Active Machine Learning for Chemical Engineers: A Bright Future Lies Ahead
By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating proc...
Uloženo v:
| Vydáno v: | Engineering (Beijing, China) Ročník 27; číslo 8; s. 23 - 30 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2023
Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium Elsevier |
| Témata: | |
| ISSN: | 2095-8099 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering. While active machine learning algorithms are maturing, their applications are falling behind. In this article, three types of challenges presented by active machine learning—namely, convincing the experimental researcher, the flexibility of data creation, and the robustness of active machine learning algorithms—are identified, and ways to overcome them are discussed. A bright future lies ahead for active machine learning in chemical engineering, thanks to increasing automation and more efficient algorithms that can drive novel discoveries. |
|---|---|
| AbstractList | By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering. While active machine learning algorithms are maturing, their applications are falling behind. In this article, three types of challenges presented by active machine learning—namely, convincing the experimental researcher, the flexibility of data creation, and the robustness of active machine learning algorithms—are identified, and ways to overcome them are discussed. A bright future lies ahead for active machine learning in chemical engineering, thanks to increasing automation and more efficient algorithms that can drive novel discoveries. By combining machine learning with the design of experiments,thereby achieving so-called active machine learning,more efficient and cheaper research can be conducted.Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating pro-cesses spanning all length scales of chemical engineering.While active machine learning algorithms are maturing,their applications are falling behind.In this article,three types of challenges presented by active machine learning-namely,convincing the experimental researcher,the flexibility of data cre-ation,and the robustness of active machine learning algorithms-are identified,and ways to overcome them are discussed.A bright future lies ahead for active machine learning in chemical engineering,thanks to increasing automation and more efficient algorithms that can drive novel discoveries. |
| Author | Ureel, Yannick Van Geem, Kevin M. Dobbelaere, Maarten R. Sabbe, Maarten K. Marin, Guy B. Ouyang, Yi De Ras, Kevin |
| AuthorAffiliation | Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium |
| AuthorAffiliation_xml | – name: Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium |
| Author_xml | – sequence: 1 givenname: Yannick orcidid: 0000-0001-6883-320X surname: Ureel fullname: Ureel, Yannick – sequence: 2 givenname: Maarten R. orcidid: 0000-0002-8977-8569 surname: Dobbelaere fullname: Dobbelaere, Maarten R. – sequence: 3 givenname: Yi orcidid: 0000-0002-1950-4538 surname: Ouyang fullname: Ouyang, Yi – sequence: 4 givenname: Kevin surname: De Ras fullname: De Ras, Kevin – sequence: 5 givenname: Maarten K. orcidid: 0000-0003-4824-2407 surname: Sabbe fullname: Sabbe, Maarten K. – sequence: 6 givenname: Guy B. orcidid: 0000-0002-6733-1213 surname: Marin fullname: Marin, Guy B. – sequence: 7 givenname: Kevin M. surname: Van Geem fullname: Van Geem, Kevin M. email: Kevin.VanGeem@UGent.be |
| BookMark | eNp9kD1vFDEQhl0EiZDkB9C5obxl7P3yQnWcEgg6RAO1NTue3fPq4kVeX1D-fbwcNBSpLI3neWfmeSMuwhxYiLcKCgWqeT8VHMZCgy4L0AWo7kJcaujqjYGuey1ulmUCAFUraMFciq9bSv6R5Tekgw8s94wx-DDKYY5yd-AHT3iUt2HMnxyXD3IrP0U_HpK8O6VTzIDnRW4PjO5avBrwuPDN3_dK_Ly7_bH7stl__3y_2-43VJVN2nDLUBoE3ROVfa_7XmGn1VCDUhW2yHXb1BWR0oNzplLAbDS1XWtUo_vSlVfi_pzrZpzsr-gfMD7ZGb39U5jjaDEmT0e2ulMArq57Zlf1OWId2ladqZxpiE3OenfO-o1hwDDaaT7FkLe3I1leLYIBWPvacx_FeVkiD5Z8wuTnkCL6o1VgV_t2stm-XTkL2mb7mVT_kf82fon5eGY4a3z0HO1CngOx85Ep5Tv9C_Qznymehw |
| CitedBy_id | crossref_primary_10_1186_s13321_024_00834_z crossref_primary_10_3390_w17091314 crossref_primary_10_1016_j_jaap_2024_106512 crossref_primary_10_1016_j_eng_2025_08_009 crossref_primary_10_1021_jacs_5c05916 crossref_primary_10_1016_j_measurement_2025_116885 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_1016_j_seppur_2025_133487 crossref_primary_10_1039_D3SC07012C crossref_primary_10_1021_acsami_5c09626 crossref_primary_10_1038_s41598_025_01761_1 crossref_primary_10_1039_D5ME00075K crossref_primary_10_1039_D4CY00873A crossref_primary_10_57020_ject_1475566 crossref_primary_10_1007_s11705_025_2562_1 |
| Cites_doi | 10.1021/acscatal.6b00619 10.1073/pnas.1714936115 10.1063/5.0096625 10.1039/D0TA04096G 10.1039/D1SC05677H 10.1088/2632-2153/ac298c 10.1126/science.aat0650 10.1038/sdata.2016.18 10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4 10.1039/D1SC06932B 10.1063/5.0048164 10.1039/C9SC04026A 10.1016/j.commatsci.2017.08.031 10.1038/s41586-020-2442-2 10.1016/j.jcat.2021.09.014 10.1016/j.eng.2021.03.019 10.1038/s41929-018-0056-y 10.26434/chemrxiv.13250216.v1 10.1287/educ.2018.0188 10.1021/acscentsci.8b00307 10.1016/j.commatsci.2016.12.004 10.1038/s41929-019-0376-6 10.1016/S1385-8947(02)00005-0 10.1038/s41524-020-0283-z 10.1016/j.eng.2019.08.013 10.1039/D0RE00232A 10.1021/acs.oprd.0c00376 10.1016/j.cma.2018.12.033 10.1016/j.fuel.2022.125340 10.1016/j.jiec.2021.11.018 10.1021/acs.iecr.8b04801 10.1016/j.jcp.2021.110788 10.1038/s41467-020-19597-w 10.1021/acs.accounts.6b00510 10.1039/D2DD00028H 10.1038/s41524-020-00367-7 10.1016/j.compchemeng.2018.08.005 10.1038/s41586-020-2242-8 10.1016/j.bej.2022.108764 10.1016/j.cej.2019.123340 10.1016/j.trechm.2020.12.001 10.4155/fmc-2016-0197 10.1038/s41467-021-22437-0 10.1021/acscentsci.1c00024 10.1039/C9SC01844A 10.1038/s41929-018-0142-1 10.1039/C9RE00209J 10.1021/acscentsci.7b00572 10.1016/j.cej.2018.07.031 10.1002/cmtd.202000051 10.1016/j.compchemeng.2023.108194 10.1016/j.eng.2019.01.019 10.1038/s41524-018-0129-0 10.1002/kin.21316 10.1021/acs.jmedchem.8b00653 10.1016/j.cej.2022.140708 10.1039/C9SC00616H 10.1039/C9RE00116F 10.1016/j.ces.2007.11.034 10.1021/acs.nanolett.9b04090 10.1016/j.jcat.2021.09.018 10.26434/chemrxiv.5309668.v2 10.1038/s41586-021-03213-y |
| ContentType | Journal Article |
| Copyright | 2023 THE AUTHORS Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2023 THE AUTHORS – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ DOA |
| DOI | 10.1016/j.eng.2023.02.019 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 30 |
| ExternalDocumentID | oai_doaj_org_article_29100d55beed4b9782bcc74984d86ce8 gc_e202308008 10_1016_j_eng_2023_02_019 S2095809923002862 |
| GroupedDBID | 0R~ 0SF 1-T 5VR 6I. 92H 92I 92R 93N AACTN AAEDW AAFTH AALRI AAXDM AAXUO ABMAC ACGFS ACHIH ADBBV AEXQZ AFTJW AFUIB AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CCEZO CEKLB EBS EJD FDB GROUPED_DOAJ IPNFZ M41 NCXOZ O9- OK1 RIG ROL SSZ TCJ TGT -SC -S~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP CAJEC CITATION Q-- U1G U5M 2B. 4A8 PSX |
| ID | FETCH-LOGICAL-c436t-e7e038a02bcc3bb2bb1a921f50114a7ae57654cc12fdd8410ee82c7978162b3d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206759600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2095-8099 |
| IngestDate | Fri Oct 03 12:52:57 EDT 2025 Thu May 29 03:58:45 EDT 2025 Wed Nov 05 20:47:20 EST 2025 Tue Nov 18 20:43:05 EST 2025 Sat Apr 06 16:24:58 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Bayesian optimization Active learning Chemical engineering Design of experiments Active machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-e7e038a02bcc3bb2bb1a921f50114a7ae57654cc12fdd8410ee82c7978162b3d3 |
| ORCID | 0000-0002-8977-8569 0000-0002-6733-1213 0000-0003-4824-2407 0000-0001-6883-320X 0000-0002-1950-4538 |
| OpenAccessLink | https://doaj.org/article/29100d55beed4b9782bcc74984d86ce8 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_29100d55beed4b9782bcc74984d86ce8 wanfang_journals_gc_e202308008 crossref_citationtrail_10_1016_j_eng_2023_02_019 crossref_primary_10_1016_j_eng_2023_02_019 elsevier_sciencedirect_doi_10_1016_j_eng_2023_02_019 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering (Beijing, China) |
| PublicationTitle_FL | Engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium – name: Elsevier |
| References | Symoens, Aravindakshan, Vermeire, De Ras, Djokic, Marin (b0290) 2019; 51 Duvenaud (b0280) 2014 Shang, You (b0405) 2019; 5 Tran, Sun, Furlan, Pagalthivarthi, Visintainer, Wang (b0215) 2019; 347 Sivaraman, Krishnamoorthy, Baur, Holm, Stan, Csányi (b0130) 2020; 6 Hafner D, Tran D, Lillicrap T, Irpan A, Davidson J. Noise contrastive priors for functional uncertainty. In: Proceedings of the 35th Uncertainty in Artificial Intelligence Conference; 2019 Jul 22–25; Tel Aviv, Israel; 2020. p. 905–14. Ichikawa (b0240) 2021; 404 Pilania, Gubernatis, Lookman (b0375) 2017; 129 Mao, Wang, Tang, Qian (b0385) 2019; 5 Lazić (b0010) 2006 Shields, Stevens, Li, Parasram, Damani, Alvarado (b0195) 2021; 590 Dobbelaere, Plehiers, Van de Vijver, Stevens, Van Geem (b0275) 2021; 7 Olsson (b0030) 2009 Griffiths, Hernández-Lobato (b0155) 2020; 11 Jablonka, Jothiappan, Wang, Smit, Yoo (b0180) 2021; 12 Vijay, Kastlunger, Chan, Nørskov (b0250) 2022; 156 Gal Y, Islam R, Ghahramani Z. Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6–11; Sydney, NSW, Australia; 2017. p. 1183–92. Oftelie, Rajak, Kalia, Nakano, Sha, Sun (b0170) 2018; 4 Eyke, Koscher, Jensen (b0350) 2021; 3 Landau, Korré, Neurock, Klein, Quann (b0245) 2020 Hoffer, Voitovich, Raux, Carrasco, Muller, Fedorov (b0335) 2018; 61 Kim, Ha, Jung, Yoon, Shin, Kim (b0395) 2022; 34 Rasmussen, Williams (b0080) 2006 Morita, Rezaeiravesh, Tabatabaei, Vinuesa, Fukagata, Schlatter (b0225) 2022; 449 Núñez, Vlachos (b0125) 2019; 58 Griffiths, Aldrick, Garcia-Ortegon, Lalchand, Lee (b0315) 2021; 3 Brown, Brittman, Maccaferri, Jariwala, Celano (b0140) 2020; 20 Oh, Lee, Kang, Yang, Nam, Lim (b0360) 2022; 106 Amar, Schweidtmann, Deutsch, Cao, Lapkin (b0065) 2019; 10 Hahndorf, Buyevskaya, Langpape, Grubert, Kolf, Guillon (b0355) 2002; 89 Häse, Roch, Kreisbeck, Aspuru-Guzik (b0300) 2018; 4 Zhang, Lee (b0120) 2019; 10 Greenman, Green, Gómez-Bombarelli (b0370) 2022; 13 Zhong, Tran, Min, Wang, Wang, Dinh (b0265) 2020; 581 Gómez-Bombarelli, Wei, Duvenaud, Hernández-Lobato, Sánchez-Lengeling, Sheberla (b0400) 2018; 4 Reker, Schneider, Schneider, Brown (b0135) 2017; 9 Nugraha, Lambard, Na, Hossain, Asahi, Chaikittisilp (b0270) 2020; 8 Griffiths RR, Hernández-Lobato JM. Constrained Bayesian optimization for automatic chemical design. 2017. arXiv:1709.05501. Park, Na, Kim, Lee (b0220) 2018; 119 Schweidtmann, Clayton, Holmes, Bradford, Bourne, Lapkin (b0060) 2018; 352 Habashi, Dompierre, Bourgault, Ait-Ali-Yahia, Fortin, Vallet (b0325) 2000; 32 Tran, Ulissi (b0160) 2018; 1 Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. Weight uncertainty in neural networks. In: Proceedings of the 32nd International Conference on Machine Learning; 2015 Jul 7–9; Lille, France; 2015. p. 1613–22. Vandermause, Torrisi, Batzner, Xie, Sun, Kolpak (b0090) 2020; 6 Frazier PI. A tutorial on Bayesian optimization. 2018. arXiv:1807.02811v1. Sanchez-Lengeling B, Outeiral C, Guimaraes GL, Aspuru-Guzik A. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). 2017. ChemRxiv: 5309668.v3. McHutchon A, Rasmussen C. Gaussian process training with input noise. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger KQ, editors. Proceedings of the 24th International Conference on Neural Information Processing Systems; 2011 Dec 12–14; Granada, Spain; 2011. p. 1341–9. Kusne, Yu, Wu, Zhang, Hattrick-Simpers, DeCost (b0165) 2020; 11 Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. Proceedings of the 25th International Conference on Neural Information Processing Systems; 2012 Dec 3–6; Lake Tahoe, NV, USA. Red Hook: Curran Associates Inc.; 2012. p. 2951–9. Clayton, Schweidtmann, Clemens, Manson, Taylor, Niño (b0070) 2020; 384 Marin, Galvita, Yablonsky (b0035) 2021; 404 Hansen MH, Torres JAG, Jennings PC, Wang Z, Boes JR, Mamun OG, et al. An atomistic machine learning package for surface science and catalysis. 2019. arXiv:1904.00904. Hong, Chan, Tsai, Nørskov (b0255) 2016; 6 Burger, Maffettone, Gusev, Aitchison, Bai, Wang (b0330) 2020; 583 Eyke, Green, Jensen (b0055) 2020; 5 Kitchin (b0175) 2018; 1 Podryabinkin, Shapeev (b0085) 2017; 140 Wang Z, Dahl GE, Swersky K, Lee C, Mariet Z, Nado Z, et al. Pre-training helps Bayesian optimization too. 2022. arXiv:220703084. Felton K, Wigh D, Lapkin A. Multi-task Bayesian optimization of chemical reactions. 2020. ChemRxiv: 13250216.v1. Hickman, Aldeghi, Häse, Aspuru-Guzik (b0320) 2022; 1 Melnikov, Poulsen Nautrup, Krenn, Dunjko, Tiersch, Zeilinger (b0020) 2018; 115 Pérez-Ramírez, López (b0260) 2019; 2 Sabatier P. La catalyse en chimie organique. Paris: Hachette Livre; 1920. French. Shim, Kammeraad, Xu, Tewari, Cernak, Zimmerman (b0390) 2022; 13 Mateos, Nieves-Remacha, Rincón (b0345) 2019; 4 Settles (b0040) 2012 Folch, Lee, Shafei, Walz, Tsay, van der Wilk (b0380) 2023; 172 Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak (b0365) 2016; 3 Ureel, Dobbelaere, Akin, Varghese, Pernalete, Thybaut (b0050) 2022; 328 Bédard, Adamo, Aroh, Russell, Bedermann, Torosian (b0340) 2018; 361 Clayton, Manson, Taylor, Chamberlain, Taylor, Clemens (b0190) 2019; 4 Thrun (b0075) 1995 Felton, Rittig, Lapkin (b0200) 2021; 1 Dogu, Eschenbacher, Varghese, Dobbelaere, D’Hooge, Van Steenberge (b0210) 2023; 455 Oxford Economics Ltd (b0005) 2019 Franceschini, Macchietto (b0015) 2008; 63 Riis C, Antunes F, Hüttel FB, Azevedo CL, Pereira FC. Bayesian active learning with fully Bayesian Gaussian processes. 2022. arXiv:2205.10186. Friend, Xu (b0230) 2017; 50 Zhang, Amar, Cao, Lapkin (b0185) 2020; 24 Häse, Aldeghi, Hickman, Roch, Aspuru-Guzik (b0295) 2021; 8 Jensen, Kwon, Schwalbe-Koda, Paris, Gómez-Bombarelli, Román-Leshkov (b0415) 2021; 7 Duong-Trung, Born, Kim, Schermeyer, Paulick, Borisyak (b0025) 2023; 190 Xie Y, Tomizuka M, Zhan W. Towards general and efficient active learning. 2021. arXiv:211207963. Brown (10.1016/j.eng.2023.02.019_b0140) 2020; 20 Zhang (10.1016/j.eng.2023.02.019_b0185) 2020; 24 Dogu (10.1016/j.eng.2023.02.019_b0210) 2023; 455 Podryabinkin (10.1016/j.eng.2023.02.019_b0085) 2017; 140 Reker (10.1016/j.eng.2023.02.019_b0135) 2017; 9 Friend (10.1016/j.eng.2023.02.019_b0230) 2017; 50 Park (10.1016/j.eng.2023.02.019_b0220) 2018; 119 10.1016/j.eng.2023.02.019_b0410 Eyke (10.1016/j.eng.2023.02.019_b0350) 2021; 3 Hickman (10.1016/j.eng.2023.02.019_b0320) 2022; 1 10.1016/j.eng.2023.02.019_b0095 Nugraha (10.1016/j.eng.2023.02.019_b0270) 2020; 8 Burger (10.1016/j.eng.2023.02.019_b0330) 2020; 583 Ichikawa (10.1016/j.eng.2023.02.019_b0240) 2021; 404 Häse (10.1016/j.eng.2023.02.019_b0300) 2018; 4 Pilania (10.1016/j.eng.2023.02.019_b0375) 2017; 129 Duong-Trung (10.1016/j.eng.2023.02.019_b0025) 2023; 190 Zhang (10.1016/j.eng.2023.02.019_b0120) 2019; 10 Jensen (10.1016/j.eng.2023.02.019_b0415) 2021; 7 10.1016/j.eng.2023.02.019_b0145 Shields (10.1016/j.eng.2023.02.019_b0195) 2021; 590 10.1016/j.eng.2023.02.019_b0305 Wilkinson (10.1016/j.eng.2023.02.019_b0365) 2016; 3 10.1016/j.eng.2023.02.019_b0105 Amar (10.1016/j.eng.2023.02.019_b0065) 2019; 10 Jablonka (10.1016/j.eng.2023.02.019_b0180) 2021; 12 Oftelie (10.1016/j.eng.2023.02.019_b0170) 2018; 4 10.1016/j.eng.2023.02.019_b0100 Folch (10.1016/j.eng.2023.02.019_b0380) 2023; 172 Kim (10.1016/j.eng.2023.02.019_b0395) 2022; 34 Franceschini (10.1016/j.eng.2023.02.019_b0015) 2008; 63 Felton (10.1016/j.eng.2023.02.019_b0200) 2021; 1 Vandermause (10.1016/j.eng.2023.02.019_b0090) 2020; 6 Gómez-Bombarelli (10.1016/j.eng.2023.02.019_b0400) 2018; 4 Melnikov (10.1016/j.eng.2023.02.019_b0020) 2018; 115 Hoffer (10.1016/j.eng.2023.02.019_b0335) 2018; 61 Symoens (10.1016/j.eng.2023.02.019_b0290) 2019; 51 Sivaraman (10.1016/j.eng.2023.02.019_b0130) 2020; 6 Eyke (10.1016/j.eng.2023.02.019_b0055) 2020; 5 10.1016/j.eng.2023.02.019_b0115 Olsson (10.1016/j.eng.2023.02.019_b0030) 2009 10.1016/j.eng.2023.02.019_b0235 Kusne (10.1016/j.eng.2023.02.019_b0165) 2020; 11 10.1016/j.eng.2023.02.019_b0310 Oh (10.1016/j.eng.2023.02.019_b0360) 2022; 106 Tran (10.1016/j.eng.2023.02.019_b0215) 2019; 347 Ureel (10.1016/j.eng.2023.02.019_b0050) 2022; 328 10.1016/j.eng.2023.02.019_b0150 10.1016/j.eng.2023.02.019_b0110 Tran (10.1016/j.eng.2023.02.019_b0160) 2018; 1 Greenman (10.1016/j.eng.2023.02.019_b0370) 2022; 13 Shang (10.1016/j.eng.2023.02.019_b0405) 2019; 5 Clayton (10.1016/j.eng.2023.02.019_b0190) 2019; 4 Häse (10.1016/j.eng.2023.02.019_b0295) 2021; 8 Duvenaud (10.1016/j.eng.2023.02.019_b0280) 2014 Mateos (10.1016/j.eng.2023.02.019_b0345) 2019; 4 Zhong (10.1016/j.eng.2023.02.019_b0265) 2020; 581 Schweidtmann (10.1016/j.eng.2023.02.019_b0060) 2018; 352 Oxford Economics Ltd (10.1016/j.eng.2023.02.019_b0005) 2019 Settles (10.1016/j.eng.2023.02.019_b0040) 2012 Clayton (10.1016/j.eng.2023.02.019_b0070) 2020; 384 Marin (10.1016/j.eng.2023.02.019_b0035) 2021; 404 Kitchin (10.1016/j.eng.2023.02.019_b0175) 2018; 1 Hong (10.1016/j.eng.2023.02.019_b0255) 2016; 6 10.1016/j.eng.2023.02.019_b0205 Pérez-Ramírez (10.1016/j.eng.2023.02.019_b0260) 2019; 2 Lazić (10.1016/j.eng.2023.02.019_b0010) 2006 Vijay (10.1016/j.eng.2023.02.019_b0250) 2022; 156 Habashi (10.1016/j.eng.2023.02.019_b0325) 2000; 32 10.1016/j.eng.2023.02.019_b0045 Morita (10.1016/j.eng.2023.02.019_b0225) 2022; 449 10.1016/j.eng.2023.02.019_b0285 Bédard (10.1016/j.eng.2023.02.019_b0340) 2018; 361 Núñez (10.1016/j.eng.2023.02.019_b0125) 2019; 58 Rasmussen (10.1016/j.eng.2023.02.019_b0080) 2006 Griffiths (10.1016/j.eng.2023.02.019_b0315) 2021; 3 Landau (10.1016/j.eng.2023.02.019_b0245) 2020 Hahndorf (10.1016/j.eng.2023.02.019_b0355) 2002; 89 Shim (10.1016/j.eng.2023.02.019_b0390) 2022; 13 Mao (10.1016/j.eng.2023.02.019_b0385) 2019; 5 Griffiths (10.1016/j.eng.2023.02.019_b0155) 2020; 11 Thrun (10.1016/j.eng.2023.02.019_b0075) 1995 Dobbelaere (10.1016/j.eng.2023.02.019_b0275) 2021; 7 |
| References_xml | – volume: 347 start-page: 827 year: 2019 end-page: 852 ident: b0215 article-title: pBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamics publication-title: Comput Methods Appl Mech Eng – volume: 11 start-page: 577 year: 2020 end-page: 586 ident: b0155 article-title: Constrained Bayesian optimization for automatic chemical design using variational autoencoders publication-title: Chem Sci – volume: 5 start-page: 995 year: 2019 end-page: 1002 ident: b0385 article-title: Opportunities and challenges of artificial intelligence for green manufacturing in the process industry publication-title: Engineering – volume: 404 start-page: 745 year: 2021 end-page: 759 ident: b0035 article-title: Kinetics of chemical processes: from molecular to industrial scale publication-title: J Catal – volume: 172 year: 2023 ident: b0380 article-title: Combining multi-fidelity modelling and asynchronous batch Bayesian optimization publication-title: Comput Chem Eng – year: 2009 ident: b0030 article-title: A literature survey of active machine learning in the context of natural language processing – reference: Sabatier P. La catalyse en chimie organique. Paris: Hachette Livre; 1920. French. – volume: 3 year: 2021 ident: b0315 article-title: Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation publication-title: Mach Learn Sci Technol – volume: 10 start-page: 6697 year: 2019 end-page: 6706 ident: b0065 article-title: Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis publication-title: Chem Sci – volume: 5 start-page: 1010 year: 2019 end-page: 1016 ident: b0405 article-title: Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era publication-title: Engineering – volume: 12 year: 2021 ident: b0180 article-title: Bias free multiobjective active learning for materials design and discovery publication-title: Nat Commun – reference: Xie Y, Tomizuka M, Zhan W. Towards general and efficient active learning. 2021. arXiv:211207963. – volume: 6 start-page: 20 year: 2020 ident: b0090 article-title: On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events publication-title: NPJ Comput Mater – reference: Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. Proceedings of the 25th International Conference on Neural Information Processing Systems; 2012 Dec 3–6; Lake Tahoe, NV, USA. Red Hook: Curran Associates Inc.; 2012. p. 2951–9. – volume: 583 start-page: 237 year: 2020 end-page: 241 ident: b0330 article-title: A mobile robotic chemist publication-title: Nature – volume: 590 start-page: 89 year: 2021 end-page: 96 ident: b0195 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature – volume: 5 start-page: 1963 year: 2020 end-page: 1972 ident: b0055 article-title: Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening publication-title: React Chem Eng – volume: 11 year: 2020 ident: b0165 article-title: On-the-fly closed-loop materials discovery via Bayesian active learning publication-title: Nat Commun – reference: Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. Weight uncertainty in neural networks. In: Proceedings of the 32nd International Conference on Machine Learning; 2015 Jul 7–9; Lille, France; 2015. p. 1613–22. – reference: Felton K, Wigh D, Lapkin A. Multi-task Bayesian optimization of chemical reactions. 2020. ChemRxiv: 13250216.v1. – volume: 4 start-page: 74 year: 2018 ident: b0170 article-title: Active learning for accelerated design of layered materials publication-title: NPJ Comput Mater – volume: 361 start-page: 1220 year: 2018 end-page: 1225 ident: b0340 article-title: Reconfigurable system for automated optimization of diverse chemical reactions publication-title: Science – volume: 6 start-page: 104 year: 2020 ident: b0130 article-title: Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide publication-title: NPJ Comput Mater – volume: 8 year: 2021 ident: b0295 article-title: Gryffin: an algorithm for Bayesian optimization of categorical variables informed by expert knowledge publication-title: Appl Phys Rev – volume: 61 start-page: 5719 year: 2018 end-page: 5732 ident: b0335 article-title: Integrated strategy for lead optimization based on fragment growing: the diversity-oriented-target-focused-synthesis approach publication-title: J Med Chem – volume: 4 start-page: 1545 year: 2019 end-page: 1554 ident: b0190 article-title: Algorithms for the self-optimisation of chemical reactions publication-title: React Chem Eng – volume: 13 start-page: 6655 year: 2022 end-page: 6668 ident: b0390 article-title: Predicting reaction conditions from limited data through active transfer learning publication-title: Chem Sci – volume: 352 start-page: 277 year: 2018 end-page: 282 ident: b0060 article-title: Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives publication-title: Chem Eng J – volume: 1 start-page: 732 year: 2022 end-page: 744 ident: b0320 article-title: Bayesian optimization with known experimental and design constraints for chemistry applications publication-title: Digit Discov – volume: 8 start-page: 13532 year: 2020 end-page: 13540 ident: b0270 article-title: Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: unexpected chemical compositions discovered by Bayesian optimization publication-title: J Mater Chem A – volume: 115 start-page: 1221 year: 2018 end-page: 1226 ident: b0020 article-title: Active learning machine learns to create new quantum experiments publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 4428 year: 2016 end-page: 4437 ident: b0255 article-title: How doped MoS publication-title: ACS Catal – volume: 1 start-page: 696 year: 2018 end-page: 703 ident: b0160 article-title: Active learning across intermetallics to guide discovery of electrocatalysts for CO publication-title: Nat Catal – volume: 2 start-page: 971 year: 2019 end-page: 976 ident: b0260 article-title: Strategies to break linear scaling relationships publication-title: Nat Catal – volume: 4 start-page: 268 year: 2018 end-page: 276 ident: b0400 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent Sci – year: 2012 ident: b0040 article-title: Active learning – volume: 24 start-page: 2864 year: 2020 end-page: 2873 ident: b0185 article-title: Solvent selection for Mitsunobu reaction driven by an active learning surrogate model publication-title: Org Process Res Dev – volume: 89 start-page: 119 year: 2002 end-page: 125 ident: b0355 article-title: Experimental equipment for high-throughput synthesis and testing of catalytic materials publication-title: Chem Eng J – volume: 156 year: 2022 ident: b0250 article-title: Limits to scaling relations between adsorption energies? publication-title: J Chem Phys – volume: 50 start-page: 517 year: 2017 end-page: 521 ident: b0230 article-title: Heterogeneous catalysis: a central science for a sustainable future publication-title: Acc Chem Res – volume: 10 start-page: 8154 year: 2019 end-page: 8163 ident: b0120 article-title: Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning publication-title: Chem Sci – volume: 13 start-page: 1152 year: 2022 end-page: 1162 ident: b0370 article-title: Multi-fidelity prediction of molecular optical peaks with deep learning publication-title: Chem Sci – volume: 63 start-page: 4846 year: 2008 end-page: 4872 ident: b0015 article-title: Model-based design of experiments for parameter precision: state of the art publication-title: Chem Eng Sci – volume: 119 start-page: 25 year: 2018 end-page: 37 ident: b0220 article-title: Multi-objective Bayesian optimization of chemical reactor design using computational fluid dynamics publication-title: Comput Chem Eng – volume: 129 start-page: 156 year: 2017 end-page: 163 ident: b0375 article-title: Multi-fidelity machine learning models for accurate bandgap predictions of solids publication-title: Comput Mater Sci – reference: Frazier PI. A tutorial on Bayesian optimization. 2018. arXiv:1807.02811v1. – reference: Gal Y, Islam R, Ghahramani Z. Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6–11; Sydney, NSW, Australia; 2017. p. 1183–92. – volume: 34 year: 2022 ident: b0395 article-title: Searching for an optimal multi-metallic alloy catalyst by active learning combined with experiments publication-title: Adv Mater – reference: Wang Z, Dahl GE, Swersky K, Lee C, Mariet Z, Nado Z, et al. Pre-training helps Bayesian optimization too. 2022. arXiv:220703084. – year: 2019 ident: b0005 article-title: The global chemical industry: catalyzing growth and addressing our world’s sustainability challenges – reference: Griffiths RR, Hernández-Lobato JM. Constrained Bayesian optimization for automatic chemical design. 2017. arXiv:1709.05501. – start-page: 381 year: 1995 end-page: 384 ident: b0075 article-title: Exploration in active learning publication-title: The handbook of brain theory and neural networks – reference: Riis C, Antunes F, Hüttel FB, Azevedo CL, Pereira FC. Bayesian active learning with fully Bayesian Gaussian processes. 2022. arXiv:2205.10186. – volume: 106 start-page: 449 year: 2022 end-page: 459 ident: b0360 article-title: Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts publication-title: J Ind Eng Chem – volume: 20 start-page: 2 year: 2020 end-page: 10 ident: b0140 article-title: Machine learning in nanoscience: big data at small scales publication-title: Nano Lett – start-page: 421 year: 2020 end-page: 432 ident: b0245 article-title: Hydrocracking phenanthrene and 1-methyl naphthalene: development of linear free energy relationships publication-title: Catalytic hydroprocessing of petroleum and distillates – volume: 4 start-page: 1536 year: 2019 end-page: 1544 ident: b0345 article-title: Automated platforms for reaction self-optimization in flow publication-title: React Chem Eng – reference: Sanchez-Lengeling B, Outeiral C, Guimaraes GL, Aspuru-Guzik A. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). 2017. ChemRxiv: 5309668.v3. – year: 2014 ident: b0280 article-title: Automatic model construction with Gaussian processes [dissertation] – reference: Hafner D, Tran D, Lillicrap T, Irpan A, Davidson J. Noise contrastive priors for functional uncertainty. In: Proceedings of the 35th Uncertainty in Artificial Intelligence Conference; 2019 Jul 22–25; Tel Aviv, Israel; 2020. p. 905–14. – volume: 7 start-page: 858 year: 2021 end-page: 867 ident: b0415 article-title: Discovering relationships between OSDAs and zeolites through data mining and generative neural networks publication-title: ACS Cent Sci – volume: 140 start-page: 171 year: 2017 end-page: 180 ident: b0085 article-title: Active learning of linearly parametrized interatomic potentials publication-title: Comput Mater Sci – volume: 58 start-page: 6146 year: 2019 end-page: 6154 ident: b0125 article-title: Multiscale modeling combined with active learning for microstructure optimization of bifunctional catalysts publication-title: Ind Eng Chem Res – year: 2006 ident: b0080 article-title: Gaussian processes for machine learning – year: 2006 ident: b0010 article-title: Design of experiments in chemical engineering: a practical guide – volume: 404 start-page: 706 year: 2021 end-page: 715 ident: b0240 article-title: Harmonious optimum conditions for heterogeneous catalytic reactions derived analytically with Polanyi relation and Bronsted relation publication-title: J Catal – volume: 581 start-page: 178 year: 2020 end-page: 183 ident: b0265 article-title: Accelerated discovery of CO publication-title: Nature – volume: 4 start-page: 1134 year: 2018 end-page: 1145 ident: b0300 article-title: Phoenics: a Bayesian optimizer for chemistry publication-title: ACS Cent Sci – volume: 449 year: 2022 ident: b0225 article-title: Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems publication-title: J Comput Phys – volume: 328 year: 2022 ident: b0050 article-title: Active learning-based exploration of the catalytic pyrolysis of plastic waste publication-title: Fuel – volume: 1 start-page: 116 year: 2021 end-page: 122 ident: b0200 article-title: Summit: benchmarking machine learning methods for reaction optimisation publication-title: Chem–Methods – volume: 3 year: 2016 ident: b0365 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci Data – reference: McHutchon A, Rasmussen C. Gaussian process training with input noise. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger KQ, editors. Proceedings of the 24th International Conference on Neural Information Processing Systems; 2011 Dec 12–14; Granada, Spain; 2011. p. 1341–9. – reference: Hansen MH, Torres JAG, Jennings PC, Wang Z, Boes JR, Mamun OG, et al. An atomistic machine learning package for surface science and catalysis. 2019. arXiv:1904.00904. – volume: 1 start-page: 230 year: 2018 end-page: 232 ident: b0175 article-title: Machine learning in catalysis publication-title: Nat Catal – volume: 51 start-page: 872 year: 2019 end-page: 885 ident: b0290 article-title: QUANTIS: data quality assessment tool by clustering analysis publication-title: Int J Chem Kinet – volume: 9 start-page: 381 year: 2017 end-page: 402 ident: b0135 article-title: Active learning for computational chemogenomics publication-title: Future Med Chem – volume: 384 year: 2020 ident: b0070 article-title: Automated self-optimisation of multi-step reaction and separation processes using machine learning publication-title: Chem Eng J – volume: 3 start-page: 120 year: 2021 end-page: 132 ident: b0350 article-title: Toward machine learning-enhanced high-throughput experimentation publication-title: Trends Chem – volume: 7 start-page: 1201 year: 2021 end-page: 1211 ident: b0275 article-title: Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats publication-title: Engineering – volume: 32 start-page: 725 year: 2000 end-page: 744 ident: b0325 article-title: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles publication-title: Int J Numer Meth Fluids – volume: 190 year: 2023 ident: b0025 article-title: When bioprocess engineering meets machine learning: a survey from the perspective of automated bioprocess development publication-title: Biochem Eng J – volume: 455 year: 2023 ident: b0210 article-title: Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis: unraveling the pathways to its monomer, dimers, and trimers formation publication-title: Chem Eng J – volume: 6 start-page: 4428 issue: 7 year: 2016 ident: 10.1016/j.eng.2023.02.019_b0255 article-title: How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction publication-title: ACS Catal doi: 10.1021/acscatal.6b00619 – volume: 115 start-page: 1221 issue: 6 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0020 article-title: Active learning machine learns to create new quantum experiments publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1714936115 – year: 2014 ident: 10.1016/j.eng.2023.02.019_b0280 – volume: 156 issue: 23 year: 2022 ident: 10.1016/j.eng.2023.02.019_b0250 article-title: Limits to scaling relations between adsorption energies? publication-title: J Chem Phys doi: 10.1063/5.0096625 – ident: 10.1016/j.eng.2023.02.019_b0105 – volume: 8 start-page: 13532 issue: 27 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0270 article-title: Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: unexpected chemical compositions discovered by Bayesian optimization publication-title: J Mater Chem A doi: 10.1039/D0TA04096G – volume: 13 start-page: 1152 issue: 4 year: 2022 ident: 10.1016/j.eng.2023.02.019_b0370 article-title: Multi-fidelity prediction of molecular optical peaks with deep learning publication-title: Chem Sci doi: 10.1039/D1SC05677H – volume: 3 issue: 1 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0315 article-title: Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation publication-title: Mach Learn Sci Technol doi: 10.1088/2632-2153/ac298c – volume: 361 start-page: 1220 issue: 6408 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0340 article-title: Reconfigurable system for automated optimization of diverse chemical reactions publication-title: Science doi: 10.1126/science.aat0650 – year: 2012 ident: 10.1016/j.eng.2023.02.019_b0040 – start-page: 381 year: 1995 ident: 10.1016/j.eng.2023.02.019_b0075 article-title: Exploration in active learning – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.eng.2023.02.019_b0365 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci Data doi: 10.1038/sdata.2016.18 – volume: 32 start-page: 725 issue: 6 year: 2000 ident: 10.1016/j.eng.2023.02.019_b0325 article-title: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles publication-title: Int J Numer Meth Fluids doi: 10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4 – volume: 13 start-page: 6655 issue: 22 year: 2022 ident: 10.1016/j.eng.2023.02.019_b0390 article-title: Predicting reaction conditions from limited data through active transfer learning publication-title: Chem Sci doi: 10.1039/D1SC06932B – ident: 10.1016/j.eng.2023.02.019_b0115 – ident: 10.1016/j.eng.2023.02.019_b0285 – volume: 8 issue: 3 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0295 article-title: Gryffin: an algorithm for Bayesian optimization of categorical variables informed by expert knowledge publication-title: Appl Phys Rev doi: 10.1063/5.0048164 – volume: 11 start-page: 577 issue: 2 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0155 article-title: Constrained Bayesian optimization for automatic chemical design using variational autoencoders publication-title: Chem Sci doi: 10.1039/C9SC04026A – volume: 140 start-page: 171 year: 2017 ident: 10.1016/j.eng.2023.02.019_b0085 article-title: Active learning of linearly parametrized interatomic potentials publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2017.08.031 – volume: 583 start-page: 237 issue: 7815 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0330 article-title: A mobile robotic chemist publication-title: Nature doi: 10.1038/s41586-020-2442-2 – volume: 34 issue: 19 year: 2022 ident: 10.1016/j.eng.2023.02.019_b0395 article-title: Searching for an optimal multi-metallic alloy catalyst by active learning combined with experiments publication-title: Adv Mater – volume: 404 start-page: 745 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0035 article-title: Kinetics of chemical processes: from molecular to industrial scale publication-title: J Catal doi: 10.1016/j.jcat.2021.09.014 – volume: 7 start-page: 1201 issue: 9 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0275 article-title: Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats publication-title: Engineering doi: 10.1016/j.eng.2021.03.019 – volume: 1 start-page: 230 issue: 4 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0175 article-title: Machine learning in catalysis publication-title: Nat Catal doi: 10.1038/s41929-018-0056-y – ident: 10.1016/j.eng.2023.02.019_b0205 doi: 10.26434/chemrxiv.13250216.v1 – ident: 10.1016/j.eng.2023.02.019_b0100 – year: 2006 ident: 10.1016/j.eng.2023.02.019_b0080 – ident: 10.1016/j.eng.2023.02.019_b0045 doi: 10.1287/educ.2018.0188 – volume: 4 start-page: 1134 issue: 9 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0300 article-title: Phoenics: a Bayesian optimizer for chemistry publication-title: ACS Cent Sci doi: 10.1021/acscentsci.8b00307 – volume: 129 start-page: 156 year: 2017 ident: 10.1016/j.eng.2023.02.019_b0375 article-title: Multi-fidelity machine learning models for accurate bandgap predictions of solids publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2016.12.004 – ident: 10.1016/j.eng.2023.02.019_b0095 – volume: 2 start-page: 971 issue: 11 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0260 article-title: Strategies to break linear scaling relationships publication-title: Nat Catal doi: 10.1038/s41929-019-0376-6 – volume: 89 start-page: 119 issue: 1–3 year: 2002 ident: 10.1016/j.eng.2023.02.019_b0355 article-title: Experimental equipment for high-throughput synthesis and testing of catalytic materials publication-title: Chem Eng J doi: 10.1016/S1385-8947(02)00005-0 – volume: 6 start-page: 20 issue: 1 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0090 article-title: On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events publication-title: NPJ Comput Mater doi: 10.1038/s41524-020-0283-z – ident: 10.1016/j.eng.2023.02.019_b0110 – volume: 5 start-page: 995 issue: 6 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0385 article-title: Opportunities and challenges of artificial intelligence for green manufacturing in the process industry publication-title: Engineering doi: 10.1016/j.eng.2019.08.013 – volume: 5 start-page: 1963 issue: 10 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0055 article-title: Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening publication-title: React Chem Eng doi: 10.1039/D0RE00232A – ident: 10.1016/j.eng.2023.02.019_b0145 – volume: 24 start-page: 2864 issue: 12 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0185 article-title: Solvent selection for Mitsunobu reaction driven by an active learning surrogate model publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.0c00376 – volume: 347 start-page: 827 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0215 article-title: pBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamics publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.12.033 – volume: 328 year: 2022 ident: 10.1016/j.eng.2023.02.019_b0050 article-title: Active learning-based exploration of the catalytic pyrolysis of plastic waste publication-title: Fuel doi: 10.1016/j.fuel.2022.125340 – volume: 106 start-page: 449 year: 2022 ident: 10.1016/j.eng.2023.02.019_b0360 article-title: Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2021.11.018 – volume: 58 start-page: 6146 issue: 15 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0125 article-title: Multiscale modeling combined with active learning for microstructure optimization of bifunctional catalysts publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.8b04801 – ident: 10.1016/j.eng.2023.02.019_b0235 – ident: 10.1016/j.eng.2023.02.019_b0305 – year: 2009 ident: 10.1016/j.eng.2023.02.019_b0030 – volume: 449 year: 2022 ident: 10.1016/j.eng.2023.02.019_b0225 article-title: Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110788 – volume: 11 issue: 1 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0165 article-title: On-the-fly closed-loop materials discovery via Bayesian active learning publication-title: Nat Commun doi: 10.1038/s41467-020-19597-w – start-page: 421 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0245 article-title: Hydrocracking phenanthrene and 1-methyl naphthalene: development of linear free energy relationships – volume: 50 start-page: 517 issue: 3 year: 2017 ident: 10.1016/j.eng.2023.02.019_b0230 article-title: Heterogeneous catalysis: a central science for a sustainable future publication-title: Acc Chem Res doi: 10.1021/acs.accounts.6b00510 – volume: 1 start-page: 732 year: 2022 ident: 10.1016/j.eng.2023.02.019_b0320 article-title: Bayesian optimization with known experimental and design constraints for chemistry applications publication-title: Digit Discov doi: 10.1039/D2DD00028H – year: 2006 ident: 10.1016/j.eng.2023.02.019_b0010 – volume: 6 start-page: 104 issue: 1 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0130 article-title: Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide publication-title: NPJ Comput Mater doi: 10.1038/s41524-020-00367-7 – volume: 119 start-page: 25 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0220 article-title: Multi-objective Bayesian optimization of chemical reactor design using computational fluid dynamics publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2018.08.005 – volume: 581 start-page: 178 issue: 7807 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0265 article-title: Accelerated discovery of CO2 electrocatalysts using active machine learning publication-title: Nature doi: 10.1038/s41586-020-2242-8 – volume: 190 year: 2023 ident: 10.1016/j.eng.2023.02.019_b0025 article-title: When bioprocess engineering meets machine learning: a survey from the perspective of automated bioprocess development publication-title: Biochem Eng J doi: 10.1016/j.bej.2022.108764 – volume: 384 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0070 article-title: Automated self-optimisation of multi-step reaction and separation processes using machine learning publication-title: Chem Eng J doi: 10.1016/j.cej.2019.123340 – volume: 3 start-page: 120 issue: 2 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0350 article-title: Toward machine learning-enhanced high-throughput experimentation publication-title: Trends Chem doi: 10.1016/j.trechm.2020.12.001 – year: 2019 ident: 10.1016/j.eng.2023.02.019_b0005 – volume: 9 start-page: 381 issue: 4 year: 2017 ident: 10.1016/j.eng.2023.02.019_b0135 article-title: Active learning for computational chemogenomics publication-title: Future Med Chem doi: 10.4155/fmc-2016-0197 – ident: 10.1016/j.eng.2023.02.019_b0310 – volume: 12 issue: 1 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0180 article-title: Bias free multiobjective active learning for materials design and discovery publication-title: Nat Commun doi: 10.1038/s41467-021-22437-0 – volume: 7 start-page: 858 issue: 5 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0415 article-title: Discovering relationships between OSDAs and zeolites through data mining and generative neural networks publication-title: ACS Cent Sci doi: 10.1021/acscentsci.1c00024 – volume: 10 start-page: 6697 issue: 27 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0065 article-title: Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis publication-title: Chem Sci doi: 10.1039/C9SC01844A – volume: 1 start-page: 696 issue: 9 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0160 article-title: Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution publication-title: Nat Catal doi: 10.1038/s41929-018-0142-1 – volume: 4 start-page: 1545 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0190 article-title: Algorithms for the self-optimisation of chemical reactions publication-title: React Chem Eng doi: 10.1039/C9RE00209J – volume: 4 start-page: 268 issue: 2 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0400 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent Sci doi: 10.1021/acscentsci.7b00572 – volume: 352 start-page: 277 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0060 article-title: Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives publication-title: Chem Eng J doi: 10.1016/j.cej.2018.07.031 – volume: 1 start-page: 116 issue: 2 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0200 article-title: Summit: benchmarking machine learning methods for reaction optimisation publication-title: Chem–Methods doi: 10.1002/cmtd.202000051 – volume: 172 year: 2023 ident: 10.1016/j.eng.2023.02.019_b0380 article-title: Combining multi-fidelity modelling and asynchronous batch Bayesian optimization publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2023.108194 – volume: 5 start-page: 1010 issue: 6 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0405 article-title: Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era publication-title: Engineering doi: 10.1016/j.eng.2019.01.019 – volume: 4 start-page: 74 issue: 1 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0170 article-title: Active learning for accelerated design of layered materials publication-title: NPJ Comput Mater doi: 10.1038/s41524-018-0129-0 – volume: 51 start-page: 872 issue: 11 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0290 article-title: QUANTIS: data quality assessment tool by clustering analysis publication-title: Int J Chem Kinet doi: 10.1002/kin.21316 – volume: 61 start-page: 5719 issue: 13 year: 2018 ident: 10.1016/j.eng.2023.02.019_b0335 article-title: Integrated strategy for lead optimization based on fragment growing: the diversity-oriented-target-focused-synthesis approach publication-title: J Med Chem doi: 10.1021/acs.jmedchem.8b00653 – volume: 455 year: 2023 ident: 10.1016/j.eng.2023.02.019_b0210 article-title: Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis: unraveling the pathways to its monomer, dimers, and trimers formation publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140708 – volume: 10 start-page: 8154 issue: 35 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0120 article-title: Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning publication-title: Chem Sci doi: 10.1039/C9SC00616H – volume: 4 start-page: 1536 issue: 9 year: 2019 ident: 10.1016/j.eng.2023.02.019_b0345 article-title: Automated platforms for reaction self-optimization in flow publication-title: React Chem Eng doi: 10.1039/C9RE00116F – volume: 63 start-page: 4846 issue: 19 year: 2008 ident: 10.1016/j.eng.2023.02.019_b0015 article-title: Model-based design of experiments for parameter precision: state of the art publication-title: Chem Eng Sci doi: 10.1016/j.ces.2007.11.034 – volume: 20 start-page: 2 issue: 1 year: 2020 ident: 10.1016/j.eng.2023.02.019_b0140 article-title: Machine learning in nanoscience: big data at small scales publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b04090 – ident: 10.1016/j.eng.2023.02.019_b0150 – volume: 404 start-page: 706 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0240 article-title: Harmonious optimum conditions for heterogeneous catalytic reactions derived analytically with Polanyi relation and Bronsted relation publication-title: J Catal doi: 10.1016/j.jcat.2021.09.018 – ident: 10.1016/j.eng.2023.02.019_b0410 doi: 10.26434/chemrxiv.5309668.v2 – volume: 590 start-page: 89 issue: 7844 year: 2021 ident: 10.1016/j.eng.2023.02.019_b0195 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature doi: 10.1038/s41586-021-03213-y |
| SSID | ssj0001510708 |
| Score | 2.3532925 |
| Snippet | By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be... By combining machine learning with the design of experiments,thereby achieving so-called active machine learning,more efficient and cheaper research can be... |
| SourceID | doaj wanfang crossref elsevier |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 23 |
| SubjectTerms | Active learning Active machine learning Bayesian optimization Chemical engineering Design of experiments |
| Title | Active Machine Learning for Chemical Engineers: A Bright Future Lies Ahead |
| URI | https://dx.doi.org/10.1016/j.eng.2023.02.019 https://d.wanfangdata.com.cn/periodical/gc-e202308008 https://doaj.org/article/29100d55beed4b9782bcc74984d86ce8 |
| Volume | 27 |
| WOSCitedRecordID | wos001206759600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2095-8099 databaseCode: DOA dateStart: 20150101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0001510708 providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yFPQgfuL8GDl4EqppkraJt00cInN4UNkt5KtlIlW2qf--SdqOepkXryVNw8vLe78fffk9AM4ls4TITEYu9-KIKs0ihXQe-XwhOVcJDnIML6NsPGaTCX9stfryNWGVPHBluCvs8hkySaJcMKfKcR6stM4oZ9SwVNtwzRdlvEWmqvvBjtZU7egchnBhmPPml2Yo7rJlcekbhwe9Tq-y00pKQbv_V27a-JZlLsuilXmGO2C7hoywXy11F6zZcg9stYQE98F9P4Qt-BBKIy2sVVML6CApbDQBYPPK_Br24SDQcjgMmiJw5Agz7LvAbA7A8_D26eYuqrskRJqSdBHZzCLCJPJ2IUphpWLJcZwnnuq4XbCOUSRU6xjnxjAaI2sZ1pnXukqxIoYcgk75XtojALXBNiZ5mhjqYRLjOkuUzK02BOlMpl2AGjMJXUuI-04Wb6KpFXt1h60Q3rICYeEs2wUXy1c-Kv2MVYMH3vbLgV76OjxwDiFqhxB_OUQX0GbnRI0iKnTgppqu-nav3mVRn-K5KLSwfohH1ez4PxZ3Ajb9hFUF4SnoLGaf9gys66_FdD7rBR_-AUAI8ZU |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Machine+Learning+for+Chemical+Engineers%3AA+Bright+Future+Lies+Ahead&rft.jtitle=%E5%B7%A5%E7%A8%8B%EF%BC%88%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=Yannick+Ureel&rft.au=Maarten+R.Dobbelaere&rft.au=Yi+Ouyang&rft.au=Kevin+De+Ras&rft.date=2023-08-01&rft.pub=Laboratory+for+Chemical+Technology%2CDepartment+of+Materials%2CTextiles+and+Chemical+Engineering%2CGhent+University%2CGhent+9052%2CBelgium&rft.issn=2095-8099&rft.volume=27&rft.issue=8&rft.spage=23&rft.epage=30&rft_id=info:doi/10.1016%2Fj.eng.2023.02.019&rft.externalDocID=gc_e202308008 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgc-e%2Fgc-e.jpg |