The cost dynamics of hydrogen supply in future energy systems – A techno-economic study
[Display omitted] •The cost dynamics of hydrogen supply in future energy systems is investigated.•The cost of hydrogen influenced by several factors, in addition to electricity cost.•The hydrogen demand profile has a considerable impact on cost of hydrogen.•Flexibility in the hydrogen demand can red...
Saved in:
| Published in: | Applied energy Vol. 328; p. 120233 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.12.2022
|
| Subjects: | |
| ISSN: | 0306-2619, 1872-9118, 1872-9118 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•The cost dynamics of hydrogen supply in future energy systems is investigated.•The cost of hydrogen influenced by several factors, in addition to electricity cost.•The hydrogen demand profile has a considerable impact on cost of hydrogen.•Flexibility in the hydrogen demand can reduce the cost by more than 30%.•Time-shifting of electricity generation via hydrogen provides a system value.
This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable renewable electricity generation in which hydrogen is used in the industry and transport sectors, as well as for time-shifting electricity generation. The work applies a techno-economic optimization model, which incorporates both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands, to elucidate the parameters that affect the cost of hydrogen.
The results highlight that several parameters influence the cost of hydrogen. The strongest influential parameter is the cost of electricity. Also important are cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities, as these capacities during certain periods limit hydrogen production, thereby setting the marginal cost of hydrogen. Another decisive factor is the nature of the hydrogen demand, whereby flexibility in the hydrogen demand can reduce the cost of supplying hydrogen, given that the demand can be shifted in time.
In addition, the modeling shows that time-shifting electricity generation via hydrogen production, with subsequent reconversion back to electricity, plays an important in the climate-neutral electricity system investigated, decreasing the average electricity cost by 2%–16%. Furthermore, as expected, the results show that the cost of hydrogen from an off-grid, island-mode-operated industry is more expensive than the cost of hydrogen from all scenarios with a fully interconnected electricity system. |
|---|---|
| AbstractList | [Display omitted]
•The cost dynamics of hydrogen supply in future energy systems is investigated.•The cost of hydrogen influenced by several factors, in addition to electricity cost.•The hydrogen demand profile has a considerable impact on cost of hydrogen.•Flexibility in the hydrogen demand can reduce the cost by more than 30%.•Time-shifting of electricity generation via hydrogen provides a system value.
This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable renewable electricity generation in which hydrogen is used in the industry and transport sectors, as well as for time-shifting electricity generation. The work applies a techno-economic optimization model, which incorporates both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands, to elucidate the parameters that affect the cost of hydrogen.
The results highlight that several parameters influence the cost of hydrogen. The strongest influential parameter is the cost of electricity. Also important are cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities, as these capacities during certain periods limit hydrogen production, thereby setting the marginal cost of hydrogen. Another decisive factor is the nature of the hydrogen demand, whereby flexibility in the hydrogen demand can reduce the cost of supplying hydrogen, given that the demand can be shifted in time.
In addition, the modeling shows that time-shifting electricity generation via hydrogen production, with subsequent reconversion back to electricity, plays an important in the climate-neutral electricity system investigated, decreasing the average electricity cost by 2%–16%. Furthermore, as expected, the results show that the cost of hydrogen from an off-grid, island-mode-operated industry is more expensive than the cost of hydrogen from all scenarios with a fully interconnected electricity system. This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable renewable electricity generation in which hydrogen is used in the industry and transport sectors, as well as for time-shifting electricity generation. The work applies a techno-economic optimization model, which incorporates both exogenous (industry and transport) and endogenous (time-shifting of electricity generation) hydrogen demands, to elucidate the parameters that affect the cost of hydrogen. The results highlight that several parameters influence the cost of hydrogen. The strongest influential parameter is the cost of electricity. Also important are cost-optimal dimensioning of the electrolyzer and hydrogen storage capacities, as these capacities during certain periods limit hydrogen production, thereby setting the marginal cost of hydrogen. Another decisive factor is the nature of the hydrogen demand, whereby flexibility in the hydrogen demand can reduce the cost of supplying hydrogen, given that the demand can be shifted in time. In addition, the modeling shows that time-shifting electricity generation via hydrogen production, with subsequent reconversion back to electricity, plays an important in the climate-neutral electricity system investigated, decreasing the average electricity cost by 2%–16%. Furthermore, as expected, the results show that the cost of hydrogen from an off-grid, island-mode-operated industry is more expensive than the cost of hydrogen from all scenarios with a fully interconnected electricity system. |
| ArticleNumber | 120233 |
| Author | Johnsson, Filip Odenberger, Mikael Öberg, Simon |
| Author_xml | – sequence: 1 givenname: Simon surname: Öberg fullname: Öberg, Simon email: simon.oberg@chalmers.se – sequence: 2 givenname: Mikael surname: Odenberger fullname: Odenberger, Mikael – sequence: 3 givenname: Filip surname: Johnsson fullname: Johnsson, Filip |
| BackLink | https://research.chalmers.se/publication/533134$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNqFkMFu1DAQhi1UJLalr1D5BbLYseNNJA5UFVCkSj1QDpwsZzxuvNq1I9sB5cY79A15kmYVeuHSy8xl_m9-fefkLMSAhFxxtuWMqw_7rRkxYHqctzWr6y1fphBvyIa3u7rqOG_PyIYJpqpa8e4dOc95zxirl7sN-fkwIIWYC7VzMEcPmUZHh9mm-IiB5mkcDzP1gbqpTAnp-ojmORc8Zvr3zxO9pgVhCLFCiCEuCJrLZOf35K0zh4yX__YF-fHl88PNbXV3__XbzfVdBVKoUjnlsHWtlK7vlFMcuOxb0dlmBwjGOsexVn3NDePSdFxalK3kpue2aaFRRlyQ7ys3_8Zx6vWY_NGkWUfjdcKMJsGgYTCHI6asM-q2cQrdzmqwTaNlI4Ruoe-0kLA79XB1Jxbqx5UKKeac0GnwxRQfQ0nGHzRn-iRf7_WLfH2Sr1f5S1z9F3-p9Wrw0xrERdkvj0ln8BgArU8IRdvoX0M8A4B9qBs |
| CitedBy_id | crossref_primary_10_1007_s12667_023_00595_y crossref_primary_10_1016_j_enconman_2024_119175 crossref_primary_10_1016_j_ijhydene_2024_08_016 crossref_primary_10_1016_j_jclepro_2024_142299 crossref_primary_10_3389_fenrg_2024_1420224 crossref_primary_10_3390_en17153813 crossref_primary_10_1016_j_seppur_2025_132606 crossref_primary_10_1016_j_rser_2025_116194 crossref_primary_10_1016_j_apenergy_2025_126556 crossref_primary_10_1016_j_apenergy_2023_121269 crossref_primary_10_1016_j_apenergy_2024_123402 crossref_primary_10_1016_j_ijhydene_2024_04_132 crossref_primary_10_1016_j_energy_2023_128489 crossref_primary_10_1016_j_ijhydene_2024_03_210 crossref_primary_10_3390_en17153661 crossref_primary_10_1039_D4SE00137K crossref_primary_10_1016_j_biombioe_2023_107023 crossref_primary_10_3389_fenrg_2024_1450966 |
| Cites_doi | 10.1016/j.jclepro.2014.05.063 10.1016/j.ijhydene.2020.12.197 10.1016/j.apenergy.2020.115011 10.1016/j.ijhydene.2019.11.028 10.1016/j.ijhydene.2021.10.035 10.1016/j.ijhydene.2022.07.075 10.1016/j.apenergy.2021.118145 10.1016/j.renene.2021.03.114 10.1016/j.apenergy.2020.116170 10.1016/j.ijhydene.2010.04.035 10.1016/j.ref.2019.10.003 10.3390/en14248349 10.1787/1e0514c4-en 10.1038/s41560-019-0326-1 10.1016/j.apenergy.2018.10.133 10.1016/j.apenergy.2017.04.018 10.3390/en14030539 10.1016/j.enpol.2021.112727 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors |
| Copyright_xml | – notice: 2022 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| DOI | 10.1016/j.apenergy.2022.120233 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | oai_research_chalmers_se_85f6ef7d_cd55_4533_8cb9_34c7844ff293 10_1016_j_apenergy_2022_120233 S0306261922014908 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| ID | FETCH-LOGICAL-c436t-f6fe8f844fb96f61c14b839d57cecadff1e26b21a014a914de4841ab1d58c56a3 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988648400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 1872-9118 |
| IngestDate | Wed Nov 05 04:11:06 EST 2025 Sat Nov 29 07:16:36 EST 2025 Tue Nov 18 21:19:44 EST 2025 Fri Feb 23 02:41:56 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hydrogen cost Energy systems modeling Flexible industry Time-shifting Electrolysis |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c436t-f6fe8f844fb96f61c14b839d57cecadff1e26b21a014a914de4841ab1d58c56a3 |
| OpenAccessLink | https://research.chalmers.se/publication/533134 |
| ParticipantIDs | swepub_primary_oai_research_chalmers_se_85f6ef7d_cd55_4533_8cb9_34c7844ff293 crossref_citationtrail_10_1016_j_apenergy_2022_120233 crossref_primary_10_1016_j_apenergy_2022_120233 elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_120233 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-15 |
| PublicationDateYYYYMMDD | 2022-12-15 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | UNFCCC United Nations, 2015. Glenk, Reichelstein (b0025) 2019; 4 HYBRIT, “HYBRIT - a Swedish Prefeasibility Study Project for Hydrogen Based CO2 - free Ironmaking,” 2016. . Öberg, Odenberger, Johnsson (b0050) 2022; 7 Fischedick, Marzinkowski, Winzer, Weigel (b0105) 2014; 84 vol. 306, no. PB, p. 118145, 2022, doi: 10.1016/j.apenergy.2021.118145. International Energy Agency (IEA), “The Future of Hydrogen,” 2019. doi: 10.1787/1e0514c4-en. N. Sönnichsen, “Dutch TTF gas futures at the beginning of each week from January 4, 2021 to April 11, 2022.” Eurofer, “European Steel in Figures 2020.” Eurostat consumption/mhlv-a-specific-country-for-a-specific-month. vol. 269, no. January, p. 115011, 2020, doi: 10.1016/j.apenergy.2020.115011. 2022. Eurostat, “Supply, transformation and consumption of electricity [NRG_CB_E__custom_1884335],” 2021. Armijo, Philibert (b0135) 2020; 45 B. Lux and B. Pfluger, “A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050,” European Commission, In-depth analysis in support of the commission communication COM(2018) 773: A clean Planet for all - A European long-term strategic vision for a prosperous, modern, competitive and cimate neutral economy. Supplementary information. 2018. Fuel Cells and Hydrogen Joint Undertaking (FCH) . M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study,” Bartels, Pate, Olson (b0020) 2010; 35 A. Toktarova, L. Göransson, and F. Johnsson, “Design of Clean Steel Production with Hydrogen : Impact of Electricity System Composition,” 2021. “European Network of Transmission Operators for Electricity. Hourly load values for all countries for a specific month (in MW); 2017.” Accessed: Mar. 07, 2018. [Online]. Available vol. 294, no. May 2020, p. 116170, 2021, doi: 10.1016/j.apenergy.2020.116170. vol. 14, no. 3, 2021, doi: 10.3390/en14030539. 2018. S. Öberg, M. Odenberger, and F. Johnsson, “The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study (submitted),” M. Fasihi, R. Weiss, J. Savolainen, and C. Breyer, “Global potential of green ammonia based on hybrid PV-wind power plants,” S. Klugman, H. Stripple, T. Lönnqvist, E. Sandberg, and A. Krook-Riekkola, “A climate neutral Swedish industry – An inventory of technologies,” Stockholm, 2019. Accessed: Jan. 20, 2022. [Online]. Available “Energy Prices and Costs in Energy Intensive Industries: the Case of the Chemical Industry-Ammonia,” Brussels, 2014. vol. 235, no. October 2018, pp. 1637–1650, 2019, doi: 10.1016/j.apenergy.2018.10.133. C. Egenhofer European Commission Voestalpine, “The three pillars of decarbonization 2018.” (accessed Jan. 11, 2022). F. vom Scheidt, J. Qu, P. Staudt, D. S. Mallapragada, and C. Weinhardt, “Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals,” European Commission, “2050 long-term strategy.” Öberg, Odenberger, Johnsson (b0160) 2022; 47 M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “To represent electric vehicles in electricity systems modelling—aggregated vehicle representation vs. Individual driving profiles,” (accessed Sep. 08, 2021). 2015. vol. 161, no. April 2021, p. 112727, 2022, doi: 10.1016/j.enpol.2021.112727. Johansson, Göransson (b0060) 2020; 32 European Commission, “A hydrogen strategy for a climate-neutral Europe,” Brussels, 2020. 2019. Caglayan, Heinrichs, Robinius, Stolten (b0150) 2021; 46 (accessed Apr. 13, 2022). Göransson, Goop, Odenberger, Johnsson (b0055) 2017; 197 Ullmark, Göransson, Chen, Bongiorno, Johnsson (b0065) 2021; 173 ArcelorMittal, “ArcelorMittal commissions Midrex to design demonstration plant for hydrogen steel production in Hamburg 2019.” (accessed Nov. 10, 2021). T. Longden, F. J. Beck, F. Jotzo, R. Andrews, and M. Prasad, “‘Clean’ hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen,” Johansson (10.1016/j.apenergy.2022.120233_b0060) 2020; 32 10.1016/j.apenergy.2022.120233_b0005 10.1016/j.apenergy.2022.120233_b0125 Ullmark (10.1016/j.apenergy.2022.120233_b0065) 2021; 173 10.1016/j.apenergy.2022.120233_b0145 10.1016/j.apenergy.2022.120233_b0045 10.1016/j.apenergy.2022.120233_b0100 10.1016/j.apenergy.2022.120233_b0110 10.1016/j.apenergy.2022.120233_b0010 10.1016/j.apenergy.2022.120233_b0175 10.1016/j.apenergy.2022.120233_b0075 10.1016/j.apenergy.2022.120233_b0130 10.1016/j.apenergy.2022.120233_b0030 Göransson (10.1016/j.apenergy.2022.120233_b0055) 2017; 197 10.1016/j.apenergy.2022.120233_b0095 Öberg (10.1016/j.apenergy.2022.120233_b0160) 2022; 47 10.1016/j.apenergy.2022.120233_b0170 Öberg (10.1016/j.apenergy.2022.120233_b0050) 2022; 7 10.1016/j.apenergy.2022.120233_b0070 10.1016/j.apenergy.2022.120233_b0090 Bartels (10.1016/j.apenergy.2022.120233_b0020) 2010; 35 Caglayan (10.1016/j.apenergy.2022.120233_b0150) 2021; 46 10.1016/j.apenergy.2022.120233_b0115 10.1016/j.apenergy.2022.120233_b0015 Glenk (10.1016/j.apenergy.2022.120233_b0025) 2019; 4 10.1016/j.apenergy.2022.120233_b0035 10.1016/j.apenergy.2022.120233_b0155 10.1016/j.apenergy.2022.120233_b0165 10.1016/j.apenergy.2022.120233_b0120 10.1016/j.apenergy.2022.120233_b0085 10.1016/j.apenergy.2022.120233_b0140 10.1016/j.apenergy.2022.120233_b0040 Fischedick (10.1016/j.apenergy.2022.120233_b0105) 2014; 84 10.1016/j.apenergy.2022.120233_b0080 Armijo (10.1016/j.apenergy.2022.120233_b0135) 2020; 45 |
| References_xml | – reference: European Commission, – reference: , “Energy Prices and Costs in Energy Intensive Industries: the Case of the Chemical Industry-Ammonia,” Brussels, 2014. – reference: European Commission, “2050 long-term strategy.” – reference: HYBRIT, “HYBRIT - a Swedish Prefeasibility Study Project for Hydrogen Based CO2 - free Ironmaking,” 2016. . – volume: 32 start-page: 10 year: 2020 end-page: 22 ident: b0060 article-title: Impacts of variation management on cost-optimal investments in wind power and solar photovoltaics publication-title: Renew Energy Focus – reference: S. Öberg, M. Odenberger, and F. Johnsson, “The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study (submitted),” – volume: 84 start-page: 563 year: 2014 end-page: 580 ident: b0105 article-title: Techno-economic evaluation of innovative steel production technologies publication-title: J Clean Prod – reference: , vol. 235, no. October 2018, pp. 1637–1650, 2019, doi: 10.1016/j.apenergy.2018.10.133. – volume: 35 start-page: 8371 year: 2010 end-page: 8384 ident: b0020 article-title: An economic survey of hydrogen production from conventional and alternative energy sources publication-title: Int J Hydrogen Energy – volume: 7 year: 2022 ident: b0050 article-title: The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study publication-title: Int J Hydrogen Energy – reference: European Commission, “A hydrogen strategy for a climate-neutral Europe,” Brussels, 2020. – reference: Eurofer, “European Steel in Figures 2020.” – reference: . 2018. – reference: . 2015. – reference: UNFCCC, – reference: ArcelorMittal, “ArcelorMittal commissions Midrex to design demonstration plant for hydrogen steel production in Hamburg 2019.” – volume: 197 start-page: 230 year: 2017 end-page: 240 ident: b0055 article-title: Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system publication-title: Appl Energy – volume: 173 start-page: 249 year: 2021 end-page: 262 ident: b0065 article-title: Inclusion of frequency control constraints in energy system investment modeling publication-title: Renew Energy – reference: M. Fasihi, R. Weiss, J. Savolainen, and C. Breyer, “Global potential of green ammonia based on hybrid PV-wind power plants,” – reference: , vol. 306, no. PB, p. 118145, 2022, doi: 10.1016/j.apenergy.2021.118145. – reference: Eurostat, “Supply, transformation and consumption of electricity [NRG_CB_E__custom_1884335],” 2021. – reference: / consumption/mhlv-a-specific-country-for-a-specific-month. – reference: , vol. 294, no. May 2020, p. 116170, 2021, doi: 10.1016/j.apenergy.2020.116170. – reference: Fuel Cells and Hydrogen Joint Undertaking (FCH), – reference: International Energy Agency (IEA), “The Future of Hydrogen,” 2019. doi: 10.1787/1e0514c4-en. – reference: . United Nations, 2015. – reference: M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study,” – reference: , vol. 14, no. 3, 2021, doi: 10.3390/en14030539. – reference: , vol. 161, no. April 2021, p. 112727, 2022, doi: 10.1016/j.enpol.2021.112727. – reference: European Commission, In-depth analysis in support of the commission communication COM(2018) 773: A clean Planet for all - A European long-term strategic vision for a prosperous, modern, competitive and cimate neutral economy. Supplementary information. 2018. – volume: 47 start-page: 624 year: 2022 end-page: 644 ident: b0160 article-title: Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems publication-title: Int J Hydrogen Energy – reference: , 2022. – reference: “European Network of Transmission Operators for Electricity. Hourly load values for all countries for a specific month (in MW); 2017.” Accessed: Mar. 07, 2018. [Online]. Available: – reference: C. Egenhofer – reference: (accessed Sep. 08, 2021). – reference: T. Longden, F. J. Beck, F. Jotzo, R. Andrews, and M. Prasad, “‘Clean’ hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen,” – reference: N. Sönnichsen, “Dutch TTF gas futures at the beginning of each week from January 4, 2021 to April 11, 2022.” – volume: 46 start-page: 29376 year: 2021 end-page: 29390 ident: b0150 article-title: Robust design of a future 100% renewable european energy supply system with hydrogen infrastructure publication-title: Int J Hydrogen Energy – reference: Eurostat, – reference: (accessed Apr. 13, 2022). – reference: M. Taljegard, L. Göransson, M. Odenberger, and F. Johnsson, “To represent electric vehicles in electricity systems modelling—aggregated vehicle representation vs. Individual driving profiles,” – reference: A. Toktarova, L. Göransson, and F. Johnsson, “Design of Clean Steel Production with Hydrogen : Impact of Electricity System Composition,” 2021. – reference: (accessed Jan. 11, 2022). – reference: . – reference: S. Klugman, H. Stripple, T. Lönnqvist, E. Sandberg, and A. Krook-Riekkola, “A climate neutral Swedish industry – An inventory of technologies,” Stockholm, 2019. Accessed: Jan. 20, 2022. [Online]. Available: – volume: 4 start-page: 216 year: 2019 end-page: 222 ident: b0025 article-title: Economics of converting renewable power to hydrogen publication-title: Nat Energy – reference: , vol. 269, no. January, p. 115011, 2020, doi: 10.1016/j.apenergy.2020.115011. – reference: F. vom Scheidt, J. Qu, P. Staudt, D. S. Mallapragada, and C. Weinhardt, “Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals,” – reference: B. Lux and B. Pfluger, “A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050,” – volume: 45 start-page: 1541 year: 2020 end-page: 1558 ident: b0135 article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina publication-title: Int J Hydrogen Energy – reference: Voestalpine, “The three pillars of decarbonization 2018.” – reference: (accessed Nov. 10, 2021). – reference: . 2019. – ident: 10.1016/j.apenergy.2022.120233_b0070 – ident: 10.1016/j.apenergy.2022.120233_b0080 – volume: 84 start-page: 563 issue: 1 year: 2014 ident: 10.1016/j.apenergy.2022.120233_b0105 article-title: Techno-economic evaluation of innovative steel production technologies publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.05.063 – ident: 10.1016/j.apenergy.2022.120233_b0175 – volume: 46 start-page: 29376 issue: 57 year: 2021 ident: 10.1016/j.apenergy.2022.120233_b0150 article-title: Robust design of a future 100% renewable european energy supply system with hydrogen infrastructure publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.197 – ident: 10.1016/j.apenergy.2022.120233_b0125 – ident: 10.1016/j.apenergy.2022.120233_b0030 doi: 10.1016/j.apenergy.2020.115011 – volume: 45 start-page: 1541 issue: 3 year: 2020 ident: 10.1016/j.apenergy.2022.120233_b0135 article-title: Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.028 – volume: 47 start-page: 624 issue: 1 year: 2022 ident: 10.1016/j.apenergy.2022.120233_b0160 article-title: Exploring the competitiveness of hydrogen-fueled gas turbines in future energy systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.035 – ident: 10.1016/j.apenergy.2022.120233_b0145 doi: 10.1016/j.ijhydene.2022.07.075 – ident: 10.1016/j.apenergy.2022.120233_b0085 – ident: 10.1016/j.apenergy.2022.120233_b0015 doi: 10.1016/j.apenergy.2021.118145 – ident: 10.1016/j.apenergy.2022.120233_b0005 – volume: 173 start-page: 249 year: 2021 ident: 10.1016/j.apenergy.2022.120233_b0065 article-title: Inclusion of frequency control constraints in energy system investment modeling publication-title: Renew Energy doi: 10.1016/j.renene.2021.03.114 – ident: 10.1016/j.apenergy.2022.120233_b0120 doi: 10.1016/j.apenergy.2020.116170 – volume: 35 start-page: 8371 issue: 16 year: 2010 ident: 10.1016/j.apenergy.2022.120233_b0020 article-title: An economic survey of hydrogen production from conventional and alternative energy sources publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.04.035 – volume: 32 start-page: 10 issue: March year: 2020 ident: 10.1016/j.apenergy.2022.120233_b0060 article-title: Impacts of variation management on cost-optimal investments in wind power and solar photovoltaics publication-title: Renew Energy Focus doi: 10.1016/j.ref.2019.10.003 – ident: 10.1016/j.apenergy.2022.120233_b0095 – ident: 10.1016/j.apenergy.2022.120233_b0140 doi: 10.3390/en14248349 – ident: 10.1016/j.apenergy.2022.120233_b0155 doi: 10.1787/1e0514c4-en – ident: 10.1016/j.apenergy.2022.120233_b0110 – volume: 4 start-page: 216 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2022.120233_b0025 article-title: Economics of converting renewable power to hydrogen publication-title: Nat Energy doi: 10.1038/s41560-019-0326-1 – ident: 10.1016/j.apenergy.2022.120233_b0090 doi: 10.1016/j.apenergy.2018.10.133 – ident: 10.1016/j.apenergy.2022.120233_b0075 – volume: 7 year: 2022 ident: 10.1016/j.apenergy.2022.120233_b0050 article-title: The value of flexible fuel mixing in hydrogen-fueled gas turbines – a techno-economic study publication-title: Int J Hydrogen Energy – volume: 197 start-page: 230 year: 2017 ident: 10.1016/j.apenergy.2022.120233_b0055 article-title: Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.04.018 – ident: 10.1016/j.apenergy.2022.120233_b0170 – ident: 10.1016/j.apenergy.2022.120233_b0010 – ident: 10.1016/j.apenergy.2022.120233_b0040 – ident: 10.1016/j.apenergy.2022.120233_b0035 – ident: 10.1016/j.apenergy.2022.120233_b0165 – ident: 10.1016/j.apenergy.2022.120233_b0100 doi: 10.3390/en14030539 – ident: 10.1016/j.apenergy.2022.120233_b0115 – ident: 10.1016/j.apenergy.2022.120233_b0130 – ident: 10.1016/j.apenergy.2022.120233_b0045 doi: 10.1016/j.enpol.2021.112727 |
| SSID | ssj0002120 |
| Score | 2.5230591 |
| Snippet | [Display omitted]
•The cost dynamics of hydrogen supply in future energy systems is investigated.•The cost of hydrogen influenced by several factors, in... This work aims to investigate the time-resolved cost of electrolytic hydrogen in a future climate-neutral electricity system with high shares of variable... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 120233 |
| SubjectTerms | Electrolysis Energy systems modeling Flexible industry Hydrogen cost Time-shifting |
| Title | The cost dynamics of hydrogen supply in future energy systems – A techno-economic study |
| URI | https://dx.doi.org/10.1016/j.apenergy.2022.120233 https://research.chalmers.se/publication/533134 |
| Volume | 328 |
| WOSCitedRecordID | wos000988648400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywEOCBZWLC_5wK1KqWM7j2OFugK0LEgsqJysxA-1CyRVU9By4z_wD_kljF9tWC0se-ASRVY8cTJfJmN75huEnlgGdmVomhBHqk3GJdhBqZOaAj5kTfLarUO-P8yPjorZrHwTtmI6V04gb5ri9LRc_ldVQxso26bOXkLdG6HQAOegdDiC2uH4z4qXbbceKl9s3sVqzL-pVQtdhp2t4uly_TybyFD75D_P6NwNY_ADBYvh-F3bRIfc5R4VbaStDS6slxF1Z_feyyzGjb1dfN7u9L9WPqDM4-TV4mOM2A8xPF3I_zqwqzz9BYnU1UbxKZkxEWucJXZi1jeyNKSAezNJbNF2eq4F94sJJ6Nq6cc-srcYbTv8Tpl95le2CTCMsWsnIsoRVo7wcq6inTTnZTFAO5MX09nLza87DTye8Ql6KeXnj-iP3kyfdta5Kse30M0wx8ATj43b6IpudtGNHvPkLtqbbhMc4dJg4bs76APAB1v44Agf3Boc4YM9fPCiwR4-2A8WB_jgn99_4Ak-AxzsgHMXvTuYHj97noTyG4lkNFsnJjO6MAVjpi4zkxFJWA3utIJvWMtKGUN0mtUpqWCWXZWEKc0KRqqaKF5InlV0Dw2attH3EGZUQlvKaW3zKjmvx5XhksGFWoGofB_x-BqFDNz0tkTKJ_F3Re6jp5t-S8_OcmGPMmpJBB_T-44CAHhh30Ov1s29LDd7IOWaCzl3FY860WlRcJNpkyshFeeCwZxKFLIuBWUyt2_UgJd9_9KDf4Cubz-4h2iwXn3Rj9A1-XW96FaPA5h_AbrlvRk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cost+dynamics+of+hydrogen+supply+in+future+energy+systems+%E2%80%93+A+techno-economic+study&rft.jtitle=Applied+energy&rft.au=%C3%96berg%2C+Simon&rft.au=Odenberger%2C+Mikael&rft.au=Johnsson%2C+Filip&rft.date=2022-12-15&rft.issn=0306-2619&rft.volume=328&rft.spage=120233&rft_id=info:doi/10.1016%2Fj.apenergy.2022.120233&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2022_120233 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |