The cost dynamics of hydrogen supply in future energy systems – A techno-economic study

[Display omitted] •The cost dynamics of hydrogen supply in future energy systems is investigated.•The cost of hydrogen influenced by several factors, in addition to electricity cost.•The hydrogen demand profile has a considerable impact on cost of hydrogen.•Flexibility in the hydrogen demand can red...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 328; p. 120233
Main Authors: Öberg, Simon, Odenberger, Mikael, Johnsson, Filip
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.12.2022
Subjects:
ISSN:0306-2619, 1872-9118, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •The cost dynamics of hydrogen supply in future energy systems is investigated.•The cost of hydrogen influenced by several factors, in addition to electricity cost.•The hydrogen demand profile has a considerable impact on cost of hydrogen.•Flexibility in the hydrogen demand can reduce the cost by more than 30%.•Time-shifting of electricity generation via hydrogen provides a system value. This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable renewable electricity generation in which hydrogen is used in the industry and transport sectors, as well as for time-shifting electricity generation. The work applies a techno-economic optimization model, which incorporates both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands, to elucidate the parameters that affect the cost of hydrogen. The results highlight that several parameters influence the cost of hydrogen. The strongest influential parameter is the cost of electricity. Also important are cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities, as these capacities during certain periods limit hydrogen production, thereby setting the marginal cost of hydrogen. Another decisive factor is the nature of the hydrogen demand, whereby flexibility in the hydrogen demand can reduce the cost of supplying hydrogen, given that the demand can be shifted in time. In addition, the modeling shows that time-shifting electricity generation via hydrogen production, with subsequent reconversion back to electricity, plays an important in the climate-neutral electricity system investigated, decreasing the average electricity cost by 2%–16%. Furthermore, as expected, the results show that the cost of hydrogen from an off-grid, island-mode-operated industry is more expensive than the cost of hydrogen from all scenarios with a fully interconnected electricity system.
AbstractList [Display omitted] •The cost dynamics of hydrogen supply in future energy systems is investigated.•The cost of hydrogen influenced by several factors, in addition to electricity cost.•The hydrogen demand profile has a considerable impact on cost of hydrogen.•Flexibility in the hydrogen demand can reduce the cost by more than 30%.•Time-shifting of electricity generation via hydrogen provides a system value. This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable renewable electricity generation in which hydrogen is used in the industry and transport sectors, as well as for time-shifting electricity generation. The work applies a techno-economic optimization model, which incorporates both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands, to elucidate the parameters that affect the cost of hydrogen. The results highlight that several parameters influence the cost of hydrogen. The strongest influential parameter is the cost of electricity. Also important are cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities, as these capacities during certain periods limit hydrogen production, thereby setting the marginal cost of hydrogen. Another decisive factor is the nature of the hydrogen demand, whereby flexibility in the hydrogen demand can reduce the cost of supplying hydrogen, given that the demand can be shifted in time. In addition, the modeling shows that time-shifting electricity generation via hydrogen production, with subsequent reconversion back to electricity, plays an important in the climate-neutral electricity system investigated, decreasing the average electricity cost by 2%–16%. Furthermore, as expected, the results show that the cost of hydrogen from an off-grid, island-mode-operated industry is more expensive than the cost of hydrogen from all scenarios with a fully interconnected electricity system.
This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable renewable electricity generation in which hydrogen is used in the industry and transport sectors, as well as for time-shifting electricity generation. The work applies a techno-economic optimization model, which incorporates both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands, to elucidate the parameters that affect the cost of hydrogen. The results highlight that several parameters influence the cost of hydrogen. The strongest influential parameter is the cost of electricity. Also important are cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities, as these capacities during certain periods limit hydrogen production, thereby setting the marginal cost of hydrogen. Another decisive factor is the nature of the hydrogen demand, whereby flexibility in the hydrogen demand can reduce the cost of supplying hydrogen, given that the demand can be shifted in time. In addition, the modeling shows that time-shifting electricity generation via hydrogen production, with subsequent reconversion back to electricity, plays an important in the climate-neutral electricity system investigated, decreasing the average electricity cost by 2%–16%. Furthermore, as expected, the results show that the cost of hydrogen from an off-grid, island-mode-operated industry is more expensive than the cost of hydrogen from all scenarios with a fully interconnected electricity system.
ArticleNumber 120233
Author Johnsson, Filip
Odenberger, Mikael
Öberg, Simon
Author_xml – sequence: 1
  givenname: Simon
  surname: Öberg
  fullname: Öberg, Simon
  email: simon.oberg@chalmers.se
– sequence: 2
  givenname: Mikael
  surname: Odenberger
  fullname: Odenberger, Mikael
– sequence: 3
  givenname: Filip
  surname: Johnsson
  fullname: Johnsson, Filip
BackLink https://research.chalmers.se/publication/533134$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNqFkMFu1DAQhi1UJLalr1D5BbLYseNNJA5UFVCkSj1QDpwsZzxuvNq1I9sB5cY79A15kmYVeuHSy8xl_m9-fefkLMSAhFxxtuWMqw_7rRkxYHqctzWr6y1fphBvyIa3u7rqOG_PyIYJpqpa8e4dOc95zxirl7sN-fkwIIWYC7VzMEcPmUZHh9mm-IiB5mkcDzP1gbqpTAnp-ojmORc8Zvr3zxO9pgVhCLFCiCEuCJrLZOf35K0zh4yX__YF-fHl88PNbXV3__XbzfVdBVKoUjnlsHWtlK7vlFMcuOxb0dlmBwjGOsexVn3NDePSdFxalK3kpue2aaFRRlyQ7ys3_8Zx6vWY_NGkWUfjdcKMJsGgYTCHI6asM-q2cQrdzmqwTaNlI4Ruoe-0kLA79XB1Jxbqx5UKKeac0GnwxRQfQ0nGHzRn-iRf7_WLfH2Sr1f5S1z9F3-p9Wrw0xrERdkvj0ln8BgArU8IRdvoX0M8A4B9qBs
CitedBy_id crossref_primary_10_1007_s12667_023_00595_y
crossref_primary_10_1016_j_enconman_2024_119175
crossref_primary_10_1016_j_ijhydene_2024_08_016
crossref_primary_10_1016_j_jclepro_2024_142299
crossref_primary_10_3389_fenrg_2024_1420224
crossref_primary_10_3390_en17153813
crossref_primary_10_1016_j_seppur_2025_132606
crossref_primary_10_1016_j_rser_2025_116194
crossref_primary_10_1016_j_apenergy_2025_126556
crossref_primary_10_1016_j_apenergy_2023_121269
crossref_primary_10_1016_j_apenergy_2024_123402
crossref_primary_10_1016_j_ijhydene_2024_04_132
crossref_primary_10_1016_j_energy_2023_128489
crossref_primary_10_1016_j_ijhydene_2024_03_210
crossref_primary_10_3390_en17153661
crossref_primary_10_1039_D4SE00137K
crossref_primary_10_1016_j_biombioe_2023_107023
crossref_primary_10_3389_fenrg_2024_1450966
Cites_doi 10.1016/j.jclepro.2014.05.063
10.1016/j.ijhydene.2020.12.197
10.1016/j.apenergy.2020.115011
10.1016/j.ijhydene.2019.11.028
10.1016/j.ijhydene.2021.10.035
10.1016/j.ijhydene.2022.07.075
10.1016/j.apenergy.2021.118145
10.1016/j.renene.2021.03.114
10.1016/j.apenergy.2020.116170
10.1016/j.ijhydene.2010.04.035
10.1016/j.ref.2019.10.003
10.3390/en14248349
10.1787/1e0514c4-en
10.1038/s41560-019-0326-1
10.1016/j.apenergy.2018.10.133
10.1016/j.apenergy.2017.04.018
10.3390/en14030539
10.1016/j.enpol.2021.112727
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1016/j.apenergy.2022.120233
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID oai_research_chalmers_se_85f6ef7d_cd55_4533_8cb9_34c7844ff293
10_1016_j_apenergy_2022_120233
S0306261922014908
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c436t-f6fe8f844fb96f61c14b839d57cecadff1e26b21a014a914de4841ab1d58c56a3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988648400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
1872-9118
IngestDate Wed Nov 05 04:11:06 EST 2025
Sat Nov 29 07:16:36 EST 2025
Tue Nov 18 21:19:44 EST 2025
Fri Feb 23 02:41:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen cost
Energy systems modeling
Flexible industry
Time-shifting
Electrolysis
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-f6fe8f844fb96f61c14b839d57cecadff1e26b21a014a914de4841ab1d58c56a3
OpenAccessLink https://research.chalmers.se/publication/533134
ParticipantIDs swepub_primary_oai_research_chalmers_se_85f6ef7d_cd55_4533_8cb9_34c7844ff293
crossref_citationtrail_10_1016_j_apenergy_2022_120233
crossref_primary_10_1016_j_apenergy_2022_120233
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120233
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References UNFCCC
United Nations, 2015.
Glenk, Reichelstein (b0025) 2019; 4
HYBRIT, “HYBRIT - a Swedish Prefeasibility Study Project for Hydrogen Based CO2 - free Ironmaking,” 2016. .
Öberg, Odenberger, Johnsson (b0050) 2022; 7
Fischedick, Marzinkowski, Winzer, Weigel (b0105) 2014; 84
vol. 306, no. PB, p. 118145, 2022, doi: 10.1016/j.apenergy.2021.118145.
International Energy Agency (IEA), “The Future of Hydrogen,” 2019. doi: 10.1787/1e0514c4-en.
N. Sönnichsen, “Dutch TTF gas futures at the beginning of each week from January 4, 2021 to April 11, 2022.”
Eurofer, “European Steel in Figures 2020.”
Eurostat
consumption/mhlv-a-specific-country-for-a-specific-month.
vol. 269, no. January, p. 115011, 2020, doi: 10.1016/j.apenergy.2020.115011.
2022.
Eurostat, “Supply, transformation and consumption of electricity [NRG_CB_E__custom_1884335],” 2021.
Armijo, Philibert (b0135) 2020; 45
B. Lux and B. Pfluger, “A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050,”
European Commission, In-depth analysis in support of the commission communication COM(2018) 773: A clean Planet for all - A European long-term strategic vision for a prosperous, modern, competitive and cimate neutral economy. Supplementary information. 2018.
Fuel Cells and Hydrogen Joint Undertaking (FCH)
.
M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study,”
Bartels, Pate, Olson (b0020) 2010; 35
A. Toktarova, L. Göransson, and F. Johnsson, “Design of Clean Steel Production with Hydrogen : Impact of Electricity System Composition,” 2021.
“European Network of Transmission Operators for Electricity. Hourly load values for all countries for a specific month (in MW); 2017.” Accessed: Mar. 07, 2018. [Online]. Available
vol. 294, no. May 2020, p. 116170, 2021, doi: 10.1016/j.apenergy.2020.116170.
vol. 14, no. 3, 2021, doi: 10.3390/en14030539.
2018.
S. Öberg, M. Odenberger, and F. Johnsson, “The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study (submitted),”
M. Fasihi, R. Weiss, J. Savolainen, and C. Breyer, “Global potential of green ammonia based on hybrid PV-wind power plants,”
S. Klugman, H. Stripple, T. Lönnqvist, E. Sandberg, and A. Krook-Riekkola, “A climate neutral Swedish industry – An inventory of technologies,” Stockholm, 2019. Accessed: Jan. 20, 2022. [Online]. Available
“Energy Prices and Costs in Energy Intensive Industries: the Case of the Chemical Industry-Ammonia,” Brussels, 2014.
vol. 235, no. October 2018, pp. 1637–1650, 2019, doi: 10.1016/j.apenergy.2018.10.133.
C. Egenhofer
European Commission
Voestalpine, “The three pillars of decarbonization 2018.”
(accessed Jan. 11, 2022).
F. vom Scheidt, J. Qu, P. Staudt, D. S. Mallapragada, and C. Weinhardt, “Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals,”
European Commission, “2050 long-term strategy.”
Öberg, Odenberger, Johnsson (b0160) 2022; 47
M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “To represent electric vehicles in electricity systems modelling—aggregated vehicle representation vs. Individual driving profiles,”
(accessed Sep. 08, 2021).
2015.
vol. 161, no. April 2021, p. 112727, 2022, doi: 10.1016/j.enpol.2021.112727.
Johansson, Göransson (b0060) 2020; 32
European Commission, “A hydrogen strategy for a climate-neutral Europe,” Brussels, 2020.
2019.
Caglayan, Heinrichs, Robinius, Stolten (b0150) 2021; 46
(accessed Apr. 13, 2022).
Göransson, Goop, Odenberger, Johnsson (b0055) 2017; 197
Ullmark, Göransson, Chen, Bongiorno, Johnsson (b0065) 2021; 173
ArcelorMittal, “ArcelorMittal commissions Midrex to design demonstration plant for hydrogen steel production in Hamburg 2019.”
(accessed Nov. 10, 2021).
T. Longden, F. J. Beck, F. Jotzo, R. Andrews, and M. Prasad, “‘Clean’ hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen,”
Johansson (10.1016/j.apenergy.2022.120233_b0060) 2020; 32
10.1016/j.apenergy.2022.120233_b0005
10.1016/j.apenergy.2022.120233_b0125
Ullmark (10.1016/j.apenergy.2022.120233_b0065) 2021; 173
10.1016/j.apenergy.2022.120233_b0145
10.1016/j.apenergy.2022.120233_b0045
10.1016/j.apenergy.2022.120233_b0100
10.1016/j.apenergy.2022.120233_b0110
10.1016/j.apenergy.2022.120233_b0010
10.1016/j.apenergy.2022.120233_b0175
10.1016/j.apenergy.2022.120233_b0075
10.1016/j.apenergy.2022.120233_b0130
10.1016/j.apenergy.2022.120233_b0030
Göransson (10.1016/j.apenergy.2022.120233_b0055) 2017; 197
10.1016/j.apenergy.2022.120233_b0095
Öberg (10.1016/j.apenergy.2022.120233_b0160) 2022; 47
10.1016/j.apenergy.2022.120233_b0170
Öberg (10.1016/j.apenergy.2022.120233_b0050) 2022; 7
10.1016/j.apenergy.2022.120233_b0070
10.1016/j.apenergy.2022.120233_b0090
Bartels (10.1016/j.apenergy.2022.120233_b0020) 2010; 35
Caglayan (10.1016/j.apenergy.2022.120233_b0150) 2021; 46
10.1016/j.apenergy.2022.120233_b0115
10.1016/j.apenergy.2022.120233_b0015
Glenk (10.1016/j.apenergy.2022.120233_b0025) 2019; 4
10.1016/j.apenergy.2022.120233_b0035
10.1016/j.apenergy.2022.120233_b0155
10.1016/j.apenergy.2022.120233_b0165
10.1016/j.apenergy.2022.120233_b0120
10.1016/j.apenergy.2022.120233_b0085
10.1016/j.apenergy.2022.120233_b0140
10.1016/j.apenergy.2022.120233_b0040
Fischedick (10.1016/j.apenergy.2022.120233_b0105) 2014; 84
10.1016/j.apenergy.2022.120233_b0080
Armijo (10.1016/j.apenergy.2022.120233_b0135) 2020; 45
References_xml – reference: European Commission,
– reference: , “Energy Prices and Costs in Energy Intensive Industries: the Case of the Chemical Industry-Ammonia,” Brussels, 2014.
– reference: European Commission, “2050 long-term strategy.”
– reference: HYBRIT, “HYBRIT - a Swedish Prefeasibility Study Project for Hydrogen Based CO2 - free Ironmaking,” 2016. .
– volume: 32
  start-page: 10
  year: 2020
  end-page: 22
  ident: b0060
  article-title: Impacts of variation management on cost-optimal investments in wind power and solar photovoltaics
  publication-title: Renew Energy Focus
– reference: S. Öberg, M. Odenberger, and F. Johnsson, “The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study (submitted),”
– volume: 84
  start-page: 563
  year: 2014
  end-page: 580
  ident: b0105
  article-title: Techno-economic evaluation of innovative steel production technologies
  publication-title: J Clean Prod
– reference: , vol. 235, no. October 2018, pp. 1637–1650, 2019, doi: 10.1016/j.apenergy.2018.10.133.
– volume: 35
  start-page: 8371
  year: 2010
  end-page: 8384
  ident: b0020
  article-title: An economic survey of hydrogen production from conventional and alternative energy sources
  publication-title: Int J Hydrogen Energy
– volume: 7
  year: 2022
  ident: b0050
  article-title: The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study
  publication-title: Int J Hydrogen Energy
– reference: European Commission, “A hydrogen strategy for a climate-neutral Europe,” Brussels, 2020.
– reference: Eurofer, “European Steel in Figures 2020.”
– reference: . 2018.
– reference: . 2015.
– reference: UNFCCC,
– reference: ArcelorMittal, “ArcelorMittal commissions Midrex to design demonstration plant for hydrogen steel production in Hamburg 2019.”
– volume: 197
  start-page: 230
  year: 2017
  end-page: 240
  ident: b0055
  article-title: Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system
  publication-title: Appl Energy
– volume: 173
  start-page: 249
  year: 2021
  end-page: 262
  ident: b0065
  article-title: Inclusion of frequency control constraints in energy system investment modeling
  publication-title: Renew Energy
– reference: M. Fasihi, R. Weiss, J. Savolainen, and C. Breyer, “Global potential of green ammonia based on hybrid PV-wind power plants,”
– reference: , vol. 306, no. PB, p. 118145, 2022, doi: 10.1016/j.apenergy.2021.118145.
– reference: Eurostat, “Supply, transformation and consumption of electricity [NRG_CB_E__custom_1884335],” 2021.
– reference: / consumption/mhlv-a-specific-country-for-a-specific-month.
– reference: , vol. 294, no. May 2020, p. 116170, 2021, doi: 10.1016/j.apenergy.2020.116170.
– reference: Fuel Cells and Hydrogen Joint Undertaking (FCH),
– reference: International Energy Agency (IEA), “The Future of Hydrogen,” 2019. doi: 10.1787/1e0514c4-en.
– reference: . United Nations, 2015.
– reference: M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study,”
– reference: , vol. 14, no. 3, 2021, doi: 10.3390/en14030539.
– reference: , vol. 161, no. April 2021, p. 112727, 2022, doi: 10.1016/j.enpol.2021.112727.
– reference: European Commission, In-depth analysis in support of the commission communication COM(2018) 773: A clean Planet for all - A European long-term strategic vision for a prosperous, modern, competitive and cimate neutral economy. Supplementary information. 2018.
– volume: 47
  start-page: 624
  year: 2022
  end-page: 644
  ident: b0160
  article-title: Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems
  publication-title: Int J Hydrogen Energy
– reference: , 2022.
– reference: “European Network of Transmission Operators for Electricity. Hourly load values for all countries for a specific month (in MW); 2017.” Accessed: Mar. 07, 2018. [Online]. Available:
– reference: C. Egenhofer
– reference: (accessed Sep. 08, 2021).
– reference: T. Longden, F. J. Beck, F. Jotzo, R. Andrews, and M. Prasad, “‘Clean’ hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen,”
– reference: N. Sönnichsen, “Dutch TTF gas futures at the beginning of each week from January 4, 2021 to April 11, 2022.”
– volume: 46
  start-page: 29376
  year: 2021
  end-page: 29390
  ident: b0150
  article-title: Robust design of a future 100% renewable european energy supply system with hydrogen infrastructure
  publication-title: Int J Hydrogen Energy
– reference: Eurostat,
– reference: (accessed Apr. 13, 2022).
– reference: M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “To represent electric vehicles in electricity systems modelling—aggregated vehicle representation vs. Individual driving profiles,”
– reference: A. Toktarova, L. Göransson, and F. Johnsson, “Design of Clean Steel Production with Hydrogen : Impact of Electricity System Composition,” 2021.
– reference: (accessed Jan. 11, 2022).
– reference: .
– reference: S. Klugman, H. Stripple, T. Lönnqvist, E. Sandberg, and A. Krook-Riekkola, “A climate neutral Swedish industry – An inventory of technologies,” Stockholm, 2019. Accessed: Jan. 20, 2022. [Online]. Available:
– volume: 4
  start-page: 216
  year: 2019
  end-page: 222
  ident: b0025
  article-title: Economics of converting renewable power to hydrogen
  publication-title: Nat Energy
– reference: , vol. 269, no. January, p. 115011, 2020, doi: 10.1016/j.apenergy.2020.115011.
– reference: F. vom Scheidt, J. Qu, P. Staudt, D. S. Mallapragada, and C. Weinhardt, “Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals,”
– reference: B. Lux and B. Pfluger, “A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050,”
– volume: 45
  start-page: 1541
  year: 2020
  end-page: 1558
  ident: b0135
  article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina
  publication-title: Int J Hydrogen Energy
– reference: Voestalpine, “The three pillars of decarbonization 2018.”
– reference: (accessed Nov. 10, 2021).
– reference: . 2019.
– ident: 10.1016/j.apenergy.2022.120233_b0070
– ident: 10.1016/j.apenergy.2022.120233_b0080
– volume: 84
  start-page: 563
  issue: 1
  year: 2014
  ident: 10.1016/j.apenergy.2022.120233_b0105
  article-title: Techno-economic evaluation of innovative steel production technologies
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2014.05.063
– ident: 10.1016/j.apenergy.2022.120233_b0175
– volume: 46
  start-page: 29376
  issue: 57
  year: 2021
  ident: 10.1016/j.apenergy.2022.120233_b0150
  article-title: Robust design of a future 100% renewable european energy supply system with hydrogen infrastructure
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.197
– ident: 10.1016/j.apenergy.2022.120233_b0125
– ident: 10.1016/j.apenergy.2022.120233_b0030
  doi: 10.1016/j.apenergy.2020.115011
– volume: 45
  start-page: 1541
  issue: 3
  year: 2020
  ident: 10.1016/j.apenergy.2022.120233_b0135
  article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.028
– volume: 47
  start-page: 624
  issue: 1
  year: 2022
  ident: 10.1016/j.apenergy.2022.120233_b0160
  article-title: Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.10.035
– ident: 10.1016/j.apenergy.2022.120233_b0145
  doi: 10.1016/j.ijhydene.2022.07.075
– ident: 10.1016/j.apenergy.2022.120233_b0085
– ident: 10.1016/j.apenergy.2022.120233_b0015
  doi: 10.1016/j.apenergy.2021.118145
– ident: 10.1016/j.apenergy.2022.120233_b0005
– volume: 173
  start-page: 249
  year: 2021
  ident: 10.1016/j.apenergy.2022.120233_b0065
  article-title: Inclusion of frequency control constraints in energy system investment modeling
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.03.114
– ident: 10.1016/j.apenergy.2022.120233_b0120
  doi: 10.1016/j.apenergy.2020.116170
– volume: 35
  start-page: 8371
  issue: 16
  year: 2010
  ident: 10.1016/j.apenergy.2022.120233_b0020
  article-title: An economic survey of hydrogen production from conventional and alternative energy sources
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.04.035
– volume: 32
  start-page: 10
  issue: March
  year: 2020
  ident: 10.1016/j.apenergy.2022.120233_b0060
  article-title: Impacts of variation management on cost-optimal investments in wind power and solar photovoltaics
  publication-title: Renew Energy Focus
  doi: 10.1016/j.ref.2019.10.003
– ident: 10.1016/j.apenergy.2022.120233_b0095
– ident: 10.1016/j.apenergy.2022.120233_b0140
  doi: 10.3390/en14248349
– ident: 10.1016/j.apenergy.2022.120233_b0155
  doi: 10.1787/1e0514c4-en
– ident: 10.1016/j.apenergy.2022.120233_b0110
– volume: 4
  start-page: 216
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2022.120233_b0025
  article-title: Economics of converting renewable power to hydrogen
  publication-title: Nat Energy
  doi: 10.1038/s41560-019-0326-1
– ident: 10.1016/j.apenergy.2022.120233_b0090
  doi: 10.1016/j.apenergy.2018.10.133
– ident: 10.1016/j.apenergy.2022.120233_b0075
– volume: 7
  year: 2022
  ident: 10.1016/j.apenergy.2022.120233_b0050
  article-title: The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study
  publication-title: Int J Hydrogen Energy
– volume: 197
  start-page: 230
  year: 2017
  ident: 10.1016/j.apenergy.2022.120233_b0055
  article-title: Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.018
– ident: 10.1016/j.apenergy.2022.120233_b0170
– ident: 10.1016/j.apenergy.2022.120233_b0010
– ident: 10.1016/j.apenergy.2022.120233_b0040
– ident: 10.1016/j.apenergy.2022.120233_b0035
– ident: 10.1016/j.apenergy.2022.120233_b0165
– ident: 10.1016/j.apenergy.2022.120233_b0100
  doi: 10.3390/en14030539
– ident: 10.1016/j.apenergy.2022.120233_b0115
– ident: 10.1016/j.apenergy.2022.120233_b0130
– ident: 10.1016/j.apenergy.2022.120233_b0045
  doi: 10.1016/j.enpol.2021.112727
SSID ssj0002120
Score 2.5230591
Snippet [Display omitted] •The cost dynamics of hydrogen supply in future energy systems is investigated.•The cost of hydrogen influenced by several factors, in...
This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 120233
SubjectTerms Electrolysis
Energy systems modeling
Flexible industry
Hydrogen cost
Time-shifting
Title The cost dynamics of hydrogen supply in future energy systems – A techno-economic study
URI https://dx.doi.org/10.1016/j.apenergy.2022.120233
https://research.chalmers.se/publication/533134
Volume 328
WOSCitedRecordID wos000988648400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywEOCBZWLC_5wK1KqWM7j2OFugK0LEgsqJysxA-1CyRVU9By4z_wD_kljF9tWC0se-ASRVY8cTJfJmN75huEnlgGdmVomhBHqk3GJdhBqZOaAj5kTfLarUO-P8yPjorZrHwTtmI6V04gb5ri9LRc_ldVQxso26bOXkLdG6HQAOegdDiC2uH4z4qXbbceKl9s3sVqzL-pVQtdhp2t4uly_TybyFD75D_P6NwNY_ADBYvh-F3bRIfc5R4VbaStDS6slxF1Z_feyyzGjb1dfN7u9L9WPqDM4-TV4mOM2A8xPF3I_zqwqzz9BYnU1UbxKZkxEWucJXZi1jeyNKSAezNJbNF2eq4F94sJJ6Nq6cc-srcYbTv8Tpl95le2CTCMsWsnIsoRVo7wcq6inTTnZTFAO5MX09nLza87DTye8Ql6KeXnj-iP3kyfdta5Kse30M0wx8ATj43b6IpudtGNHvPkLtqbbhMc4dJg4bs76APAB1v44Agf3Boc4YM9fPCiwR4-2A8WB_jgn99_4Ak-AxzsgHMXvTuYHj97noTyG4lkNFsnJjO6MAVjpi4zkxFJWA3utIJvWMtKGUN0mtUpqWCWXZWEKc0KRqqaKF5InlV0Dw2attH3EGZUQlvKaW3zKjmvx5XhksGFWoGofB_x-BqFDNz0tkTKJ_F3Re6jp5t-S8_OcmGPMmpJBB_T-44CAHhh30Ov1s29LDd7IOWaCzl3FY860WlRcJNpkyshFeeCwZxKFLIuBWUyt2_UgJd9_9KDf4Cubz-4h2iwXn3Rj9A1-XW96FaPA5h_AbrlvRk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cost+dynamics+of+hydrogen+supply+in+future+energy+systems+%E2%80%93+A+techno-economic+study&rft.jtitle=Applied+energy&rft.au=%C3%96berg%2C+Simon&rft.au=Odenberger%2C+Mikael&rft.au=Johnsson%2C+Filip&rft.date=2022-12-15&rft.issn=0306-2619&rft.volume=328&rft.spage=120233&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120233&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2022_120233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon