Multivariate time series clustering analysis of the Global Dietary Database to uncover patterns in dietary trends (1990–2018)
Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend a...
Uloženo v:
| Vydáno v: | Public health nutrition Ročník 28; číslo 1; s. e89 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge, UK
Cambridge University Press
21.04.2025
|
| Témata: | |
| ISSN: | 1368-9800, 1475-2727, 1475-2727 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend an existing multivariate time series (MTS) clustering algorithm to allow for greater customisability and provide the first cluster analysis of the GDD to explore temporal trends in country-level nutrition profiles (1990-2018).
Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed programme 'MTSclust'. Time series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements.
Nutritional and demographical data from 176 countries were analysed from the GDD.
Population representative samples of the 176 in the GDD.
In a three-class test specific to the domain, the MTSclust programme achieved a mean accuracy of 71·5 % (adjusted Rand Index [ARI] = 0·381) while the mean accuracy of a popular algorithm, DTWclust, was 58 % (ARI = 0·224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. MTS clustering demonstrated a global convergence towards a Western diet.
While global nutrition trends are associated with geography, demographic variables such as sex and age are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens. |
|---|---|
| AbstractList | Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend an existing multivariate time series (MTS) clustering algorithm to allow for greater customisability and provide the first cluster analysis of the GDD to explore temporal trends in country-level nutrition profiles (1990-2018).
Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed programme 'MTSclust'. Time series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements.
Nutritional and demographical data from 176 countries were analysed from the GDD.
Population representative samples of the 176 in the GDD.
In a three-class test specific to the domain, the MTSclust programme achieved a mean accuracy of 71·5 % (adjusted Rand Index [ARI] = 0·381) while the mean accuracy of a popular algorithm, DTWclust, was 58 % (ARI = 0·224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. MTS clustering demonstrated a global convergence towards a Western diet.
While global nutrition trends are associated with geography, demographic variables such as sex and age are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens. Objective:Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend an existing multivariate time series (MTS) clustering algorithm to allow for greater customisability and provide the first cluster analysis of the GDD to explore temporal trends in country-level nutrition profiles (1990–2018).Design:Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed programme ‘MTSclust’. Time series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements.Setting:Nutritional and demographical data from 176 countries were analysed from the GDD.Participants:Population representative samples of the 176 in the GDD.Results:In a three-class test specific to the domain, the MTSclust programme achieved a mean accuracy of 71·5 % (adjusted Rand Index [ARI] = 0·381) while the mean accuracy of a popular algorithm, DTWclust, was 58 % (ARI = 0·224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. MTS clustering demonstrated a global convergence towards a Western diet.Conclusion:While global nutrition trends are associated with geography, demographic variables such as sex and age are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens. Abstract Objective: Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database (GDD). This study aims to extend an existing multivariate time series (MTS) clustering algorithm to allow for greater customisability and provide the first cluster analysis of the GDD to explore temporal trends in country-level nutrition profiles (1990–2018). Design: Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed programme ‘MTSclust’. Time series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements. Setting: Nutritional and demographical data from 176 countries were analysed from the GDD. Participants: Population representative samples of the 176 in the GDD. Results: In a three-class test specific to the domain, the MTSclust programme achieved a mean accuracy of 71·5 % (adjusted Rand Index [ARI] = 0·381) while the mean accuracy of a popular algorithm, DTWclust, was 58 % (ARI = 0·224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. MTS clustering demonstrated a global convergence towards a Western diet. Conclusion: While global nutrition trends are associated with geography, demographic variables such as sex and age are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens. Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database. This study aims to extend an existing multivariate time-series clustering algorithm to allow for greater customisability and to provide the first cluster analysis of the Global Dietary Database to explore temporal trends in country-level nutrition profiles (1990-2018).OBJECTIVEUnderstanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still, there are limited numbers of studies using clustering techniques to analyse the recent Global Dietary Database. This study aims to extend an existing multivariate time-series clustering algorithm to allow for greater customisability and to provide the first cluster analysis of the Global Dietary Database to explore temporal trends in country-level nutrition profiles (1990-2018).Trends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed program 'MTSclust'. Time-series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements.DESIGNTrends in sugar-sweetened beverage intake and nutritional deficiency were explored using the newly developed program 'MTSclust'. Time-series clustering algorithms are different from simple clustering approaches in their ability to appreciate temporal elements.Nutritional and demographical data from 176 countries were analysed from the Global Dietary Database.SETTINGNutritional and demographical data from 176 countries were analysed from the Global Dietary Database.Population representative samples of the 176 in the Global Dietary Database.PARTICIPANTSPopulation representative samples of the 176 in the Global Dietary Database.In a 3-class test specific to the domain, the MTSclust program achieved a mean accuracy of 71.5% (Adjusted Rand Index [ARI]=0.381) while the mean accuracy of a popular algorithm, DTWclust, was 58% (ARI=0.224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. Multivariate time-series clustering demonstrated a global convergence towards a Western diet.RESULTSIn a 3-class test specific to the domain, the MTSclust program achieved a mean accuracy of 71.5% (Adjusted Rand Index [ARI]=0.381) while the mean accuracy of a popular algorithm, DTWclust, was 58% (ARI=0.224). The clustering of nutritional deficiency and sugar-sweetened beverage intake identified several common trends among countries and found that these did not change by demographics. Multivariate time-series clustering demonstrated a global convergence towards a Western diet.While global nutrition trends are associated with geography, demographic variables such as sex and age, are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens.CONCLUSIONWhile global nutrition trends are associated with geography, demographic variables such as sex and age, are less influential to the trends of certain nutrition intake. The literature could be further supplemented by applying outcome-guided methods to explore how these trends link to disease burdens. |
| ArticleNumber | e89 |
| Author | Matousek, Adriano Leung, Tiffany H Pang, Herbert |
| Author_xml | – sequence: 1 givenname: Adriano surname: Matousek fullname: Matousek, Adriano organization: Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK – sequence: 2 givenname: Tiffany H orcidid: 0009-0002-1154-8234 surname: Leung fullname: Leung, Tiffany H organization: Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China – sequence: 3 givenname: Herbert orcidid: 0000-0002-7896-6716 surname: Pang fullname: Pang, Herbert email: pathwayrf@gmail.com organization: PD Data Science & Analytics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40257123$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks9u1DAQxi1URP_AA3BBlriUQ8CO7Tg-ohZKpSIOgMQtmtiTxaskXmynUk_wDrxhn6RedikSiIs9mvl9n8f2HJODOcxIyFPOXnLG9auPXDStaRmrFWNMmS8PyBGXWlW1rvVBiUu52tYPyXFK6y2jtX5EDmVRaF6LI_L9_TJmfw3RQ0aa_YQ0YfSYqB2XlEs4ryjMMN4kn2gYaP6K9GIMPYz03GOGeEPPIUMPqcgDXWYbrjHSDeQinhP1M3V7LkecXaKn3Bh2--NnzXj74jF5OMCY8Ml-PyGf3775dPauuvpwcXn2-qqyUjS5Gng9SGuck63EViomgQluymUtaDFY5VTvthkjNGrdGG3aplSgRca56cUJudz5ugDrbhP9VDrqAvjuVyLEVQcxeztih0ZbIVsA51D22IIDrRTTtTV9U9bidbrz2sTwbcGUu8kni-MIM4YldaWNWijZiKagz_9C12GJ5TkLVTMpjVRGFOrZnlr6Cd19e7-_qQB8B9gYUoo43COcddtR6P4ZhaIRew1MffRuhX_O_r_qDpTYtBg |
| Cites_doi | 10.1017/S0954422414000237 10.1561/2200000056 10.1098/rsta.2015.0202 10.2105/AJPH.2016.303362 10.1016/j.knosys.2017.06.004 10.1007/s10618-016-0455-0 10.1016/j.numecd.2009.03.024 10.1007/s00357-018-9271-0 10.1371/journal.pone.0144059 10.1017/S0007114516000544 10.1016/j.eswa.2008.01.039 10.1017/S136898002000350X 10.18637/jss.v065.i04 10.1371/journal.pone.0054201 10.1016/j.neucom.2019.03.060 10.3390/electronics10233001 10.1136/bmj.309.6968.1566 10.1016/S0031-3203(02)00060-2 10.3390/su12083359 10.1016/S0140-6736(12)60685-0 10.1109/DeSE.2013.62 10.1016/j.nutres.2023.07.005 10.1016/j.foodpol.2018.04.012 10.1007/11551188_37 10.1016/j.socscimed.2016.04.021 10.1007/s11634-006-0004-6 10.1186/s12992-022-00820-w 10.1016/j.neucom.2023.02.048 10.1016/S2542-5196(21)00352-1 10.1007/s10618-005-0039-x 10.1007/978-3-642-37456-2_14 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society – notice: The Author(s), 2025. Published by Cambridge University Press on behalf of The Nutrition Society. This work is licensed under the Creative Commons Attribution – Non-Commercial – Share Alike License https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | IKXGN AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7T2 C1K K9. NAPCQ 7X8 DOA |
| DOI | 10.1017/S136898002500059X |
| DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Health and Safety Science Abstracts (Full archive) Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Health & Safety Science Abstracts Calcium & Calcified Tissue Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 4 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Diet & Clinical Nutrition Geography |
| EISSN | 1475-2727 |
| ExternalDocumentID | oai_doaj_org_article_e97c348aadde4be8ada755072c9b672c 40257123 10_1017_S136898002500059X |
| Genre | Journal Article |
| GroupedDBID | --- -1D -1F -2P -2V -E. -~6 -~N .FH 09C 09E 0E1 0R~ 123 29P 2WC 4.4 53G 5VS 6~7 74X 74Y 7RQ 7RV 7X2 7X7 7~V 88E 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAHBH AAIKC AAKNA AAKTX AAMNQ AAMNW AANRG AARAB AASVR AATID AATMM AAUIS AAUKB AAWTL ABBXD ABBZL ABFBI ABHFL ABJNI ABKKG ABKMT ABMWE ABOCM ABQTM ABROB ABUWG ABVFV ABVKB ABVZP ABWCF ABXAU ABXHF ABZCX ACAJB ACBEK ACBMC ACDLN ACEJA ACETC ACGFS ACIMK ACOZI ACPRK ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADAZD ADBBV ADDNB ADFEC ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMFK AEMTW AENCP AENEX AENGE AEUYN AEYHU AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFRIC AFUTZ AFZFC AGABE AGJUD AGKLZ AGLWM AGQPQ AHIPN AHLTW AHMBA AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO ANOYL ANPSP AQJOH ARABE ARZZG ATCPS ATUCA AUXHV AYIQA AZGZS BAWUL BBLKV BCGOX BENPR BESQT BGHMG BHPHI BJBOZ BKEYQ BLZWO BMAJL BPHCQ BQFHP BRIRG BVXVI C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DIK DOHLZ DU5 DWQXO E3Z EBS EGQIC EJD EX3 F5P FYUFA GROUPED_DOAJ HCIFZ HG- HMCUK HST HZ~ I.6 I.7 I.9 IH6 IKXGN IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JKPOH JQKCU JVRFK KAFGG KCGVB KFECR L98 LHUNA LW7 M-V M0K M1P M48 M7~ M8. NAPCQ NIKVX NMFBF NZEOI O9- OK1 OVD P2P PCD PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RAMDC RCA ROL RPM RR0 S6- S6U SAAAG SJN SY4 T9M TEORI TR2 UKHRP UT1 UU6 WFFJZ WOW WQ3 WXU WYP YHZ ZDLDU ZJOSE ZMEZD ZYDXJ ~KM ~V1 AAFWJ AAXMD AAYXX ABGDZ AEMTJ AFFHD AFPKN AKMAY CITATION PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7QP 7T2 C1K K9. 7X8 |
| ID | FETCH-LOGICAL-c436t-f12f4c9dd484e84504a0319147ca73fc5d5bd0319937e77697986a73a8e0119b3 |
| IEDL.DBID | IKXGN |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489169100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1368-9800 1475-2727 |
| IngestDate | Fri Oct 03 12:52:03 EDT 2025 Fri Sep 05 17:30:00 EDT 2025 Mon Oct 06 17:15:34 EDT 2025 Mon May 26 01:57:09 EDT 2025 Sat Nov 29 07:23:11 EST 2025 Sat May 17 02:00:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Trend Global Dietary Database Time-series clustering Clustering algorithm Machine learning |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-sa/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is used to distribute the re-used or adapted article and the original article is properly cited. The written permission of Cambridge University Press must be obtained prior to any commercial use. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-f12f4c9dd484e84504a0319147ca73fc5d5bd0319937e77697986a73a8e0119b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0002-1154-8234 0000-0002-7896-6716 |
| OpenAccessLink | https://www.cambridge.org/core/product/identifier/S136898002500059X/type/journal_article |
| PMID | 40257123 |
| PQID | 3204494593 |
| PQPubID | 26856 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e97c348aadde4be8ada755072c9b672c proquest_miscellaneous_3192354636 proquest_journals_3204494593 pubmed_primary_40257123 crossref_primary_10_1017_S136898002500059X cambridge_journals_10_1017_S136898002500059X |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-21 |
| PublicationDateYYYYMMDD | 2025-04-21 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: England – name: Cambridge |
| PublicationTitle | Public health nutrition |
| PublicationTitleAlternate | Public Health Nutr |
| PublicationYear | 2025 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2021; 24 2006; 13 2019; 2 2019; 12 2015; 10 2014; 27 2003; 36 2016; 106 2020; 12 2017; 132 2019; 349 2013; 8 2017; 50 2017; 31 2009; 36 2010; 20 2012; 2 2021; 10 2015; 62 2022; 6 2015; 65 2016; 374 2016; 115 2001; 17 2023; 537 2023; 118 2020; 21 2016; 158 2018; 77 2007; 1 2011; 27 2012; 379 2022; 18 1994; 309 2018; 35 Bloomfield (S136898002500059X_ref19) 2004 Türkeli (S136898002500059X_ref2) 2020 Li (S136898002500059X_ref16) 2017; 50 S136898002500059X_ref36 S136898002500059X_ref37 S136898002500059X_ref38 S136898002500059X_ref39 S136898002500059X_ref32 Bécavin (S136898002500059X_ref42) 2011; 27 S136898002500059X_ref33 S136898002500059X_ref34 S136898002500059X_ref35 S136898002500059X_ref30 Yeung (S136898002500059X_ref31) 2001; 17 S136898002500059X_ref47 S136898002500059X_ref48 S136898002500059X_ref49 S136898002500059X_ref43 S136898002500059X_ref44 S136898002500059X_ref45 S136898002500059X_ref46 S136898002500059X_ref41 S136898002500059X_ref18 S136898002500059X_ref14 S136898002500059X_ref17 S136898002500059X_ref10 S136898002500059X_ref11 S136898002500059X_ref12 S136898002500059X_ref13 S136898002500059X_ref50 Assent (S136898002500059X_ref15) 2012; 2 S136898002500059X_ref6 S136898002500059X_ref5 S136898002500059X_ref8 S136898002500059X_ref7 S136898002500059X_ref29 S136898002500059X_ref1 S136898002500059X_ref4 S136898002500059X_ref3 S136898002500059X_ref25 S136898002500059X_ref26 S136898002500059X_ref27 S136898002500059X_ref22 S136898002500059X_ref9 S136898002500059X_ref23 S136898002500059X_ref24 Tavenard (S136898002500059X_ref21) 2020; 21 Montero (S136898002500059X_ref40) 2015; 62 S136898002500059X_ref20 Yuan (S136898002500059X_ref28) 2019; 2 |
| References_xml | – volume: 10 start-page: e0144059 year: 2015 article-title: A comparison study on similarity and dissimilarity measures in clustering continuous data publication-title: PloS one – volume: 36 start-page: 451 year: 2003 end-page: 461 publication-title: Pattern Recognition – volume: 106 start-page: 1865 year: 2016 end-page: 1871 article-title: Impact of the Berkeley excise tax on sugar-sweetened beverage consumption publication-title: Am J Public Health – volume: 118 start-page: 63 year: 2023 end-page: 69 article-title: Global trends indicate increasing consumption of dietary sodium and fiber in middle-income countries: a study of 30-year global macrotrends publication-title: Nutr Res – volume: 20 start-page: 274 year: 2010 end-page: 283 article-title: Dietary patterns and markers for the metabolic syndrome in Australian adolescents publication-title: Nutr, Metab Cardiovasc Dis – volume: 35 start-page: 394 year: 2018 end-page: 421 article-title: Nonlinear time series clustering based on Kolmogorov-Smirnov 2D statistic publication-title: J Classification – volume: 18 start-page: 1 year: 2022 end-page: 12 article-title: Worldwide dietary patterns and their association with socioeconomic data: an ecological exploratory study publication-title: Globalization Health – volume: 10 start-page: 3001 year: 2021 article-title: Deep time-series clustering: a review publication-title: Electronics – volume: 62 start-page: 1 year: 2015 end-page: 43 article-title: TSclust: an R package for time series clustering publication-title: J Stat Software – volume: 2 start-page: 226 year: 2019 end-page: 235 article-title: Research on K-value selection method of K-means clustering algorithm publication-title: J – volume: 77 start-page: 143 year: 2018 end-page: 151 article-title: How can health, agriculture and economic policy actors work together to enhance the external food environment for fruit and vegetables? A qualitative policy analysis in India publication-title: Food Policy – volume: 12 start-page: 307 year: 2019 end-page: 392 article-title: An introduction to variational autoencoders publication-title: Found Trends® Mach Learn – volume: 115 start-page: 1498 year: 2016 end-page: 1507 article-title: Trends in food consumption and nutrient intake in Germany between 2006 and 2012: results of the German National Nutrition Monitoring (NEMONIT) publication-title: Br J Nutr – volume: 537 start-page: 210 year: 2023 end-page: 235 article-title: Machine learning for multivariate time series with the R package mlmts publication-title: Neurocomputing – volume: 12 start-page: 3359 year: 2020 article-title: Mapping the sustainable development goals relationships publication-title: Sustainability – volume: 24 start-page: 309 year: 2021 end-page: 317 article-title: Is the world converging to a ‘Western diet’? publication-title: Public Health Nutr – volume: 349 start-page: 239 year: 2019 end-page: 247 article-title: Multivariate time series clustering based on common principal component analysis publication-title: Neurocomputing – volume: 1 start-page: 5 year: 2007 end-page: 21 article-title: Adaptive dissimilarity index for measuring time series proximity publication-title: Adv Data Anal Classification – volume: 309 start-page: 1566 year: 1994 end-page: 1570 article-title: The World Health Organisation: the regions—too much power, too little effect publication-title: BMJ – volume: 374 start-page: 20150202 year: 2016 article-title: Principal component analysis: a review and recent developments publication-title: Philos Trans Royal Soc A: Math, Phys Eng Sci – volume: 65 start-page: 1 year: 2015 end-page: 34 publication-title: J Stat Softw – volume: 21 start-page: 4686 year: 2020 end-page: 4691 article-title: Tslearn, a machine learning toolkit for time series data publication-title: J Mach Learn Res – volume: 2 start-page: 340 year: 2012 end-page: 350 article-title: Clustering high dimensional data publication-title: Wiley Interdiscip Rev: Data Min Knowl Discovery – volume: 36 start-page: 3336 year: 2009 end-page: 3341 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst Appl – volume: 6 start-page: e243 year: 2022 end-page: e256 article-title: Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database publication-title: Lancet Planet Health – volume: 50 start-page: 1 year: 2017 end-page: 45 article-title: Feature selection: a data perspective publication-title: ACM Comput Surv (CSUR) – volume: 379 start-page: 2206 year: 2012 end-page: 2211 article-title: From millennium development goals to sustainable development goals publication-title: Lancet – volume: 132 start-page: 72 year: 2017 end-page: 84 article-title: A copula-based clustering algorithm to analyse EU country diets publication-title: Knowledge-Based Syst – volume: 13 start-page: 335 year: 2006 end-page: 364 article-title: Characteristic-based clustering for time series data publication-title: Data Min Knowl Discovery – volume: 158 start-page: 158 year: 2016 end-page: 167 article-title: Nutrient intake: a cross-national analysis of trends and economic correlates publication-title: Soc Sci Med – volume: 31 start-page: 1 year: 2017 end-page: 31 article-title: Generalizing DTW to the multi-dimensional case requires an adaptive approach publication-title: Data Min Knowl Discovery – volume: 17 start-page: 763 year: 2001 end-page: 774 article-title: Principal component analysis for clustering gene expression data publication-title: Bioinf – volume: 8 start-page: e54201 year: 2013 article-title: A method for comparing multivariate time series with different dimensions publication-title: PloS one – volume: 27 start-page: 1413 year: 2011 end-page: 1421 article-title: Improving the efficiency of multidimensional scaling in the analysis of high-dimensional data using singular value decomposition publication-title: Bioinf – volume: 27 start-page: 330 year: 2014 end-page: 345 article-title: Worldwide trends in dietary sugars intake publication-title: Nutr Res Rev – ident: S136898002500059X_ref5 doi: 10.1017/S0954422414000237 – ident: S136898002500059X_ref27 doi: 10.1561/2200000056 – ident: S136898002500059X_ref32 – volume-title: Multiplex Learning: An Evidence-Based Approach to Design Policy Learning Networks in Sub-Saharan Africa for the SDGs year: 2020 ident: S136898002500059X_ref2 – ident: S136898002500059X_ref17 doi: 10.1098/rsta.2015.0202 – ident: S136898002500059X_ref49 doi: 10.2105/AJPH.2016.303362 – ident: S136898002500059X_ref10 doi: 10.1016/j.knosys.2017.06.004 – ident: S136898002500059X_ref12 doi: 10.1007/s10618-016-0455-0 – ident: S136898002500059X_ref6 doi: 10.1016/j.numecd.2009.03.024 – ident: S136898002500059X_ref26 doi: 10.1007/s00357-018-9271-0 – volume: 27 start-page: 1413 year: 2011 ident: S136898002500059X_ref42 article-title: Improving the efficiency of multidimensional scaling in the analysis of high-dimensional data using singular value decomposition publication-title: Bioinf – ident: S136898002500059X_ref33 – ident: S136898002500059X_ref13 doi: 10.1371/journal.pone.0144059 – ident: S136898002500059X_ref4 doi: 10.1017/S0007114516000544 – ident: S136898002500059X_ref36 doi: 10.1016/j.eswa.2008.01.039 – ident: S136898002500059X_ref47 – ident: S136898002500059X_ref7 doi: 10.1017/S136898002000350X – volume: 62 start-page: 1 year: 2015 ident: S136898002500059X_ref40 article-title: TSclust: an R package for time series clustering publication-title: J Stat Software – ident: S136898002500059X_ref29 doi: 10.18637/jss.v065.i04 – volume: 2 start-page: 340 year: 2012 ident: S136898002500059X_ref15 article-title: Clustering high dimensional data publication-title: Wiley Interdiscip Rev: Data Min Knowl Discovery – ident: S136898002500059X_ref38 doi: 10.1371/journal.pone.0054201 – volume-title: Fourier Analysis of Time Series: An Introduction year: 2004 ident: S136898002500059X_ref19 – volume: 50 start-page: 1 year: 2017 ident: S136898002500059X_ref16 article-title: Feature selection: a data perspective publication-title: ACM Comput Surv (CSUR) – ident: S136898002500059X_ref34 – ident: S136898002500059X_ref22 doi: 10.1016/j.neucom.2019.03.060 – ident: S136898002500059X_ref24 doi: 10.3390/electronics10233001 – volume: 2 start-page: 226 year: 2019 ident: S136898002500059X_ref28 article-title: Research on K-value selection method of K-means clustering algorithm publication-title: J – ident: S136898002500059X_ref43 doi: 10.1136/bmj.309.6968.1566 – ident: S136898002500059X_ref8 doi: 10.1016/S0031-3203(02)00060-2 – ident: S136898002500059X_ref45 doi: 10.3390/su12083359 – ident: S136898002500059X_ref48 – volume: 17 start-page: 763 year: 2001 ident: S136898002500059X_ref31 article-title: Principal component analysis for clustering gene expression data publication-title: Bioinf – ident: S136898002500059X_ref25 – ident: S136898002500059X_ref44 doi: 10.1016/S0140-6736(12)60685-0 – ident: S136898002500059X_ref37 doi: 10.1109/DeSE.2013.62 – ident: S136898002500059X_ref11 doi: 10.1016/j.nutres.2023.07.005 – ident: S136898002500059X_ref1 doi: 10.1016/j.foodpol.2018.04.012 – ident: S136898002500059X_ref23 doi: 10.1007/11551188_37 – ident: S136898002500059X_ref35 – ident: S136898002500059X_ref46 doi: 10.1016/j.socscimed.2016.04.021 – ident: S136898002500059X_ref41 – ident: S136898002500059X_ref14 doi: 10.1007/s11634-006-0004-6 – ident: S136898002500059X_ref3 doi: 10.1186/s12992-022-00820-w – ident: S136898002500059X_ref39 doi: 10.1016/j.neucom.2023.02.048 – ident: S136898002500059X_ref50 doi: 10.1016/S2542-5196(21)00352-1 – ident: S136898002500059X_ref18 doi: 10.1007/s10618-005-0039-x – volume: 21 start-page: 4686 year: 2020 ident: S136898002500059X_ref21 article-title: Tslearn, a machine learning toolkit for time series data publication-title: J Mach Learn Res – ident: S136898002500059X_ref20 – ident: S136898002500059X_ref30 – ident: S136898002500059X_ref9 doi: 10.1007/978-3-642-37456-2_14 |
| SSID | ssj0005777 |
| Score | 2.451912 |
| Snippet | Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens. Still,... Objective:Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease burdens.... Abstract Objective: Understanding country-level nutrition intake is crucial to global nutritional policies that aim to reduce disparities and relevant disease... |
| SourceID | doaj proquest pubmed crossref cambridge |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | e89 |
| SubjectTerms | Adolescent Adult Aged Algorithms Beverages Cluster Analysis Clustering Clustering algorithm Databases, Factual Demographic variables Demographics Demography Diet - statistics & numerical data Diet - trends Diet Surveys Female Geography Global Dietary Database Global health Global Health - statistics & numerical data Humans Literature reviews Machine learning Male Middle Aged Multivariate Analysis Nutrient deficiency Nutrition Nutritional epidemiology Public health Research Paper Sugar Sugar-Sweetened Beverages - statistics & numerical data Time series Time-series clustering Trend Trends Variables Young Adult |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pa9VAEF-k9CCI2PovtZURRFQMJrub7O5RrcWDPDyovFvY7B94UPLKe3kFT-138Bv6STqzSZ4VUS9ectgMZMjMZH6Tnf0NY08LVxhvnM6jlyGXzsSc8nhetyUP2jmv0tmqrx_VbKbnc_Pp2qgv6gkb6IGHF_c6GOWE1JbiULZBW28VcXBxZ9oar_T1LZSZiqmpuUOlmYulqDGcERNN-5lEFk2LtMarxE4yv86q8Et2SiT-f0aeKQOd3GG3R-gIbwaV99iN0O2z7HgRengGI7_nKcwmev19dmv4JwfDUaO77CKdtj3H6hgBJtBUeSAHDGtwpxsiTMA0BnZkKYFlBASHMAwFAHqMXX2DY9tbynzQLwFTIjWAwlni6OzWsOjAj3J96rWF5yXmoR-X3xEA6Bf32JeT95_ffcjHAQy5k6Lu81jyiObzXmoZtKwKaenQUymVs0pEV_mq9bSCGCcoVRtldI13rA5EJdeK-2ynW3bhIQPeBlkpE2uFBVh0ouU66iA5Nz5awWPGXm2N0IxhtG6GFjTV_GazjL2c7NScDbQcfxN-S5bcChKjdlpAP2tGP2v-5WcZO5z84Kd-ghdSGlkZkbEn29sYoLTrYruw3KAMYWgaOlBn7MHgP1tNsHivFGKHg_-h4SN2k9Nw4kLmvDxkO_1qE47YrjvvF-vV4xQfV62uEBo priority: 102 providerName: Directory of Open Access Journals |
| Title | Multivariate time series clustering analysis of the Global Dietary Database to uncover patterns in dietary trends (1990–2018) |
| URI | https://www.cambridge.org/core/product/identifier/S136898002500059X/type/journal_article https://www.ncbi.nlm.nih.gov/pubmed/40257123 https://www.proquest.com/docview/3204494593 https://www.proquest.com/docview/3192354636 https://doaj.org/article/e97c348aadde4be8ada755072c9b672c |
| Volume | 28 |
| WOSCitedRecordID | wos001489169100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAEN databaseName: Cambridge University Press Wholly Gold Open Access Journals customDbUrl: eissn: 1475-2727 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: IKXGN dateStart: 19980301 isFulltext: true titleUrlDefault: http://journals.cambridge.org/action/login providerName: Cambridge University Press – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1475-2727 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005777 issn: 1368-9800 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9RAEC724UEQH-srug4liKgYZtLpSXcf1XVVlEHwQW6h0w8YWDLDTGbBk_4H_6G_xK5OMusDBQ9ecug0nU6qku9Ld9VXAPcmZqKsMjL1lruUG-VTwvG0qDPmpDFWxNyqj2_EbCbLUr3dgXLIhaGwyq3GQdzJj_XRlp386Xhuuxgatxq_y_JCKhlBnFIoyzEtWo57E1T9g9-F_cBgWHhl91-9Ll_MzsI_RKzKSIOkNMqw40ly0r-O_KPuwk_4FWX-_8xNI0YdX_p_d3cZLva8FZ90LVdgxzUHkBzNXYv3sRcXPcHZoO1_ABe6BUHs8pyuwueY6nsafs0Du0UqaY_k_W6N5mRDag0BQ1H3Eim48BiYKXYVCZAuo1ef8Ei3mmAX2wUGPKboU1xGgdBmjfMGbd-vjYG--CALIPjty9fAPuTDa_Dh-Pn7Zy_TvvpDanhetKnPmA--Yy2X3Ek-nXBNGVcZF0aL3JupndaWWgLBckIUSihZhDNaOtKxq_PrsNcsGncTkNWOT4XyhQh_f97kNZNeOs6Ysl7nzCfweGuVqn_E66qLfxPVb6ZI4NHgAtWy0wT5W-en5CTbjiTnHRuC9QczVk4Jk3OpCWx47aS2WpDQHDOqLsIxgcPBxc7ml7MJ54pPVZ7A3e3p8HWgLR_duMUm9CECTxUPigRudK65nQkPcxSBuNz6t7u_DecZ1UCe8JRlh7DXrjbuDpwzp-18vRrBrijlKK5sjPpX7juQmTW5 |
| linkProvider | Cambridge University Press |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VFgkkxKO8AgUGCSFARLtxvLF9BEpp1bJCoqC9RY4f0kpVdrWbrcQJ_gP_kF-Cx0m2PAQSBy45OJZje8b5xvbMNwCPhmaorDIy9Za7lBvlU8LxtKgy5qQxVsTYqo9HYjyWk4l6twGTPhaG3CrXHAfxJj_mR5u39KeDqW19aNxi8D7LC6lkBHEKoZwM6NBy0Img7Cb-HGyRH1ZYslsHh5M34zP3DxGzMlIjKbXS33gSnfSvLf_Iu_ATfkWa_z_bphGj9q78v9Fdhcud3Yov2pJrsOHqbUh2p67Bx9iRi57guOf234ZL7YEgtnFO1-FzDPU9DVvzYN0ipbRH0n63RHOyIraGgKGoO4oUnHkMlim2GQmQPqMXn3BXN5pgF5sZBjwm71OcR4LQeonTGm1Xr4mOvvgkCyD47cvXYH3Ipzfgw97r41f7aZf9ITU8L5rUZ8wH3bGWS-4kHw25poirjAujRe7NyI4qSyXBwHJCFEooWYQ3Wjrisavym7BZz2p3G5BVjo-E8oUIuz9v8opJLx1nTFmvc-YTeL6WStlN8bJs_d9E-ZsoEnjWq0A5bzlB_lb5JSnJuiLReceCIP1ejKVTwuRcagIbXjmprRZENMeMqorwTGCnV7Gz_uVsyLniI5Un8HD9Ovwd6MpH1262CnXIgKeMB0UCt1rVXPeEhz6KYLjc-bfRP4AL-8dvj8qjg_HhXbjIKB_ykKcs24HNZrFy9-C8OW2my8X9bsl9B8zRNtI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+time-series+clustering+analysis+of+the+Global+Dietary+Database+to+uncover+patterns+in+dietary+trends+%281990-2018%29&rft.jtitle=Public+health+nutrition&rft.au=Matousek%2C+Adriano&rft.au=Leung%2C+Tiffany+H&rft.au=Pang%2C+Herbert&rft.date=2025-04-21&rft.issn=1475-2727&rft.eissn=1475-2727&rft.spage=1&rft_id=info:doi/10.1017%2FS136898002500059X&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1368-9800&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1368-9800&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1368-9800&client=summon |