start-page: 43
  year: 2018
  ident: 10.1016/j.engappai.2019.103323_b44
  article-title: Analysis of the wellhead growth in HPHT gas wells considering the multiple annuli pressure during production
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.10.028
– volume: 250
  start-page: 358
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b61
  article-title: Daily natural gas consumption forecasting via the application of a novel hybrid model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.05.023
– volume: 11
  start-page: 2008
  issue: 8
  year: 2018
  ident: 10.1016/j.engappai.2019.103323_b33
  article-title: Short-term load forecasting of natural gas with deep neural network regression
  publication-title: Energies
  doi: 10.3390/en11082008
– volume: 85
  start-page: 129
  year: 2018
  ident: 10.1016/j.engappai.2019.103323_b1
  article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.03.020
– start-page: 390
  year: 2010
  ident: 10.1016/j.engappai.2019.103323_b67
  article-title: Research on short-term gas load forecasting based on support vector machine model
– volume: 150
  start-page: 90
  year: 2017
  ident: 10.1016/j.engappai.2019.103323_b14
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.07.065
– volume: 16
  start-page: 44
  issue: 1
  year: 2001
  ident: 10.1016/j.engappai.2019.103323_b18
  article-title: Neural networks for short-term load forecasting: A review and evaluation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.910780
– volume: 185
  start-page: 682
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b27
  article-title: Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.014
– volume: 45
  start-page: 12
  year: 1980
  ident: 10.1016/j.engappai.2019.103323_b36
  article-title: Controlling chaos
  publication-title: Phys. Rev. Lett.
– volume: 540
  start-page: 340
  year: 2016
  ident: 10.1016/j.engappai.2019.103323_b21
  article-title: Integration of Volterra model with artificial neural networks for rainfall-runoff simulation in forested catchment of northern Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.028
– volume: 7
  start-page: 7
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b25
  article-title: Formation mechanism of trailing oil in product oil pipeline
  publication-title: Processes
  doi: 10.3390/pr7010007
– start-page: 423
  year: 2013
  ident: 10.1016/j.engappai.2019.103323_b49
  article-title: Research on gas load forecasting using artificial neural network
  doi: 10.4028/b-7b2tVy
– volume: 5
  start-page: 754
  year: 2011
  ident: 10.1016/j.engappai.2019.103323_b68
  article-title: Forecasting daily gas load with OIHF-Elman neural network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2011.07.100
– volume: 85
  start-page: 740
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b70
  article-title: Cuckoo search algorithm with onlooker bee search for modeling PEMFCs using T2FNN
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.07.019
– start-page: 1
  year: 2016
  ident: 10.1016/j.engappai.2019.103323_b2
  article-title: Forecasting natural gas consumption with hybrid neural networks—Artificial bee colony
– volume: 7
  start-page: 138972
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b46
  article-title: Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942169
– volume: 12
  start-page: 6
  issue: 1–2
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b66
  article-title: Object tracking using the particle filter optimized by the improved artificial fish swarm algorithm
  publication-title: Int. J. Intell. Inf. Database Syst.
– volume: 127
  start-page: 571
  year: 2016
  ident: 10.1016/j.engappai.2019.103323_b7
  article-title: Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.06.020
– volume: 147
  start-page: 519
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b11
  article-title: A new approach of intelligent physical health evaluation based on GRNN and BPNN by using a wearable smart bracelet system
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.235
– volume: 151
  start-page: 114
  year: 2018
  ident: 10.1016/j.engappai.2019.103323_b32
  article-title: A parallel numerical method for solving optimal control problems based on whale optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.024
– volume: 129
  start-page: 94
  year: 2014
  ident: 10.1016/j.engappai.2019.103323_b39
  article-title: Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.102
– volume: 56
  start-page: 23
  year: 2013
  ident: 10.1016/j.engappai.2019.103323_b55
  article-title: Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.10.023
– volume: 11
  start-page: 464
  issue: 2
  year: 2000
  ident: 10.1016/j.engappai.2019.103323_b23
  article-title: Combination of artificial neural-network forecasters for prediction of natural gas consumption
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.839015
– start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b31
  article-title: Transmission and generation expansion planning of energy hub by an improved genetic algorithm
  publication-title: Energy Sources A
– start-page: 448
  year: 2008
  ident: 10.1016/j.engappai.2019.103323_b24
  article-title: Comparison neural networks models for short term forecasting of natural gas consumption in Istanbul
– volume: 141
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b60
  article-title: Short-term forecasting of natural gas consumption using factor selection algorithm and optimized support vector regression
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.4041413
– volume: 148
  start-page: 59
  year: 2018
  ident: 10.1016/j.engappai.2019.103323_b58
  article-title: Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.112
– volume: 22
  start-page: 271
  issue: 2
  year: 2013
  ident: 10.1016/j.engappai.2019.103323_b26
  article-title: A novel method of short-term load forecasting based on multiwavelet transform and multiple neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-011-0715-2
– volume: 12
  start-page: 112
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b17
  article-title: An improved LSSVM model for intelligent prediction of the daily water level
  publication-title: Energies
  doi: 10.3390/en12010112
– volume: 80
  start-page: 428
  year: 2015
  ident: 10.1016/j.engappai.2019.103323_b69
  article-title: Short-term natural gas demand prediction based on support vector regression with false neighbours filtered
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.083
– volume: 170
  start-page: 40
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b28
  article-title: Recurrent wavelet-based Elman neural network with modified gravitational search algorithm control for integrated offshore wind and wave power generation systems
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.084
– volume: 34
  start-page: 165
  issue: 3
  year: 2006
  ident: 10.1016/j.engappai.2019.103323_b19
  article-title: Short-term natural gas consumption forecast
  publication-title: FME Trans.
– volume: 85
  start-page: 208
  year: 2015
  ident: 10.1016/j.engappai.2019.103323_b54
  article-title: Forecasting of natural gas consumption with artificial neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.084
– volume: 2019
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b38
  article-title: Analysis of particle deposition in a new-type rectifying plate system during shale gas extraction
  publication-title: Energy Sci. Eng.
– volume: 30
  start-page: 1175
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b35
  article-title: An improved particle swarm optimization model for solving homogeneous discounted series-parallel redundancy allocation problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1311-9
– volume: 38
  start-page: 1529
  issue: 3
  year: 2010
  ident: 10.1016/j.engappai.2019.103323_b5
  article-title: An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: uncertain and complex environments
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.11.036
– volume: 5
  start-page: 571
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2019.103323_b20
  article-title: Artificial neural network-based genetic algorithm to predict natural gas consumption
  publication-title: Energy Syst.
  doi: 10.1007/s12667-014-0128-2
– start-page: 79
  year: 2014
  ident: 10.1016/j.engappai.2019.103323_b64
  article-title: Short-term gas load forecasting based on wavelet BP neural network optimized by genetic algorithm
– volume: 12
  start-page: 218
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b59
  article-title: Daily natural gas load forecasting based on a hybrid deep learning model
  publication-title: Energies
  doi: 10.3390/en12020218
– volume: 2019
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b15
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Appl. Soft Comput. J.
– volume: 134
  start-page: 102
  year: 2014
  ident: 10.1016/j.engappai.2019.103323_b65
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.07.104
– volume: 224
  start-page: 739
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b8
  article-title: Hourly PM2. 5 concentration forecast using stacked autoencoder model with emphasis on seasonality
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.03.253
– volume: 7
  start-page: 142814
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b43
  article-title: The forecasting of PM 2.5 using a hybrid model based on wavelet transform and an improved deep learning algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944755
– volume: 24
  start-page: 116
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2019.103323_b4
  article-title: The effect of publication bias on the q test and assessment of heterogeneity
  publication-title: Psychol. Methods
  doi: 10.1037/met0000197
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.engappai.2019.103323_b29
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 16
  start-page: 285
  issue: 3
  year: 1985
  ident: 10.1016/j.engappai.2019.103323_b63
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D
  doi: 10.1016/0167-2789(85)90011-9
– volume: 118
  start-page: 231
  year: 2017
  ident: 10.1016/j.engappai.2019.103323_b37
  article-title: Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.033
SSID ssj0003846
Score 2.6078799
Snippet Short-term natural gas consumption prediction is an important indicator of natural gas pipeline network planning and design, which is of great significance....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103323
SubjectTerms Chaotic character recognition
Forecast
Improved whale optimization algorithm
Phase space reconstruction
Short-term natural gas consumption
Volterra adaptive filter
Title Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm
URI https://dx.doi.org/10.1016/j.engappai.2019.103323
Volume 87
WOSCitedRecordID wos000506715100052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMXKC9RStEeuEWGxLu2d48ValUeqpAaQcTFWtvrxFXqRE6o2h_U_8nMPmxTKhWEuFir0W5sZz7PzM5rCXkDYleWHL7vMkZvVV7IIBMl7HlYMorycQ46wbTM_5ycnIjpVH4ZDK59LczFIqlrcXkpV_-V1UADZmPp7F-wu_1RIMAYmA5XYDtc_4jxp3OwqAOUuEPTtRN4MFNrTC-Hp7ACYtVgeMYMUYsVGDH4usS4eaOGqlAr2wy8QoqNLhjXA2aqzxVmI8KEc1fAOVSL2bKpNvPzX5z8XZvDYT9GbtIOGpOfZE4L6TUEbV2wlTLu228aq1mWrVhyju3v83bmp5YEgyvldLCJh9Vuat33aoSjG16Nttymy22yPsswGMvE9c62ElskLMA83b5Itzr8N-1gHRVnb3U9g1dXFWb2SWw7wGzN843O26d4P7wdGLmm7c89sh0mkQThuX3w4XD6sVX5TNiKMP98vVL02-92uxXUs2wmO-Sh25LQAwulx2Sg6yfkkdueUCf810DyJ4B42lNy1YGNOrBRABvtgY12YKMGbBQGHmzUg41asFEAG_VgowZstA822oLtGZkcHU7eHwfuMI8g5yzeBKVkeVSqUZZEYDQmOtJChyLG4xJ4mIcKNtaZyGKWZUUeM1WquOCMRSrhOsbi7-dkq17W-gWhWgsT7Wei0By2W4pzPgpVFkkwf4sx3yWR_2_T3DW6x_NWFqnPaDxLPU9S5ElqebJL3rXrVrbVy50rpGdd6gxWa4imgLg71r78h7V75EH3zbwiW5vmh94n9_OLTbVuXjtw_gQN3MWn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-term+natural+gas+consumption+prediction+based+on+Volterra+adaptive+filter+and+improved+whale+optimization+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Qiao%2C+Weibiao&rft.au=Yang%2C+Zhe&rft.au=Kang%2C+Zhangyang&rft.au=Pan%2C+Zhen&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=87&rft_id=info:doi/10.1016%2Fj.engappai.2019.103323&rft.externalDocID=S0952197619302738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon