Multivariate time series clustering analysis of the Global Dietary Database to uncover patterns in dietary trends (1990–2018)

Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Public health nutrition Ročník 28; číslo 1; s. e89
Hlavní autoři: Matousek, Adriano, Leung, Tiffany H, Pang, Herbert
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 21.04.2025
Témata:
ISSN:1368-9800, 1475-2727, 1475-2727
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend an existing multivariate time series (MTS) clustering algorithm to allow for greater customisability and provide the first cluster analysis of the GDD to explore temporal trends in country-level nutrition profiles (1990-2018). Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed programme 'MTSclust'. Time series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements. Nutritional and demographical data from 176 countries were analysed from the GDD. Population representative samples of the 176 in the GDD. In a three-class test specific to the domain, the MTSclust programme achieved a mean accuracy of 71·5 % (adjusted Rand Index [ARI] = 0·381) while the mean accuracy of a popular algorithm, DTWclust, was 58 % (ARI = 0·224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. MTS clustering demonstrated a global convergence towards a Western diet. While global nutrition trends are associated with geography, demographic variables such as sex and age are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens.
AbstractList Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend an existing multivariate time series (MTS) clustering algorithm to allow for greater customisability and provide the first cluster analysis of the GDD to explore temporal trends in country-level nutrition profiles (1990-2018). Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed programme 'MTSclust'. Time series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements. Nutritional and demographical data from 176 countries were analysed from the GDD. Population representative samples of the 176 in the GDD. In a three-class test specific to the domain, the MTSclust programme achieved a mean accuracy of 71·5 % (adjusted Rand Index [ARI] = 0·381) while the mean accuracy of a popular algorithm, DTWclust, was 58 % (ARI = 0·224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. MTS clustering demonstrated a global convergence towards a Western diet. While global nutrition trends are associated with geography, demographic variables such as sex and age are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens.
Objective:Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend an existing multivariate time series (MTS) clustering algorithm to allow for greater customisability and provide the first cluster analysis of the GDD to explore temporal trends in country-level nutrition profiles (1990–2018).Design:Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed programme ‘MTSclust’. Time series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements.Setting:Nutritional and demographical data from 176 countries were analysed from the GDD.Participants:Population representative samples of the 176 in the GDD.Results:In a three-class test specific to the domain, the MTSclust programme achieved a mean accuracy of 71·5 % (adjusted Rand Index [ARI] = 0·381) while the mean accuracy of a popular algorithm, DTWclust, was 58 % (ARI = 0·224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. MTS clustering demonstrated a global convergence towards a Western diet.Conclusion:While global nutrition trends are associated with geography, demographic variables such as sex and age are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens.
Abstract Objective: Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend an existing multivariate time series (MTS) clustering algorithm to allow for greater customisability and provide the first cluster analysis of the GDD to explore temporal trends in country-level nutrition profiles (1990–2018). Design: Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed programme ‘MTSclust’. Time series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements. Setting: Nutritional and demographical data from 176 countries were analysed from the GDD. Participants: Population representative samples of the 176 in the GDD. Results: In a three-class test specific to the domain, the MTSclust programme achieved a mean accuracy of 71·5 % (adjusted Rand Index [ARI] = 0·381) while the mean accuracy of a popular algorithm, DTWclust, was 58 % (ARI = 0·224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. MTS clustering demonstrated a global convergence towards a Western diet. Conclusion: While global nutrition trends are associated with geography, demographic variables such as sex and age are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens.
Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database. This study aims to extend an existing multivariate time-series clustering algorithm to allow for greater customisability and to provide the first cluster analysis of the Global Dietary Database to explore temporal trends in country-level nutrition profiles (1990-2018).OBJECTIVEUnderstanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database. This study aims to extend an existing multivariate time-series clustering algorithm to allow for greater customisability and to provide the first cluster analysis of the Global Dietary Database to explore temporal trends in country-level nutrition profiles (1990-2018).Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed program 'MTSclust'. Time-series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements.DESIGNTrends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed program 'MTSclust'. Time-series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements.Nutritional and demographical data from 176 countries were analysed from the Global Dietary Database.SETTINGNutritional and demographical data from 176 countries were analysed from the Global Dietary Database.Population representative samples of the 176 in the Global Dietary Database.PARTICIPANTSPopulation representative samples of the 176 in the Global Dietary Database.In a 3-class test specific to the domain, the MTSclust program achieved a mean accuracy of 71.5% (Adjusted Rand Index [ARI]=0.381) while the mean accuracy of a popular algorithm, DTWclust, was 58% (ARI=0.224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. Multivariate time-series clustering demonstrated a global convergence towards a Western diet.RESULTSIn a 3-class test specific to the domain, the MTSclust program achieved a mean accuracy of 71.5% (Adjusted Rand Index [ARI]=0.381) while the mean accuracy of a popular algorithm, DTWclust, was 58% (ARI=0.224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. Multivariate time-series clustering demonstrated a global convergence towards a Western diet.While global nutrition trends are associated with geography, demographic variables such as sex and age, are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens.CONCLUSIONWhile global nutrition trends are associated with geography, demographic variables such as sex and age, are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens.
ArticleNumber e89
Author Matousek, Adriano
Leung, Tiffany H
Pang, Herbert
Author_xml – sequence: 1
  givenname: Adriano
  surname: Matousek
  fullname: Matousek, Adriano
  organization: Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
– sequence: 2
  givenname: Tiffany H
  orcidid: 0009-0002-1154-8234
  surname: Leung
  fullname: Leung, Tiffany H
  organization: Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Herbert
  orcidid: 0000-0002-7896-6716
  surname: Pang
  fullname: Pang, Herbert
  email: pathwayrf@gmail.com
  organization: PD Data Science & Analytics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40257123$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9u1DAQxi1URP_AA3BBlriUQ8CO7Tg-ohZKpSIOgMQtmtiTxaskXmynUk_wDrxhn6RedikSiIs9mvl9n8f2HJODOcxIyFPOXnLG9auPXDStaRmrFWNMmS8PyBGXWlW1rvVBiUu52tYPyXFK6y2jtX5EDmVRaF6LI_L9_TJmfw3RQ0aa_YQ0YfSYqB2XlEs4ryjMMN4kn2gYaP6K9GIMPYz03GOGeEPPIUMPqcgDXWYbrjHSDeQinhP1M3V7LkecXaKn3Bh2--NnzXj74jF5OMCY8Ml-PyGf3775dPauuvpwcXn2-qqyUjS5Gng9SGuck63EViomgQluymUtaDFY5VTvthkjNGrdGG3aplSgRca56cUJudz5ugDrbhP9VDrqAvjuVyLEVQcxeztih0ZbIVsA51D22IIDrRTTtTV9U9bidbrz2sTwbcGUu8kni-MIM4YldaWNWijZiKagz_9C12GJ5TkLVTMpjVRGFOrZnlr6Cd19e7-_qQB8B9gYUoo43COcddtR6P4ZhaIRew1MffRuhX_O_r_qDpTYtBg
Cites_doi 10.1017/S0954422414000237
10.1561/2200000056
10.1098/rsta.2015.0202
10.2105/AJPH.2016.303362
10.1016/j.knosys.2017.06.004
10.1007/s10618-016-0455-0
10.1016/j.numecd.2009.03.024
10.1007/s00357-018-9271-0
10.1371/journal.pone.0144059
10.1017/S0007114516000544
10.1016/j.eswa.2008.01.039
10.1017/S136898002000350X
10.18637/jss.v065.i04
10.1371/journal.pone.0054201
10.1016/j.neucom.2019.03.060
10.3390/electronics10233001
10.1136/bmj.309.6968.1566
10.1016/S0031-3203(02)00060-2
10.3390/su12083359
10.1016/S0140-6736(12)60685-0
10.1109/DeSE.2013.62
10.1016/j.nutres.2023.07.005
10.1016/j.foodpol.2018.04.012
10.1007/11551188_37
10.1016/j.socscimed.2016.04.021
10.1007/s11634-006-0004-6
10.1186/s12992-022-00820-w
10.1016/j.neucom.2023.02.048
10.1016/S2542-5196(21)00352-1
10.1007/s10618-005-0039-x
10.1007/978-3-642-37456-2_14
ContentType Journal Article
Copyright The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society
The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society
– notice: The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T2
C1K
K9.
NAPCQ
7X8
DOA
DOI 10.1017/S136898002500059X
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Health and Safety Science Abstracts (Full archive)
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Health & Safety Science Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Diet & Clinical Nutrition
Geography
EISSN 1475-2727
ExternalDocumentID oai_doaj_org_article_e97c348aadde4be8ada755072c9b672c
40257123
10_1017_S136898002500059X
Genre Journal Article
GroupedDBID ---
-1D
-1F
-2P
-2V
-E.
-~6
-~N
.FH
09C
09E
0E1
0R~
123
29P
2WC
4.4
53G
5VS
6~7
74X
74Y
7RQ
7RV
7X2
7X7
7~V
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAHBH
AAIKC
AAKNA
AAKTX
AAMNQ
AAMNW
AANRG
AARAB
AASVR
AATID
AATMM
AAUIS
AAUKB
AAWTL
ABBXD
ABBZL
ABFBI
ABHFL
ABJNI
ABKKG
ABKMT
ABMWE
ABOCM
ABQTM
ABROB
ABUWG
ABVFV
ABVKB
ABVZP
ABWCF
ABXAU
ABXHF
ABZCX
ACAJB
ACBEK
ACBMC
ACDLN
ACEJA
ACETC
ACGFS
ACIMK
ACOZI
ACPRK
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADDNB
ADFEC
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEUYN
AEYHU
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFRIC
AFUTZ
AFZFC
AGABE
AGJUD
AGKLZ
AGLWM
AGQPQ
AHIPN
AHLTW
AHMBA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
ANOYL
ANPSP
AQJOH
ARABE
ARZZG
ATCPS
ATUCA
AUXHV
AYIQA
AZGZS
BAWUL
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BHPHI
BJBOZ
BKEYQ
BLZWO
BMAJL
BPHCQ
BQFHP
BRIRG
BVXVI
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DIK
DOHLZ
DU5
DWQXO
E3Z
EBS
EGQIC
EJD
EX3
F5P
FYUFA
GROUPED_DOAJ
HCIFZ
HG-
HMCUK
HST
HZ~
I.6
I.7
I.9
IH6
IKXGN
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JVRFK
KAFGG
KCGVB
KFECR
L98
LHUNA
LW7
M-V
M0K
M1P
M48
M7~
M8.
NAPCQ
NIKVX
NMFBF
NZEOI
O9-
OK1
OVD
P2P
PCD
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RAMDC
RCA
ROL
RPM
RR0
S6-
S6U
SAAAG
SJN
SY4
T9M
TEORI
TR2
UKHRP
UT1
UU6
WFFJZ
WOW
WQ3
WXU
WYP
YHZ
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~KM
~V1
AAFWJ
AAXMD
AAYXX
ABGDZ
AEMTJ
AFFHD
AFPKN
AKMAY
CITATION
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T2
C1K
K9.
7X8
ID FETCH-LOGICAL-c436t-f12f4c9dd484e84504a0319147ca73fc5d5bd0319937e77697986a73a8e0119b3
IEDL.DBID IKXGN
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489169100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1368-9800
1475-2727
IngestDate Fri Oct 03 12:52:03 EDT 2025
Fri Sep 05 17:30:00 EDT 2025
Mon Oct 06 17:15:34 EDT 2025
Mon May 26 01:57:09 EDT 2025
Sat Nov 29 07:23:11 EST 2025
Sat May 17 02:00:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Trend
Global Dietary Database
Time-series clustering
Clustering algorithm
Machine learning
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is used to distribute the re-used or adapted article and the original article is properly cited. The written permission of Cambridge University Press must be obtained prior to any commercial use.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-f12f4c9dd484e84504a0319147ca73fc5d5bd0319937e77697986a73a8e0119b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-1154-8234
0000-0002-7896-6716
OpenAccessLink https://www.cambridge.org/core/product/identifier/S136898002500059X/type/journal_article
PMID 40257123
PQID 3204494593
PQPubID 26856
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_e97c348aadde4be8ada755072c9b672c
proquest_miscellaneous_3192354636
proquest_journals_3204494593
pubmed_primary_40257123
crossref_primary_10_1017_S136898002500059X
cambridge_journals_10_1017_S136898002500059X
PublicationCentury 2000
PublicationDate 2025-04-21
PublicationDateYYYYMMDD 2025-04-21
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: England
– name: Cambridge
PublicationTitle Public health nutrition
PublicationTitleAlternate Public Health Nutr
PublicationYear 2025
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2021; 24
2006; 13
2019; 2
2019; 12
2015; 10
2014; 27
2003; 36
2016; 106
2020; 12
2017; 132
2019; 349
2013; 8
2017; 50
2017; 31
2009; 36
2010; 20
2012; 2
2021; 10
2015; 62
2022; 6
2015; 65
2016; 374
2016; 115
2001; 17
2023; 537
2023; 118
2020; 21
2016; 158
2018; 77
2007; 1
2011; 27
2012; 379
2022; 18
1994; 309
2018; 35
Bloomfield (S136898002500059X_ref19) 2004
Türkeli (S136898002500059X_ref2) 2020
Li (S136898002500059X_ref16) 2017; 50
S136898002500059X_ref36
S136898002500059X_ref37
S136898002500059X_ref38
S136898002500059X_ref39
S136898002500059X_ref32
Bécavin (S136898002500059X_ref42) 2011; 27
S136898002500059X_ref33
S136898002500059X_ref34
S136898002500059X_ref35
S136898002500059X_ref30
Yeung (S136898002500059X_ref31) 2001; 17
S136898002500059X_ref47
S136898002500059X_ref48
S136898002500059X_ref49
S136898002500059X_ref43
S136898002500059X_ref44
S136898002500059X_ref45
S136898002500059X_ref46
S136898002500059X_ref41
S136898002500059X_ref18
S136898002500059X_ref14
S136898002500059X_ref17
S136898002500059X_ref10
S136898002500059X_ref11
S136898002500059X_ref12
S136898002500059X_ref13
S136898002500059X_ref50
Assent (S136898002500059X_ref15) 2012; 2
S136898002500059X_ref6
S136898002500059X_ref5
S136898002500059X_ref8
S136898002500059X_ref7
S136898002500059X_ref29
S136898002500059X_ref1
S136898002500059X_ref4
S136898002500059X_ref3
S136898002500059X_ref25
S136898002500059X_ref26
S136898002500059X_ref27
S136898002500059X_ref22
S136898002500059X_ref9
S136898002500059X_ref23
S136898002500059X_ref24
Tavenard (S136898002500059X_ref21) 2020; 21
Montero (S136898002500059X_ref40) 2015; 62
S136898002500059X_ref20
Yuan (S136898002500059X_ref28) 2019; 2
References_xml – volume: 10
  start-page: e0144059
  year: 2015
  article-title: A comparison study on similarity and dissimilarity measures in clustering continuous data
  publication-title: PloS one
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  publication-title: Pattern Recognition
– volume: 106
  start-page: 1865
  year: 2016
  end-page: 1871
  article-title: Impact of the Berkeley excise tax on sugar-sweetened beverage consumption
  publication-title: Am J Public Health
– volume: 118
  start-page: 63
  year: 2023
  end-page: 69
  article-title: Global trends indicate increasing consumption of dietary sodium and fiber in middle-income countries: a study of 30-year global macrotrends
  publication-title: Nutr Res
– volume: 20
  start-page: 274
  year: 2010
  end-page: 283
  article-title: Dietary patterns and markers for the metabolic syndrome in Australian adolescents
  publication-title: Nutr, Metab Cardiovasc Dis
– volume: 35
  start-page: 394
  year: 2018
  end-page: 421
  article-title: Nonlinear time series clustering based on Kolmogorov-Smirnov 2D statistic
  publication-title: J Classification
– volume: 18
  start-page: 1
  year: 2022
  end-page: 12
  article-title: Worldwide dietary patterns and their association with socioeconomic data: an ecological exploratory study
  publication-title: Globalization Health
– volume: 10
  start-page: 3001
  year: 2021
  article-title: Deep time-series clustering: a review
  publication-title: Electronics
– volume: 62
  start-page: 1
  year: 2015
  end-page: 43
  article-title: TSclust: an R package for time series clustering
  publication-title: J Stat Software
– volume: 2
  start-page: 226
  year: 2019
  end-page: 235
  article-title: Research on K-value selection method of K-means clustering algorithm
  publication-title: J
– volume: 77
  start-page: 143
  year: 2018
  end-page: 151
  article-title: How can health, agriculture and economic policy actors work together to enhance the external food environment for fruit and vegetables? A qualitative policy analysis in India
  publication-title: Food Policy
– volume: 12
  start-page: 307
  year: 2019
  end-page: 392
  article-title: An introduction to variational autoencoders
  publication-title: Found Trends® Mach Learn
– volume: 115
  start-page: 1498
  year: 2016
  end-page: 1507
  article-title: Trends in food consumption and nutrient intake in Germany between 2006 and 2012: results of the German National Nutrition Monitoring (NEMONIT)
  publication-title: Br J Nutr
– volume: 537
  start-page: 210
  year: 2023
  end-page: 235
  article-title: Machine learning for multivariate time series with the R package mlmts
  publication-title: Neurocomputing
– volume: 12
  start-page: 3359
  year: 2020
  article-title: Mapping the sustainable development goals relationships
  publication-title: Sustainability
– volume: 24
  start-page: 309
  year: 2021
  end-page: 317
  article-title: Is the world converging to a ‘Western diet’?
  publication-title: Public Health Nutr
– volume: 349
  start-page: 239
  year: 2019
  end-page: 247
  article-title: Multivariate time series clustering based on common principal component analysis
  publication-title: Neurocomputing
– volume: 1
  start-page: 5
  year: 2007
  end-page: 21
  article-title: Adaptive dissimilarity index for measuring time series proximity
  publication-title: Adv Data Anal Classification
– volume: 309
  start-page: 1566
  year: 1994
  end-page: 1570
  article-title: The World Health Organisation: the regions—too much power, too little effect
  publication-title: BMJ
– volume: 374
  start-page: 20150202
  year: 2016
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philos Trans Royal Soc A: Math, Phys Eng Sci
– volume: 65
  start-page: 1
  year: 2015
  end-page: 34
  publication-title: J Stat Softw
– volume: 21
  start-page: 4686
  year: 2020
  end-page: 4691
  article-title: Tslearn, a machine learning toolkit for time series data
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 340
  year: 2012
  end-page: 350
  article-title: Clustering high dimensional data
  publication-title: Wiley Interdiscip Rev: Data Min Knowl Discovery
– volume: 36
  start-page: 3336
  year: 2009
  end-page: 3341
  article-title: A simple and fast algorithm for K-medoids clustering
  publication-title: Expert Syst Appl
– volume: 6
  start-page: e243
  year: 2022
  end-page: e256
  article-title: Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database
  publication-title: Lancet Planet Health
– volume: 50
  start-page: 1
  year: 2017
  end-page: 45
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput Surv (CSUR)
– volume: 379
  start-page: 2206
  year: 2012
  end-page: 2211
  article-title: From millennium development goals to sustainable development goals
  publication-title: Lancet
– volume: 132
  start-page: 72
  year: 2017
  end-page: 84
  article-title: A copula-based clustering algorithm to analyse EU country diets
  publication-title: Knowledge-Based Syst
– volume: 13
  start-page: 335
  year: 2006
  end-page: 364
  article-title: Characteristic-based clustering for time series data
  publication-title: Data Min Knowl Discovery
– volume: 158
  start-page: 158
  year: 2016
  end-page: 167
  article-title: Nutrient intake: a cross-national analysis of trends and economic correlates
  publication-title: Soc Sci Med
– volume: 31
  start-page: 1
  year: 2017
  end-page: 31
  article-title: Generalizing DTW to the multi-dimensional case requires an adaptive approach
  publication-title: Data Min Knowl Discovery
– volume: 17
  start-page: 763
  year: 2001
  end-page: 774
  article-title: Principal component analysis for clustering gene expression data
  publication-title: Bioinf
– volume: 8
  start-page: e54201
  year: 2013
  article-title: A method for comparing multivariate time series with different dimensions
  publication-title: PloS one
– volume: 27
  start-page: 1413
  year: 2011
  end-page: 1421
  article-title: Improving the efficiency of multidimensional scaling in the analysis of high-dimensional data using singular value decomposition
  publication-title: Bioinf
– volume: 27
  start-page: 330
  year: 2014
  end-page: 345
  article-title: Worldwide trends in dietary sugars intake
  publication-title: Nutr Res Rev
– ident: S136898002500059X_ref5
  doi: 10.1017/S0954422414000237
– ident: S136898002500059X_ref27
  doi: 10.1561/2200000056
– ident: S136898002500059X_ref32
– volume-title: Multiplex Learning: An Evidence-Based Approach to Design Policy Learning Networks in Sub-Saharan Africa for the SDGs
  year: 2020
  ident: S136898002500059X_ref2
– ident: S136898002500059X_ref17
  doi: 10.1098/rsta.2015.0202
– ident: S136898002500059X_ref49
  doi: 10.2105/AJPH.2016.303362
– ident: S136898002500059X_ref10
  doi: 10.1016/j.knosys.2017.06.004
– ident: S136898002500059X_ref12
  doi: 10.1007/s10618-016-0455-0
– ident: S136898002500059X_ref6
  doi: 10.1016/j.numecd.2009.03.024
– ident: S136898002500059X_ref26
  doi: 10.1007/s00357-018-9271-0
– volume: 27
  start-page: 1413
  year: 2011
  ident: S136898002500059X_ref42
  article-title: Improving the efficiency of multidimensional scaling in the analysis of high-dimensional data using singular value decomposition
  publication-title: Bioinf
– ident: S136898002500059X_ref33
– ident: S136898002500059X_ref13
  doi: 10.1371/journal.pone.0144059
– ident: S136898002500059X_ref4
  doi: 10.1017/S0007114516000544
– ident: S136898002500059X_ref36
  doi: 10.1016/j.eswa.2008.01.039
– ident: S136898002500059X_ref47
– ident: S136898002500059X_ref7
  doi: 10.1017/S136898002000350X
– volume: 62
  start-page: 1
  year: 2015
  ident: S136898002500059X_ref40
  article-title: TSclust: an R package for time series clustering
  publication-title: J Stat Software
– ident: S136898002500059X_ref29
  doi: 10.18637/jss.v065.i04
– volume: 2
  start-page: 340
  year: 2012
  ident: S136898002500059X_ref15
  article-title: Clustering high dimensional data
  publication-title: Wiley Interdiscip Rev: Data Min Knowl Discovery
– ident: S136898002500059X_ref38
  doi: 10.1371/journal.pone.0054201
– volume-title: Fourier Analysis of Time Series: An Introduction
  year: 2004
  ident: S136898002500059X_ref19
– volume: 50
  start-page: 1
  year: 2017
  ident: S136898002500059X_ref16
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput Surv (CSUR)
– ident: S136898002500059X_ref34
– ident: S136898002500059X_ref22
  doi: 10.1016/j.neucom.2019.03.060
– ident: S136898002500059X_ref24
  doi: 10.3390/electronics10233001
– volume: 2
  start-page: 226
  year: 2019
  ident: S136898002500059X_ref28
  article-title: Research on K-value selection method of K-means clustering algorithm
  publication-title: J
– ident: S136898002500059X_ref43
  doi: 10.1136/bmj.309.6968.1566
– ident: S136898002500059X_ref8
  doi: 10.1016/S0031-3203(02)00060-2
– ident: S136898002500059X_ref45
  doi: 10.3390/su12083359
– ident: S136898002500059X_ref48
– volume: 17
  start-page: 763
  year: 2001
  ident: S136898002500059X_ref31
  article-title: Principal component analysis for clustering gene expression data
  publication-title: Bioinf
– ident: S136898002500059X_ref25
– ident: S136898002500059X_ref44
  doi: 10.1016/S0140-6736(12)60685-0
– ident: S136898002500059X_ref37
  doi: 10.1109/DeSE.2013.62
– ident: S136898002500059X_ref11
  doi: 10.1016/j.nutres.2023.07.005
– ident: S136898002500059X_ref1
  doi: 10.1016/j.foodpol.2018.04.012
– ident: S136898002500059X_ref23
  doi: 10.1007/11551188_37
– ident: S136898002500059X_ref35
– ident: S136898002500059X_ref46
  doi: 10.1016/j.socscimed.2016.04.021
– ident: S136898002500059X_ref41
– ident: S136898002500059X_ref14
  doi: 10.1007/s11634-006-0004-6
– ident: S136898002500059X_ref3
  doi: 10.1186/s12992-022-00820-w
– ident: S136898002500059X_ref39
  doi: 10.1016/j.neucom.2023.02.048
– ident: S136898002500059X_ref50
  doi: 10.1016/S2542-5196(21)00352-1
– ident: S136898002500059X_ref18
  doi: 10.1007/s10618-005-0039-x
– volume: 21
  start-page: 4686
  year: 2020
  ident: S136898002500059X_ref21
  article-title: Tslearn, a machine learning toolkit for time series data
  publication-title: J Mach Learn Res
– ident: S136898002500059X_ref20
– ident: S136898002500059X_ref30
– ident: S136898002500059X_ref9
  doi: 10.1007/978-3-642-37456-2_14
SSID ssj0005777
Score 2.451912
Snippet Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still,...
Objective:Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens....
Abstract Objective: Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease...
SourceID doaj
proquest
pubmed
crossref
cambridge
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage e89
SubjectTerms Adolescent
Adult
Aged
Algorithms
Beverages
Cluster Analysis
Clustering
Clustering algorithm
Databases, Factual
Demographic variables
Demographics
Demography
Diet - statistics & numerical data
Diet - trends
Diet Surveys
Female
Geography
Global Dietary Database
Global health
Global Health - statistics & numerical data
Humans
Literature reviews
Machine learning
Male
Middle Aged
Multivariate Analysis
Nutrient deficiency
Nutrition
Nutritional epidemiology
Public health
Research Paper
Sugar
Sugar-Sweetened Beverages - statistics & numerical data
Time series
Time-series clustering
Trend
Trends
Variables
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pa9VAEF-k9CCI2PovtZURRFQMJrub7O5RrcWDPDyovFvY7B94UPLKe3kFT-138Bv6STqzSZ4VUS9ectgMZMjMZH6Tnf0NY08LVxhvnM6jlyGXzsSc8nhetyUP2jmv0tmqrx_VbKbnc_Pp2qgv6gkb6IGHF_c6GOWE1JbiULZBW28VcXBxZ9oar_T1LZSZiqmpuUOlmYulqDGcERNN-5lEFk2LtMarxE4yv86q8Et2SiT-f0aeKQOd3GG3R-gIbwaV99iN0O2z7HgRengGI7_nKcwmev19dmv4JwfDUaO77CKdtj3H6hgBJtBUeSAHDGtwpxsiTMA0BnZkKYFlBASHMAwFAHqMXX2DY9tbynzQLwFTIjWAwlni6OzWsOjAj3J96rWF5yXmoR-X3xEA6Bf32JeT95_ffcjHAQy5k6Lu81jyiObzXmoZtKwKaenQUymVs0pEV_mq9bSCGCcoVRtldI13rA5EJdeK-2ynW3bhIQPeBlkpE2uFBVh0ouU66iA5Nz5awWPGXm2N0IxhtG6GFjTV_GazjL2c7NScDbQcfxN-S5bcChKjdlpAP2tGP2v-5WcZO5z84Kd-ghdSGlkZkbEn29sYoLTrYruw3KAMYWgaOlBn7MHgP1tNsHivFGKHg_-h4SN2k9Nw4kLmvDxkO_1qE47YrjvvF-vV4xQfV62uEBo
  priority: 102
  providerName: Directory of Open Access Journals
Title Multivariate time series clustering analysis of the Global Dietary Database to uncover patterns in dietary trends (1990–2018)
URI https://www.cambridge.org/core/product/identifier/S136898002500059X/type/journal_article
https://www.ncbi.nlm.nih.gov/pubmed/40257123
https://www.proquest.com/docview/3204494593
https://www.proquest.com/docview/3192354636
https://doaj.org/article/e97c348aadde4be8ada755072c9b672c
Volume 28
WOSCitedRecordID wos001489169100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge University Press Wholly Gold Open Access Journals
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: IKXGN
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: http://journals.cambridge.org/action/login
  providerName: Cambridge University Press
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-2727
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005777
  issn: 1368-9800
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9RAEC724UEQH-srug4liKgYZtLpSXcf1XVVlEHwQW6h0w8YWDLDTGbBk_4H_6G_xK5OMusDBQ9ecug0nU6qku9Ld9VXAPcmZqKsMjL1lruUG-VTwvG0qDPmpDFWxNyqj2_EbCbLUr3dgXLIhaGwyq3GQdzJj_XRlp386Xhuuxgatxq_y_JCKhlBnFIoyzEtWo57E1T9g9-F_cBgWHhl91-9Ll_MzsI_RKzKSIOkNMqw40ly0r-O_KPuwk_4FWX-_8xNI0YdX_p_d3cZLva8FZ90LVdgxzUHkBzNXYv3sRcXPcHZoO1_ABe6BUHs8pyuwueY6nsafs0Du0UqaY_k_W6N5mRDag0BQ1H3Eim48BiYKXYVCZAuo1ef8Ei3mmAX2wUGPKboU1xGgdBmjfMGbd-vjYG--CALIPjty9fAPuTDa_Dh-Pn7Zy_TvvpDanhetKnPmA--Yy2X3Ek-nXBNGVcZF0aL3JupndaWWgLBckIUSihZhDNaOtKxq_PrsNcsGncTkNWOT4XyhQh_f97kNZNeOs6Ysl7nzCfweGuVqn_E66qLfxPVb6ZI4NHgAtWy0wT5W-en5CTbjiTnHRuC9QczVk4Jk3OpCWx47aS2WpDQHDOqLsIxgcPBxc7ml7MJ54pPVZ7A3e3p8HWgLR_duMUm9CECTxUPigRudK65nQkPcxSBuNz6t7u_DecZ1UCe8JRlh7DXrjbuDpwzp-18vRrBrijlKK5sjPpX7juQmTW5
linkProvider Cambridge University Press
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VFgkkxKO8AgUGCSFARLtxvLF9BEpp1bJCoqC9RY4f0kpVdrWbrcQJ_gP_kF-Cx0m2PAQSBy45OJZje8b5xvbMNwCPhmaorDIy9Za7lBvlU8LxtKgy5qQxVsTYqo9HYjyWk4l6twGTPhaG3CrXHAfxJj_mR5u39KeDqW19aNxi8D7LC6lkBHEKoZwM6NBy0Img7Cb-HGyRH1ZYslsHh5M34zP3DxGzMlIjKbXS33gSnfSvLf_Iu_ATfkWa_z_bphGj9q78v9Fdhcud3Yov2pJrsOHqbUh2p67Bx9iRi57guOf234ZL7YEgtnFO1-FzDPU9DVvzYN0ipbRH0n63RHOyIraGgKGoO4oUnHkMlim2GQmQPqMXn3BXN5pgF5sZBjwm71OcR4LQeonTGm1Xr4mOvvgkCyD47cvXYH3Ipzfgw97r41f7aZf9ITU8L5rUZ8wH3bGWS-4kHw25poirjAujRe7NyI4qSyXBwHJCFEooWYQ3Wjrisavym7BZz2p3G5BVjo-E8oUIuz9v8opJLx1nTFmvc-YTeL6WStlN8bJs_d9E-ZsoEnjWq0A5bzlB_lb5JSnJuiLReceCIP1ejKVTwuRcagIbXjmprRZENMeMqorwTGCnV7Gz_uVsyLniI5Un8HD9Ovwd6MpH1262CnXIgKeMB0UCt1rVXPeEhz6KYLjc-bfRP4AL-8dvj8qjg_HhXbjIKB_ykKcs24HNZrFy9-C8OW2my8X9bsl9B8zRNtI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+time-series+clustering+analysis+of+the+Global+Dietary+Database+to+uncover+patterns+in+dietary+trends+%281990-2018%29&rft.jtitle=Public+health+nutrition&rft.au=Matousek%2C+Adriano&rft.au=Leung%2C+Tiffany+H&rft.au=Pang%2C+Herbert&rft.date=2025-04-21&rft.issn=1475-2727&rft.eissn=1475-2727&rft.spage=1&rft_id=info:doi/10.1017%2FS136898002500059X&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1368-9800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1368-9800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1368-9800&client=summon