Active Machine Learning for Chemical Engineers: A Bright Future Lies Ahead

By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating proc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering (Beijing, China) Ročník 27; číslo 8; s. 23 - 30
Hlavní autori: Ureel, Yannick, Dobbelaere, Maarten R., Ouyang, Yi, De Ras, Kevin, Sabbe, Maarten K., Marin, Guy B., Van Geem, Kevin M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2023
Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium
Elsevier
Predmet:
ISSN:2095-8099
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering. While active machine learning algorithms are maturing, their applications are falling behind. In this article, three types of challenges presented by active machine learning—namely, convincing the experimental researcher, the flexibility of data creation, and the robustness of active machine learning algorithms—are identified, and ways to overcome them are discussed. A bright future lies ahead for active machine learning in chemical engineering, thanks to increasing automation and more efficient algorithms that can drive novel discoveries.
AbstractList By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering. While active machine learning algorithms are maturing, their applications are falling behind. In this article, three types of challenges presented by active machine learning—namely, convincing the experimental researcher, the flexibility of data creation, and the robustness of active machine learning algorithms—are identified, and ways to overcome them are discussed. A bright future lies ahead for active machine learning in chemical engineering, thanks to increasing automation and more efficient algorithms that can drive novel discoveries.
By combining machine learning with the design of experiments,thereby achieving so-called active machine learning,more efficient and cheaper research can be conducted.Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating pro-cesses spanning all length scales of chemical engineering.While active machine learning algorithms are maturing,their applications are falling behind.In this article,three types of challenges presented by active machine learning-namely,convincing the experimental researcher,the flexibility of data cre-ation,and the robustness of active machine learning algorithms-are identified,and ways to overcome them are discussed.A bright future lies ahead for active machine learning in chemical engineering,thanks to increasing automation and more efficient algorithms that can drive novel discoveries.
Author Ureel, Yannick
Van Geem, Kevin M.
Dobbelaere, Maarten R.
Sabbe, Maarten K.
Marin, Guy B.
Ouyang, Yi
De Ras, Kevin
AuthorAffiliation Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium
AuthorAffiliation_xml – name: Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium
Author_xml – sequence: 1
  givenname: Yannick
  orcidid: 0000-0001-6883-320X
  surname: Ureel
  fullname: Ureel, Yannick
– sequence: 2
  givenname: Maarten R.
  orcidid: 0000-0002-8977-8569
  surname: Dobbelaere
  fullname: Dobbelaere, Maarten R.
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-1950-4538
  surname: Ouyang
  fullname: Ouyang, Yi
– sequence: 4
  givenname: Kevin
  surname: De Ras
  fullname: De Ras, Kevin
– sequence: 5
  givenname: Maarten K.
  orcidid: 0000-0003-4824-2407
  surname: Sabbe
  fullname: Sabbe, Maarten K.
– sequence: 6
  givenname: Guy B.
  orcidid: 0000-0002-6733-1213
  surname: Marin
  fullname: Marin, Guy B.
– sequence: 7
  givenname: Kevin M.
  surname: Van Geem
  fullname: Van Geem, Kevin M.
  email: Kevin.VanGeem@UGent.be
BookMark eNp9kD1vFDEQhl0EiZDkB9C5obxl7P3yQnWcEgg6RAO1NTue3fPq4kVeX1D-fbwcNBSpLI3neWfmeSMuwhxYiLcKCgWqeT8VHMZCgy4L0AWo7kJcaujqjYGuey1ulmUCAFUraMFciq9bSv6R5Tekgw8s94wx-DDKYY5yd-AHT3iUt2HMnxyXD3IrP0U_HpK8O6VTzIDnRW4PjO5avBrwuPDN3_dK_Ly7_bH7stl__3y_2-43VJVN2nDLUBoE3ROVfa_7XmGn1VCDUhW2yHXb1BWR0oNzplLAbDS1XWtUo_vSlVfi_pzrZpzsr-gfMD7ZGb39U5jjaDEmT0e2ulMArq57Zlf1OWId2ladqZxpiE3OenfO-o1hwDDaaT7FkLe3I1leLYIBWPvacx_FeVkiD5Z8wuTnkCL6o1VgV_t2stm-XTkL2mb7mVT_kf82fon5eGY4a3z0HO1CngOx85Ep5Tv9C_Qznymehw
CitedBy_id crossref_primary_10_1186_s13321_024_00834_z
crossref_primary_10_3390_w17091314
crossref_primary_10_1016_j_jaap_2024_106512
crossref_primary_10_1016_j_eng_2025_08_009
crossref_primary_10_1021_jacs_5c05916
crossref_primary_10_1016_j_measurement_2025_116885
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1016_j_seppur_2025_133487
crossref_primary_10_1039_D3SC07012C
crossref_primary_10_1021_acsami_5c09626
crossref_primary_10_1038_s41598_025_01761_1
crossref_primary_10_1039_D5ME00075K
crossref_primary_10_1039_D4CY00873A
crossref_primary_10_57020_ject_1475566
crossref_primary_10_1007_s11705_025_2562_1
Cites_doi 10.1021/acscatal.6b00619
10.1073/pnas.1714936115
10.1063/5.0096625
10.1039/D0TA04096G
10.1039/D1SC05677H
10.1088/2632-2153/ac298c
10.1126/science.aat0650
10.1038/sdata.2016.18
10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
10.1039/D1SC06932B
10.1063/5.0048164
10.1039/C9SC04026A
10.1016/j.commatsci.2017.08.031
10.1038/s41586-020-2442-2
10.1016/j.jcat.2021.09.014
10.1016/j.eng.2021.03.019
10.1038/s41929-018-0056-y
10.26434/chemrxiv.13250216.v1
10.1287/educ.2018.0188
10.1021/acscentsci.8b00307
10.1016/j.commatsci.2016.12.004
10.1038/s41929-019-0376-6
10.1016/S1385-8947(02)00005-0
10.1038/s41524-020-0283-z
10.1016/j.eng.2019.08.013
10.1039/D0RE00232A
10.1021/acs.oprd.0c00376
10.1016/j.cma.2018.12.033
10.1016/j.fuel.2022.125340
10.1016/j.jiec.2021.11.018
10.1021/acs.iecr.8b04801
10.1016/j.jcp.2021.110788
10.1038/s41467-020-19597-w
10.1021/acs.accounts.6b00510
10.1039/D2DD00028H
10.1038/s41524-020-00367-7
10.1016/j.compchemeng.2018.08.005
10.1038/s41586-020-2242-8
10.1016/j.bej.2022.108764
10.1016/j.cej.2019.123340
10.1016/j.trechm.2020.12.001
10.4155/fmc-2016-0197
10.1038/s41467-021-22437-0
10.1021/acscentsci.1c00024
10.1039/C9SC01844A
10.1038/s41929-018-0142-1
10.1039/C9RE00209J
10.1021/acscentsci.7b00572
10.1016/j.cej.2018.07.031
10.1002/cmtd.202000051
10.1016/j.compchemeng.2023.108194
10.1016/j.eng.2019.01.019
10.1038/s41524-018-0129-0
10.1002/kin.21316
10.1021/acs.jmedchem.8b00653
10.1016/j.cej.2022.140708
10.1039/C9SC00616H
10.1039/C9RE00116F
10.1016/j.ces.2007.11.034
10.1021/acs.nanolett.9b04090
10.1016/j.jcat.2021.09.018
10.26434/chemrxiv.5309668.v2
10.1038/s41586-021-03213-y
ContentType Journal Article
Copyright 2023 THE AUTHORS
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 THE AUTHORS
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOA
DOI 10.1016/j.eng.2023.02.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 30
ExternalDocumentID oai_doaj_org_article_29100d55beed4b9782bcc74984d86ce8
gc_e202308008
10_1016_j_eng_2023_02_019
S2095809923002862
GroupedDBID 0R~
0SF
1-T
5VR
6I.
92H
92I
92R
93N
AACTN
AAEDW
AAFTH
AALRI
AAXDM
AAXUO
ABMAC
ACGFS
ACHIH
ADBBV
AEXQZ
AFTJW
AFUIB
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CCEZO
CEKLB
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
TCJ
TGT
-SC
-S~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
CAJEC
CITATION
Q--
U1G
U5M
2B.
4A8
PSX
ID FETCH-LOGICAL-c436t-e7e038a02bcc3bb2bb1a921f50114a7ae57654cc12fdd8410ee82c7978162b3d3
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206759600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-8099
IngestDate Fri Oct 03 12:52:57 EDT 2025
Thu May 29 03:58:45 EDT 2025
Wed Nov 05 20:47:20 EST 2025
Tue Nov 18 20:43:05 EST 2025
Sat Apr 06 16:24:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Bayesian optimization
Active learning
Chemical engineering
Design of experiments
Active machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-e7e038a02bcc3bb2bb1a921f50114a7ae57654cc12fdd8410ee82c7978162b3d3
ORCID 0000-0002-8977-8569
0000-0002-6733-1213
0000-0003-4824-2407
0000-0001-6883-320X
0000-0002-1950-4538
OpenAccessLink https://doaj.org/article/29100d55beed4b9782bcc74984d86ce8
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_29100d55beed4b9782bcc74984d86ce8
wanfang_journals_gc_e202308008
crossref_citationtrail_10_1016_j_eng_2023_02_019
crossref_primary_10_1016_j_eng_2023_02_019
elsevier_sciencedirect_doi_10_1016_j_eng_2023_02_019
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering (Beijing, China)
PublicationTitle_FL Engineering
PublicationYear 2023
Publisher Elsevier Ltd
Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium
– name: Elsevier
References Symoens, Aravindakshan, Vermeire, De Ras, Djokic, Marin (b0290) 2019; 51
Duvenaud (b0280) 2014
Shang, You (b0405) 2019; 5
Tran, Sun, Furlan, Pagalthivarthi, Visintainer, Wang (b0215) 2019; 347
Sivaraman, Krishnamoorthy, Baur, Holm, Stan, Csányi (b0130) 2020; 6
Hafner D, Tran D, Lillicrap T, Irpan A, Davidson J. Noise contrastive priors for functional uncertainty. In: Proceedings of the 35th Uncertainty in Artificial Intelligence Conference; 2019 Jul 22–25; Tel Aviv, Israel; 2020. p. 905–14.
Ichikawa (b0240) 2021; 404
Pilania, Gubernatis, Lookman (b0375) 2017; 129
Mao, Wang, Tang, Qian (b0385) 2019; 5
Lazić (b0010) 2006
Shields, Stevens, Li, Parasram, Damani, Alvarado (b0195) 2021; 590
Dobbelaere, Plehiers, Van de Vijver, Stevens, Van Geem (b0275) 2021; 7
Olsson (b0030) 2009
Griffiths, Hernández-Lobato (b0155) 2020; 11
Jablonka, Jothiappan, Wang, Smit, Yoo (b0180) 2021; 12
Vijay, Kastlunger, Chan, Nørskov (b0250) 2022; 156
Gal Y, Islam R, Ghahramani Z. Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6–11; Sydney, NSW, Australia; 2017. p. 1183–92.
Oftelie, Rajak, Kalia, Nakano, Sha, Sun (b0170) 2018; 4
Eyke, Koscher, Jensen (b0350) 2021; 3
Landau, Korré, Neurock, Klein, Quann (b0245) 2020
Hoffer, Voitovich, Raux, Carrasco, Muller, Fedorov (b0335) 2018; 61
Kim, Ha, Jung, Yoon, Shin, Kim (b0395) 2022; 34
Rasmussen, Williams (b0080) 2006
Morita, Rezaeiravesh, Tabatabaei, Vinuesa, Fukagata, Schlatter (b0225) 2022; 449
Núñez, Vlachos (b0125) 2019; 58
Griffiths, Aldrick, Garcia-Ortegon, Lalchand, Lee (b0315) 2021; 3
Brown, Brittman, Maccaferri, Jariwala, Celano (b0140) 2020; 20
Oh, Lee, Kang, Yang, Nam, Lim (b0360) 2022; 106
Amar, Schweidtmann, Deutsch, Cao, Lapkin (b0065) 2019; 10
Hahndorf, Buyevskaya, Langpape, Grubert, Kolf, Guillon (b0355) 2002; 89
Häse, Roch, Kreisbeck, Aspuru-Guzik (b0300) 2018; 4
Zhang, Lee (b0120) 2019; 10
Greenman, Green, Gómez-Bombarelli (b0370) 2022; 13
Zhong, Tran, Min, Wang, Wang, Dinh (b0265) 2020; 581
Gómez-Bombarelli, Wei, Duvenaud, Hernández-Lobato, Sánchez-Lengeling, Sheberla (b0400) 2018; 4
Reker, Schneider, Schneider, Brown (b0135) 2017; 9
Nugraha, Lambard, Na, Hossain, Asahi, Chaikittisilp (b0270) 2020; 8
Griffiths RR, Hernández-Lobato JM. Constrained Bayesian optimization for automatic chemical design. 2017. arXiv:1709.05501.
Park, Na, Kim, Lee (b0220) 2018; 119
Schweidtmann, Clayton, Holmes, Bradford, Bourne, Lapkin (b0060) 2018; 352
Habashi, Dompierre, Bourgault, Ait-Ali-Yahia, Fortin, Vallet (b0325) 2000; 32
Tran, Ulissi (b0160) 2018; 1
Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. Weight uncertainty in neural networks. In: Proceedings of the 32nd International Conference on Machine Learning; 2015 Jul 7–9; Lille, France; 2015. p. 1613–22.
Vandermause, Torrisi, Batzner, Xie, Sun, Kolpak (b0090) 2020; 6
Frazier PI. A tutorial on Bayesian optimization. 2018. arXiv:1807.02811v1.
Sanchez-Lengeling B, Outeiral C, Guimaraes GL, Aspuru-Guzik A. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). 2017. ChemRxiv: 5309668.v3.
McHutchon A, Rasmussen C. Gaussian process training with input noise. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger KQ, editors. Proceedings of the 24th International Conference on Neural Information Processing Systems; 2011 Dec 12–14; Granada, Spain; 2011. p. 1341–9.
Kusne, Yu, Wu, Zhang, Hattrick-Simpers, DeCost (b0165) 2020; 11
Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. Proceedings of the 25th International Conference on Neural Information Processing Systems; 2012 Dec 3–6; Lake Tahoe, NV, USA. Red Hook: Curran Associates Inc.; 2012. p. 2951–9.
Clayton, Schweidtmann, Clemens, Manson, Taylor, Niño (b0070) 2020; 384
Marin, Galvita, Yablonsky (b0035) 2021; 404
Hansen MH, Torres JAG, Jennings PC, Wang Z, Boes JR, Mamun OG, et al. An atomistic machine learning package for surface science and catalysis. 2019. arXiv:1904.00904.
Hong, Chan, Tsai, Nørskov (b0255) 2016; 6
Burger, Maffettone, Gusev, Aitchison, Bai, Wang (b0330) 2020; 583
Eyke, Green, Jensen (b0055) 2020; 5
Kitchin (b0175) 2018; 1
Podryabinkin, Shapeev (b0085) 2017; 140
Wang Z, Dahl GE, Swersky K, Lee C, Mariet Z, Nado Z, et al. Pre-training helps Bayesian optimization too. 2022. arXiv:220703084.
Felton K, Wigh D, Lapkin A. Multi-task Bayesian optimization of chemical reactions. 2020. ChemRxiv: 13250216.v1.
Hickman, Aldeghi, Häse, Aspuru-Guzik (b0320) 2022; 1
Melnikov, Poulsen Nautrup, Krenn, Dunjko, Tiersch, Zeilinger (b0020) 2018; 115
Pérez-Ramírez, López (b0260) 2019; 2
Sabatier P. La catalyse en chimie organique. Paris: Hachette Livre; 1920. French.
Shim, Kammeraad, Xu, Tewari, Cernak, Zimmerman (b0390) 2022; 13
Mateos, Nieves-Remacha, Rincón (b0345) 2019; 4
Settles (b0040) 2012
Folch, Lee, Shafei, Walz, Tsay, van der Wilk (b0380) 2023; 172
Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak (b0365) 2016; 3
Ureel, Dobbelaere, Akin, Varghese, Pernalete, Thybaut (b0050) 2022; 328
Bédard, Adamo, Aroh, Russell, Bedermann, Torosian (b0340) 2018; 361
Clayton, Manson, Taylor, Chamberlain, Taylor, Clemens (b0190) 2019; 4
Thrun (b0075) 1995
Felton, Rittig, Lapkin (b0200) 2021; 1
Dogu, Eschenbacher, Varghese, Dobbelaere, D’Hooge, Van Steenberge (b0210) 2023; 455
Oxford Economics Ltd (b0005) 2019
Franceschini, Macchietto (b0015) 2008; 63
Riis C, Antunes F, Hüttel FB, Azevedo CL, Pereira FC. Bayesian active learning with fully Bayesian Gaussian processes. 2022. arXiv:2205.10186.
Friend, Xu (b0230) 2017; 50
Zhang, Amar, Cao, Lapkin (b0185) 2020; 24
Häse, Aldeghi, Hickman, Roch, Aspuru-Guzik (b0295) 2021; 8
Jensen, Kwon, Schwalbe-Koda, Paris, Gómez-Bombarelli, Román-Leshkov (b0415) 2021; 7
Duong-Trung, Born, Kim, Schermeyer, Paulick, Borisyak (b0025) 2023; 190
Xie Y, Tomizuka M, Zhan W. Towards general and efficient active learning. 2021. arXiv:211207963.
Brown (10.1016/j.eng.2023.02.019_b0140) 2020; 20
Zhang (10.1016/j.eng.2023.02.019_b0185) 2020; 24
Dogu (10.1016/j.eng.2023.02.019_b0210) 2023; 455
Podryabinkin (10.1016/j.eng.2023.02.019_b0085) 2017; 140
Reker (10.1016/j.eng.2023.02.019_b0135) 2017; 9
Friend (10.1016/j.eng.2023.02.019_b0230) 2017; 50
Park (10.1016/j.eng.2023.02.019_b0220) 2018; 119
10.1016/j.eng.2023.02.019_b0410
Eyke (10.1016/j.eng.2023.02.019_b0350) 2021; 3
Hickman (10.1016/j.eng.2023.02.019_b0320) 2022; 1
10.1016/j.eng.2023.02.019_b0095
Nugraha (10.1016/j.eng.2023.02.019_b0270) 2020; 8
Burger (10.1016/j.eng.2023.02.019_b0330) 2020; 583
Ichikawa (10.1016/j.eng.2023.02.019_b0240) 2021; 404
Häse (10.1016/j.eng.2023.02.019_b0300) 2018; 4
Pilania (10.1016/j.eng.2023.02.019_b0375) 2017; 129
Duong-Trung (10.1016/j.eng.2023.02.019_b0025) 2023; 190
Zhang (10.1016/j.eng.2023.02.019_b0120) 2019; 10
Jensen (10.1016/j.eng.2023.02.019_b0415) 2021; 7
10.1016/j.eng.2023.02.019_b0145
Shields (10.1016/j.eng.2023.02.019_b0195) 2021; 590
10.1016/j.eng.2023.02.019_b0305
Wilkinson (10.1016/j.eng.2023.02.019_b0365) 2016; 3
10.1016/j.eng.2023.02.019_b0105
Amar (10.1016/j.eng.2023.02.019_b0065) 2019; 10
Jablonka (10.1016/j.eng.2023.02.019_b0180) 2021; 12
Oftelie (10.1016/j.eng.2023.02.019_b0170) 2018; 4
10.1016/j.eng.2023.02.019_b0100
Folch (10.1016/j.eng.2023.02.019_b0380) 2023; 172
Kim (10.1016/j.eng.2023.02.019_b0395) 2022; 34
Franceschini (10.1016/j.eng.2023.02.019_b0015) 2008; 63
Felton (10.1016/j.eng.2023.02.019_b0200) 2021; 1
Vandermause (10.1016/j.eng.2023.02.019_b0090) 2020; 6
Gómez-Bombarelli (10.1016/j.eng.2023.02.019_b0400) 2018; 4
Melnikov (10.1016/j.eng.2023.02.019_b0020) 2018; 115
Hoffer (10.1016/j.eng.2023.02.019_b0335) 2018; 61
Symoens (10.1016/j.eng.2023.02.019_b0290) 2019; 51
Sivaraman (10.1016/j.eng.2023.02.019_b0130) 2020; 6
Eyke (10.1016/j.eng.2023.02.019_b0055) 2020; 5
10.1016/j.eng.2023.02.019_b0115
Olsson (10.1016/j.eng.2023.02.019_b0030) 2009
10.1016/j.eng.2023.02.019_b0235
Kusne (10.1016/j.eng.2023.02.019_b0165) 2020; 11
10.1016/j.eng.2023.02.019_b0310
Oh (10.1016/j.eng.2023.02.019_b0360) 2022; 106
Tran (10.1016/j.eng.2023.02.019_b0215) 2019; 347
Ureel (10.1016/j.eng.2023.02.019_b0050) 2022; 328
10.1016/j.eng.2023.02.019_b0150
10.1016/j.eng.2023.02.019_b0110
Tran (10.1016/j.eng.2023.02.019_b0160) 2018; 1
Greenman (10.1016/j.eng.2023.02.019_b0370) 2022; 13
Shang (10.1016/j.eng.2023.02.019_b0405) 2019; 5
Clayton (10.1016/j.eng.2023.02.019_b0190) 2019; 4
Häse (10.1016/j.eng.2023.02.019_b0295) 2021; 8
Duvenaud (10.1016/j.eng.2023.02.019_b0280) 2014
Mateos (10.1016/j.eng.2023.02.019_b0345) 2019; 4
Zhong (10.1016/j.eng.2023.02.019_b0265) 2020; 581
Schweidtmann (10.1016/j.eng.2023.02.019_b0060) 2018; 352
Oxford Economics Ltd (10.1016/j.eng.2023.02.019_b0005) 2019
Settles (10.1016/j.eng.2023.02.019_b0040) 2012
Clayton (10.1016/j.eng.2023.02.019_b0070) 2020; 384
Marin (10.1016/j.eng.2023.02.019_b0035) 2021; 404
Kitchin (10.1016/j.eng.2023.02.019_b0175) 2018; 1
Hong (10.1016/j.eng.2023.02.019_b0255) 2016; 6
10.1016/j.eng.2023.02.019_b0205
Pérez-Ramírez (10.1016/j.eng.2023.02.019_b0260) 2019; 2
Lazić (10.1016/j.eng.2023.02.019_b0010) 2006
Vijay (10.1016/j.eng.2023.02.019_b0250) 2022; 156
Habashi (10.1016/j.eng.2023.02.019_b0325) 2000; 32
10.1016/j.eng.2023.02.019_b0045
Morita (10.1016/j.eng.2023.02.019_b0225) 2022; 449
10.1016/j.eng.2023.02.019_b0285
Bédard (10.1016/j.eng.2023.02.019_b0340) 2018; 361
Núñez (10.1016/j.eng.2023.02.019_b0125) 2019; 58
Rasmussen (10.1016/j.eng.2023.02.019_b0080) 2006
Griffiths (10.1016/j.eng.2023.02.019_b0315) 2021; 3
Landau (10.1016/j.eng.2023.02.019_b0245) 2020
Hahndorf (10.1016/j.eng.2023.02.019_b0355) 2002; 89
Shim (10.1016/j.eng.2023.02.019_b0390) 2022; 13
Mao (10.1016/j.eng.2023.02.019_b0385) 2019; 5
Griffiths (10.1016/j.eng.2023.02.019_b0155) 2020; 11
Thrun (10.1016/j.eng.2023.02.019_b0075) 1995
Dobbelaere (10.1016/j.eng.2023.02.019_b0275) 2021; 7
References_xml – volume: 347
  start-page: 827
  year: 2019
  end-page: 852
  ident: b0215
  article-title: pBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 11
  start-page: 577
  year: 2020
  end-page: 586
  ident: b0155
  article-title: Constrained Bayesian optimization for automatic chemical design using variational autoencoders
  publication-title: Chem Sci
– volume: 5
  start-page: 995
  year: 2019
  end-page: 1002
  ident: b0385
  article-title: Opportunities and challenges of artificial intelligence for green manufacturing in the process industry
  publication-title: Engineering
– volume: 404
  start-page: 745
  year: 2021
  end-page: 759
  ident: b0035
  article-title: Kinetics of chemical processes: from molecular to industrial scale
  publication-title: J Catal
– volume: 172
  year: 2023
  ident: b0380
  article-title: Combining multi-fidelity modelling and asynchronous batch Bayesian optimization
  publication-title: Comput Chem Eng
– year: 2009
  ident: b0030
  article-title: A literature survey of active machine learning in the context of natural language processing
– reference: Sabatier P. La catalyse en chimie organique. Paris: Hachette Livre; 1920. French.
– volume: 3
  year: 2021
  ident: b0315
  article-title: Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation
  publication-title: Mach Learn Sci Technol
– volume: 10
  start-page: 6697
  year: 2019
  end-page: 6706
  ident: b0065
  article-title: Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
  publication-title: Chem Sci
– volume: 5
  start-page: 1010
  year: 2019
  end-page: 1016
  ident: b0405
  article-title: Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era
  publication-title: Engineering
– volume: 12
  year: 2021
  ident: b0180
  article-title: Bias free multiobjective active learning for materials design and discovery
  publication-title: Nat Commun
– reference: Xie Y, Tomizuka M, Zhan W. Towards general and efficient active learning. 2021. arXiv:211207963.
– volume: 6
  start-page: 20
  year: 2020
  ident: b0090
  article-title: On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
  publication-title: NPJ Comput Mater
– reference: Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, editors. Proceedings of the 25th International Conference on Neural Information Processing Systems; 2012 Dec 3–6; Lake Tahoe, NV, USA. Red Hook: Curran Associates Inc.; 2012. p. 2951–9.
– volume: 583
  start-page: 237
  year: 2020
  end-page: 241
  ident: b0330
  article-title: A mobile robotic chemist
  publication-title: Nature
– volume: 590
  start-page: 89
  year: 2021
  end-page: 96
  ident: b0195
  article-title: Bayesian reaction optimization as a tool for chemical synthesis
  publication-title: Nature
– volume: 5
  start-page: 1963
  year: 2020
  end-page: 1972
  ident: b0055
  article-title: Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening
  publication-title: React Chem Eng
– volume: 11
  year: 2020
  ident: b0165
  article-title: On-the-fly closed-loop materials discovery via Bayesian active learning
  publication-title: Nat Commun
– reference: Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. Weight uncertainty in neural networks. In: Proceedings of the 32nd International Conference on Machine Learning; 2015 Jul 7–9; Lille, France; 2015. p. 1613–22.
– reference: Felton K, Wigh D, Lapkin A. Multi-task Bayesian optimization of chemical reactions. 2020. ChemRxiv: 13250216.v1.
– volume: 4
  start-page: 74
  year: 2018
  ident: b0170
  article-title: Active learning for accelerated design of layered materials
  publication-title: NPJ Comput Mater
– volume: 361
  start-page: 1220
  year: 2018
  end-page: 1225
  ident: b0340
  article-title: Reconfigurable system for automated optimization of diverse chemical reactions
  publication-title: Science
– volume: 6
  start-page: 104
  year: 2020
  ident: b0130
  article-title: Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide
  publication-title: NPJ Comput Mater
– volume: 8
  year: 2021
  ident: b0295
  article-title: Gryffin: an algorithm for Bayesian optimization of categorical variables informed by expert knowledge
  publication-title: Appl Phys Rev
– volume: 61
  start-page: 5719
  year: 2018
  end-page: 5732
  ident: b0335
  article-title: Integrated strategy for lead optimization based on fragment growing: the diversity-oriented-target-focused-synthesis approach
  publication-title: J Med Chem
– volume: 4
  start-page: 1545
  year: 2019
  end-page: 1554
  ident: b0190
  article-title: Algorithms for the self-optimisation of chemical reactions
  publication-title: React Chem Eng
– volume: 13
  start-page: 6655
  year: 2022
  end-page: 6668
  ident: b0390
  article-title: Predicting reaction conditions from limited data through active transfer learning
  publication-title: Chem Sci
– volume: 352
  start-page: 277
  year: 2018
  end-page: 282
  ident: b0060
  article-title: Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives
  publication-title: Chem Eng J
– volume: 1
  start-page: 732
  year: 2022
  end-page: 744
  ident: b0320
  article-title: Bayesian optimization with known experimental and design constraints for chemistry applications
  publication-title: Digit Discov
– volume: 8
  start-page: 13532
  year: 2020
  end-page: 13540
  ident: b0270
  article-title: Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: unexpected chemical compositions discovered by Bayesian optimization
  publication-title: J Mater Chem A
– volume: 115
  start-page: 1221
  year: 2018
  end-page: 1226
  ident: b0020
  article-title: Active learning machine learns to create new quantum experiments
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 4428
  year: 2016
  end-page: 4437
  ident: b0255
  article-title: How doped MoS
  publication-title: ACS Catal
– volume: 1
  start-page: 696
  year: 2018
  end-page: 703
  ident: b0160
  article-title: Active learning across intermetallics to guide discovery of electrocatalysts for CO
  publication-title: Nat Catal
– volume: 2
  start-page: 971
  year: 2019
  end-page: 976
  ident: b0260
  article-title: Strategies to break linear scaling relationships
  publication-title: Nat Catal
– volume: 4
  start-page: 268
  year: 2018
  end-page: 276
  ident: b0400
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent Sci
– year: 2012
  ident: b0040
  article-title: Active learning
– volume: 24
  start-page: 2864
  year: 2020
  end-page: 2873
  ident: b0185
  article-title: Solvent selection for Mitsunobu reaction driven by an active learning surrogate model
  publication-title: Org Process Res Dev
– volume: 89
  start-page: 119
  year: 2002
  end-page: 125
  ident: b0355
  article-title: Experimental equipment for high-throughput synthesis and testing of catalytic materials
  publication-title: Chem Eng J
– volume: 156
  year: 2022
  ident: b0250
  article-title: Limits to scaling relations between adsorption energies?
  publication-title: J Chem Phys
– volume: 50
  start-page: 517
  year: 2017
  end-page: 521
  ident: b0230
  article-title: Heterogeneous catalysis: a central science for a sustainable future
  publication-title: Acc Chem Res
– volume: 10
  start-page: 8154
  year: 2019
  end-page: 8163
  ident: b0120
  article-title: Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
  publication-title: Chem Sci
– volume: 13
  start-page: 1152
  year: 2022
  end-page: 1162
  ident: b0370
  article-title: Multi-fidelity prediction of molecular optical peaks with deep learning
  publication-title: Chem Sci
– volume: 63
  start-page: 4846
  year: 2008
  end-page: 4872
  ident: b0015
  article-title: Model-based design of experiments for parameter precision: state of the art
  publication-title: Chem Eng Sci
– volume: 119
  start-page: 25
  year: 2018
  end-page: 37
  ident: b0220
  article-title: Multi-objective Bayesian optimization of chemical reactor design using computational fluid dynamics
  publication-title: Comput Chem Eng
– volume: 129
  start-page: 156
  year: 2017
  end-page: 163
  ident: b0375
  article-title: Multi-fidelity machine learning models for accurate bandgap predictions of solids
  publication-title: Comput Mater Sci
– reference: Frazier PI. A tutorial on Bayesian optimization. 2018. arXiv:1807.02811v1.
– reference: Gal Y, Islam R, Ghahramani Z. Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6–11; Sydney, NSW, Australia; 2017. p. 1183–92.
– volume: 34
  year: 2022
  ident: b0395
  article-title: Searching for an optimal multi-metallic alloy catalyst by active learning combined with experiments
  publication-title: Adv Mater
– reference: Wang Z, Dahl GE, Swersky K, Lee C, Mariet Z, Nado Z, et al. Pre-training helps Bayesian optimization too. 2022. arXiv:220703084.
– year: 2019
  ident: b0005
  article-title: The global chemical industry: catalyzing growth and addressing our world’s sustainability challenges
– reference: Griffiths RR, Hernández-Lobato JM. Constrained Bayesian optimization for automatic chemical design. 2017. arXiv:1709.05501.
– start-page: 381
  year: 1995
  end-page: 384
  ident: b0075
  article-title: Exploration in active learning
  publication-title: The handbook of brain theory and neural networks
– reference: Riis C, Antunes F, Hüttel FB, Azevedo CL, Pereira FC. Bayesian active learning with fully Bayesian Gaussian processes. 2022. arXiv:2205.10186.
– volume: 106
  start-page: 449
  year: 2022
  end-page: 459
  ident: b0360
  article-title: Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts
  publication-title: J Ind Eng Chem
– volume: 20
  start-page: 2
  year: 2020
  end-page: 10
  ident: b0140
  article-title: Machine learning in nanoscience: big data at small scales
  publication-title: Nano Lett
– start-page: 421
  year: 2020
  end-page: 432
  ident: b0245
  article-title: Hydrocracking phenanthrene and 1-methyl naphthalene: development of linear free energy relationships
  publication-title: Catalytic hydroprocessing of petroleum and distillates
– volume: 4
  start-page: 1536
  year: 2019
  end-page: 1544
  ident: b0345
  article-title: Automated platforms for reaction self-optimization in flow
  publication-title: React Chem Eng
– reference: Sanchez-Lengeling B, Outeiral C, Guimaraes GL, Aspuru-Guzik A. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). 2017. ChemRxiv: 5309668.v3.
– year: 2014
  ident: b0280
  article-title: Automatic model construction with Gaussian processes [dissertation]
– reference: Hafner D, Tran D, Lillicrap T, Irpan A, Davidson J. Noise contrastive priors for functional uncertainty. In: Proceedings of the 35th Uncertainty in Artificial Intelligence Conference; 2019 Jul 22–25; Tel Aviv, Israel; 2020. p. 905–14.
– volume: 7
  start-page: 858
  year: 2021
  end-page: 867
  ident: b0415
  article-title: Discovering relationships between OSDAs and zeolites through data mining and generative neural networks
  publication-title: ACS Cent Sci
– volume: 140
  start-page: 171
  year: 2017
  end-page: 180
  ident: b0085
  article-title: Active learning of linearly parametrized interatomic potentials
  publication-title: Comput Mater Sci
– volume: 58
  start-page: 6146
  year: 2019
  end-page: 6154
  ident: b0125
  article-title: Multiscale modeling combined with active learning for microstructure optimization of bifunctional catalysts
  publication-title: Ind Eng Chem Res
– year: 2006
  ident: b0080
  article-title: Gaussian processes for machine learning
– year: 2006
  ident: b0010
  article-title: Design of experiments in chemical engineering: a practical guide
– volume: 404
  start-page: 706
  year: 2021
  end-page: 715
  ident: b0240
  article-title: Harmonious optimum conditions for heterogeneous catalytic reactions derived analytically with Polanyi relation and Bronsted relation
  publication-title: J Catal
– volume: 581
  start-page: 178
  year: 2020
  end-page: 183
  ident: b0265
  article-title: Accelerated discovery of CO
  publication-title: Nature
– volume: 4
  start-page: 1134
  year: 2018
  end-page: 1145
  ident: b0300
  article-title: Phoenics: a Bayesian optimizer for chemistry
  publication-title: ACS Cent Sci
– volume: 449
  year: 2022
  ident: b0225
  article-title: Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems
  publication-title: J Comput Phys
– volume: 328
  year: 2022
  ident: b0050
  article-title: Active learning-based exploration of the catalytic pyrolysis of plastic waste
  publication-title: Fuel
– volume: 1
  start-page: 116
  year: 2021
  end-page: 122
  ident: b0200
  article-title: Summit: benchmarking machine learning methods for reaction optimisation
  publication-title: Chem–Methods
– volume: 3
  year: 2016
  ident: b0365
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
– reference: McHutchon A, Rasmussen C. Gaussian process training with input noise. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger KQ, editors. Proceedings of the 24th International Conference on Neural Information Processing Systems; 2011 Dec 12–14; Granada, Spain; 2011. p. 1341–9.
– reference: Hansen MH, Torres JAG, Jennings PC, Wang Z, Boes JR, Mamun OG, et al. An atomistic machine learning package for surface science and catalysis. 2019. arXiv:1904.00904.
– volume: 1
  start-page: 230
  year: 2018
  end-page: 232
  ident: b0175
  article-title: Machine learning in catalysis
  publication-title: Nat Catal
– volume: 51
  start-page: 872
  year: 2019
  end-page: 885
  ident: b0290
  article-title: QUANTIS: data quality assessment tool by clustering analysis
  publication-title: Int J Chem Kinet
– volume: 9
  start-page: 381
  year: 2017
  end-page: 402
  ident: b0135
  article-title: Active learning for computational chemogenomics
  publication-title: Future Med Chem
– volume: 384
  year: 2020
  ident: b0070
  article-title: Automated self-optimisation of multi-step reaction and separation processes using machine learning
  publication-title: Chem Eng J
– volume: 3
  start-page: 120
  year: 2021
  end-page: 132
  ident: b0350
  article-title: Toward machine learning-enhanced high-throughput experimentation
  publication-title: Trends Chem
– volume: 7
  start-page: 1201
  year: 2021
  end-page: 1211
  ident: b0275
  article-title: Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats
  publication-title: Engineering
– volume: 32
  start-page: 725
  year: 2000
  end-page: 744
  ident: b0325
  article-title: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles
  publication-title: Int J Numer Meth Fluids
– volume: 190
  year: 2023
  ident: b0025
  article-title: When bioprocess engineering meets machine learning: a survey from the perspective of automated bioprocess development
  publication-title: Biochem Eng J
– volume: 455
  year: 2023
  ident: b0210
  article-title: Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis: unraveling the pathways to its monomer, dimers, and trimers formation
  publication-title: Chem Eng J
– volume: 6
  start-page: 4428
  issue: 7
  year: 2016
  ident: 10.1016/j.eng.2023.02.019_b0255
  article-title: How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b00619
– volume: 115
  start-page: 1221
  issue: 6
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0020
  article-title: Active learning machine learns to create new quantum experiments
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1714936115
– year: 2014
  ident: 10.1016/j.eng.2023.02.019_b0280
– volume: 156
  issue: 23
  year: 2022
  ident: 10.1016/j.eng.2023.02.019_b0250
  article-title: Limits to scaling relations between adsorption energies?
  publication-title: J Chem Phys
  doi: 10.1063/5.0096625
– ident: 10.1016/j.eng.2023.02.019_b0105
– volume: 8
  start-page: 13532
  issue: 27
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0270
  article-title: Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: unexpected chemical compositions discovered by Bayesian optimization
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA04096G
– volume: 13
  start-page: 1152
  issue: 4
  year: 2022
  ident: 10.1016/j.eng.2023.02.019_b0370
  article-title: Multi-fidelity prediction of molecular optical peaks with deep learning
  publication-title: Chem Sci
  doi: 10.1039/D1SC05677H
– volume: 3
  issue: 1
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0315
  article-title: Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation
  publication-title: Mach Learn Sci Technol
  doi: 10.1088/2632-2153/ac298c
– volume: 361
  start-page: 1220
  issue: 6408
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0340
  article-title: Reconfigurable system for automated optimization of diverse chemical reactions
  publication-title: Science
  doi: 10.1126/science.aat0650
– year: 2012
  ident: 10.1016/j.eng.2023.02.019_b0040
– start-page: 381
  year: 1995
  ident: 10.1016/j.eng.2023.02.019_b0075
  article-title: Exploration in active learning
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.eng.2023.02.019_b0365
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.18
– volume: 32
  start-page: 725
  issue: 6
  year: 2000
  ident: 10.1016/j.eng.2023.02.019_b0325
  article-title: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles
  publication-title: Int J Numer Meth Fluids
  doi: 10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
– volume: 13
  start-page: 6655
  issue: 22
  year: 2022
  ident: 10.1016/j.eng.2023.02.019_b0390
  article-title: Predicting reaction conditions from limited data through active transfer learning
  publication-title: Chem Sci
  doi: 10.1039/D1SC06932B
– ident: 10.1016/j.eng.2023.02.019_b0115
– ident: 10.1016/j.eng.2023.02.019_b0285
– volume: 8
  issue: 3
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0295
  article-title: Gryffin: an algorithm for Bayesian optimization of categorical variables informed by expert knowledge
  publication-title: Appl Phys Rev
  doi: 10.1063/5.0048164
– volume: 11
  start-page: 577
  issue: 2
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0155
  article-title: Constrained Bayesian optimization for automatic chemical design using variational autoencoders
  publication-title: Chem Sci
  doi: 10.1039/C9SC04026A
– volume: 140
  start-page: 171
  year: 2017
  ident: 10.1016/j.eng.2023.02.019_b0085
  article-title: Active learning of linearly parametrized interatomic potentials
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2017.08.031
– volume: 583
  start-page: 237
  issue: 7815
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0330
  article-title: A mobile robotic chemist
  publication-title: Nature
  doi: 10.1038/s41586-020-2442-2
– volume: 34
  issue: 19
  year: 2022
  ident: 10.1016/j.eng.2023.02.019_b0395
  article-title: Searching for an optimal multi-metallic alloy catalyst by active learning combined with experiments
  publication-title: Adv Mater
– volume: 404
  start-page: 745
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0035
  article-title: Kinetics of chemical processes: from molecular to industrial scale
  publication-title: J Catal
  doi: 10.1016/j.jcat.2021.09.014
– volume: 7
  start-page: 1201
  issue: 9
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0275
  article-title: Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats
  publication-title: Engineering
  doi: 10.1016/j.eng.2021.03.019
– volume: 1
  start-page: 230
  issue: 4
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0175
  article-title: Machine learning in catalysis
  publication-title: Nat Catal
  doi: 10.1038/s41929-018-0056-y
– ident: 10.1016/j.eng.2023.02.019_b0205
  doi: 10.26434/chemrxiv.13250216.v1
– ident: 10.1016/j.eng.2023.02.019_b0100
– year: 2006
  ident: 10.1016/j.eng.2023.02.019_b0080
– ident: 10.1016/j.eng.2023.02.019_b0045
  doi: 10.1287/educ.2018.0188
– volume: 4
  start-page: 1134
  issue: 9
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0300
  article-title: Phoenics: a Bayesian optimizer for chemistry
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.8b00307
– volume: 129
  start-page: 156
  year: 2017
  ident: 10.1016/j.eng.2023.02.019_b0375
  article-title: Multi-fidelity machine learning models for accurate bandgap predictions of solids
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2016.12.004
– ident: 10.1016/j.eng.2023.02.019_b0095
– volume: 2
  start-page: 971
  issue: 11
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0260
  article-title: Strategies to break linear scaling relationships
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0376-6
– volume: 89
  start-page: 119
  issue: 1–3
  year: 2002
  ident: 10.1016/j.eng.2023.02.019_b0355
  article-title: Experimental equipment for high-throughput synthesis and testing of catalytic materials
  publication-title: Chem Eng J
  doi: 10.1016/S1385-8947(02)00005-0
– volume: 6
  start-page: 20
  issue: 1
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0090
  article-title: On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
  publication-title: NPJ Comput Mater
  doi: 10.1038/s41524-020-0283-z
– ident: 10.1016/j.eng.2023.02.019_b0110
– volume: 5
  start-page: 995
  issue: 6
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0385
  article-title: Opportunities and challenges of artificial intelligence for green manufacturing in the process industry
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.08.013
– volume: 5
  start-page: 1963
  issue: 10
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0055
  article-title: Iterative experimental design based on active machine learning reduces the experimental burden associated with reaction screening
  publication-title: React Chem Eng
  doi: 10.1039/D0RE00232A
– ident: 10.1016/j.eng.2023.02.019_b0145
– volume: 24
  start-page: 2864
  issue: 12
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0185
  article-title: Solvent selection for Mitsunobu reaction driven by an active learning surrogate model
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.0c00376
– volume: 347
  start-page: 827
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0215
  article-title: pBO-2GP-3B: a batch parallel known/unknown constrained Bayesian optimization with feasibility classification and its applications in computational fluid dynamics
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.12.033
– volume: 328
  year: 2022
  ident: 10.1016/j.eng.2023.02.019_b0050
  article-title: Active learning-based exploration of the catalytic pyrolysis of plastic waste
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125340
– volume: 106
  start-page: 449
  year: 2022
  ident: 10.1016/j.eng.2023.02.019_b0360
  article-title: Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2021.11.018
– volume: 58
  start-page: 6146
  issue: 15
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0125
  article-title: Multiscale modeling combined with active learning for microstructure optimization of bifunctional catalysts
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.8b04801
– ident: 10.1016/j.eng.2023.02.019_b0235
– ident: 10.1016/j.eng.2023.02.019_b0305
– year: 2009
  ident: 10.1016/j.eng.2023.02.019_b0030
– volume: 449
  year: 2022
  ident: 10.1016/j.eng.2023.02.019_b0225
  article-title: Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110788
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0165
  article-title: On-the-fly closed-loop materials discovery via Bayesian active learning
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19597-w
– start-page: 421
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0245
  article-title: Hydrocracking phenanthrene and 1-methyl naphthalene: development of linear free energy relationships
– volume: 50
  start-page: 517
  issue: 3
  year: 2017
  ident: 10.1016/j.eng.2023.02.019_b0230
  article-title: Heterogeneous catalysis: a central science for a sustainable future
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.6b00510
– volume: 1
  start-page: 732
  year: 2022
  ident: 10.1016/j.eng.2023.02.019_b0320
  article-title: Bayesian optimization with known experimental and design constraints for chemistry applications
  publication-title: Digit Discov
  doi: 10.1039/D2DD00028H
– year: 2006
  ident: 10.1016/j.eng.2023.02.019_b0010
– volume: 6
  start-page: 104
  issue: 1
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0130
  article-title: Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide
  publication-title: NPJ Comput Mater
  doi: 10.1038/s41524-020-00367-7
– volume: 119
  start-page: 25
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0220
  article-title: Multi-objective Bayesian optimization of chemical reactor design using computational fluid dynamics
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2018.08.005
– volume: 581
  start-page: 178
  issue: 7807
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0265
  article-title: Accelerated discovery of CO2 electrocatalysts using active machine learning
  publication-title: Nature
  doi: 10.1038/s41586-020-2242-8
– volume: 190
  year: 2023
  ident: 10.1016/j.eng.2023.02.019_b0025
  article-title: When bioprocess engineering meets machine learning: a survey from the perspective of automated bioprocess development
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2022.108764
– volume: 384
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0070
  article-title: Automated self-optimisation of multi-step reaction and separation processes using machine learning
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.123340
– volume: 3
  start-page: 120
  issue: 2
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0350
  article-title: Toward machine learning-enhanced high-throughput experimentation
  publication-title: Trends Chem
  doi: 10.1016/j.trechm.2020.12.001
– year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0005
– volume: 9
  start-page: 381
  issue: 4
  year: 2017
  ident: 10.1016/j.eng.2023.02.019_b0135
  article-title: Active learning for computational chemogenomics
  publication-title: Future Med Chem
  doi: 10.4155/fmc-2016-0197
– ident: 10.1016/j.eng.2023.02.019_b0310
– volume: 12
  issue: 1
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0180
  article-title: Bias free multiobjective active learning for materials design and discovery
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22437-0
– volume: 7
  start-page: 858
  issue: 5
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0415
  article-title: Discovering relationships between OSDAs and zeolites through data mining and generative neural networks
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.1c00024
– volume: 10
  start-page: 6697
  issue: 27
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0065
  article-title: Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
  publication-title: Chem Sci
  doi: 10.1039/C9SC01844A
– volume: 1
  start-page: 696
  issue: 9
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0160
  article-title: Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution
  publication-title: Nat Catal
  doi: 10.1038/s41929-018-0142-1
– volume: 4
  start-page: 1545
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0190
  article-title: Algorithms for the self-optimisation of chemical reactions
  publication-title: React Chem Eng
  doi: 10.1039/C9RE00209J
– volume: 4
  start-page: 268
  issue: 2
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0400
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00572
– volume: 352
  start-page: 277
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0060
  article-title: Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.07.031
– volume: 1
  start-page: 116
  issue: 2
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0200
  article-title: Summit: benchmarking machine learning methods for reaction optimisation
  publication-title: Chem–Methods
  doi: 10.1002/cmtd.202000051
– volume: 172
  year: 2023
  ident: 10.1016/j.eng.2023.02.019_b0380
  article-title: Combining multi-fidelity modelling and asynchronous batch Bayesian optimization
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2023.108194
– volume: 5
  start-page: 1010
  issue: 6
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0405
  article-title: Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.01.019
– volume: 4
  start-page: 74
  issue: 1
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0170
  article-title: Active learning for accelerated design of layered materials
  publication-title: NPJ Comput Mater
  doi: 10.1038/s41524-018-0129-0
– volume: 51
  start-page: 872
  issue: 11
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0290
  article-title: QUANTIS: data quality assessment tool by clustering analysis
  publication-title: Int J Chem Kinet
  doi: 10.1002/kin.21316
– volume: 61
  start-page: 5719
  issue: 13
  year: 2018
  ident: 10.1016/j.eng.2023.02.019_b0335
  article-title: Integrated strategy for lead optimization based on fragment growing: the diversity-oriented-target-focused-synthesis approach
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.8b00653
– volume: 455
  year: 2023
  ident: 10.1016/j.eng.2023.02.019_b0210
  article-title: Bayesian tuned kinetic Monte Carlo modeling of polystyrene pyrolysis: unraveling the pathways to its monomer, dimers, and trimers formation
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.140708
– volume: 10
  start-page: 8154
  issue: 35
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0120
  article-title: Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
  publication-title: Chem Sci
  doi: 10.1039/C9SC00616H
– volume: 4
  start-page: 1536
  issue: 9
  year: 2019
  ident: 10.1016/j.eng.2023.02.019_b0345
  article-title: Automated platforms for reaction self-optimization in flow
  publication-title: React Chem Eng
  doi: 10.1039/C9RE00116F
– volume: 63
  start-page: 4846
  issue: 19
  year: 2008
  ident: 10.1016/j.eng.2023.02.019_b0015
  article-title: Model-based design of experiments for parameter precision: state of the art
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2007.11.034
– volume: 20
  start-page: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.eng.2023.02.019_b0140
  article-title: Machine learning in nanoscience: big data at small scales
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b04090
– ident: 10.1016/j.eng.2023.02.019_b0150
– volume: 404
  start-page: 706
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0240
  article-title: Harmonious optimum conditions for heterogeneous catalytic reactions derived analytically with Polanyi relation and Bronsted relation
  publication-title: J Catal
  doi: 10.1016/j.jcat.2021.09.018
– ident: 10.1016/j.eng.2023.02.019_b0410
  doi: 10.26434/chemrxiv.5309668.v2
– volume: 590
  start-page: 89
  issue: 7844
  year: 2021
  ident: 10.1016/j.eng.2023.02.019_b0195
  article-title: Bayesian reaction optimization as a tool for chemical synthesis
  publication-title: Nature
  doi: 10.1038/s41586-021-03213-y
SSID ssj0001510708
Score 2.3532016
Snippet By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be...
By combining machine learning with the design of experiments,thereby achieving so-called active machine learning,more efficient and cheaper research can be...
SourceID doaj
wanfang
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Active learning
Active machine learning
Bayesian optimization
Chemical engineering
Design of experiments
Title Active Machine Learning for Chemical Engineers: A Bright Future Lies Ahead
URI https://dx.doi.org/10.1016/j.eng.2023.02.019
https://d.wanfangdata.com.cn/periodical/gc-e202308008
https://doaj.org/article/29100d55beed4b9782bcc74984d86ce8
Volume 27
WOSCitedRecordID wos001206759600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2095-8099
  databaseCode: DOA
  dateStart: 20150101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0001510708
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yFPQg_sT5Y-TgSai2adom3jZxiMzhQWW3kJekZSJVtqn_vknajnqZF68lTcOXl_feR1--h9A5MzGEQHmQADGuhVkUMFfkCLkGTRMN4NsBvYyy8ZhNJvyx1erL1YRV8sAVcFfExrNQJwlYZ07Bch4CSmWUM6pZqoy_5htmvEWmqvvBltZU7ehsDmHdMOfNL01f3GXK4tI1Dvd6nU5lpxWUvHb_r9i08S3LXJZFK_IMd9B2nTLifrXUXbRmyj201RIS3Ef3fe-28IMvjTS4Vk0tsE1JcaMJgJtX5te4jweeluOh1xTBI0uYcd86Zn2Anoe3Tzd3Qd0lIVA0TheByUwYMxk6XGIAAhBJTqI8cVRHZtJYRpFQpSKSa81oFBrDiMqc1lVKINbxIeqU76U5QljFuUxsRKMmTymPJUsUWMgVSM04NaSLwgYmoWoJcdfJ4k00tWKv9rAVwiErQiIssl10sXzlo9LPWDV44LBfDnTS1_6BNQhRG4T4yyC6iDY7J-ososoO7FTTVd_u1bss6lM8F4USxg1xWTU7_o_FnaBNN2FVQXiKOovZpzlD6-prMZ3Pet6GfwDIGfIZ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Machine+Learning+for+Chemical+Engineers%3A+A+Bright+Future+Lies+Ahead&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Ureel%2C+Yannick&rft.au=Dobbelaere%2C+Maarten+R.&rft.au=Ouyang%2C+Yi&rft.au=De+Ras%2C+Kevin&rft.date=2023-08-01&rft.issn=2095-8099&rft.volume=27&rft.spage=23&rft.epage=30&rft_id=info:doi/10.1016%2Fj.eng.2023.02.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eng_2023_02_019
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgc-e%2Fgc-e.jpg