Active Machine Learning for Chemical Engineers: A Bright Future Lies Ahead

By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating proc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering (Beijing, China) Ročník 27; číslo 8; s. 23 - 30
Hlavní autoři: Ureel, Yannick, Dobbelaere, Maarten R., Ouyang, Yi, De Ras, Kevin, Sabbe, Maarten K., Marin, Guy B., Van Geem, Kevin M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2023
Laboratory for Chemical Technology,Department of Materials,Textiles and Chemical Engineering,Ghent University,Ghent 9052,Belgium
Elsevier
Témata:
ISSN:2095-8099
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering. While active machine learning algorithms are maturing, their applications are falling behind. In this article, three types of challenges presented by active machine learning—namely, convincing the experimental researcher, the flexibility of data creation, and the robustness of active machine learning algorithms—are identified, and ways to overcome them are discussed. A bright future lies ahead for active machine learning in chemical engineering, thanks to increasing automation and more efficient algorithms that can drive novel discoveries.
ISSN:2095-8099
DOI:10.1016/j.eng.2023.02.019