Quantitative stability of mixed-integer two-stage quadratic stochastic programs

For our introduced mixed-integer quadratic stochastic program with fixed recourse matrices, random recourse costs, technology matrix and right-hand sides, we study quantitative stability properties of its optimal value function and optimal solution set when the underlying probability distribution is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical methods of operations research (Heidelberg, Germany) Ročník 75; číslo 2; s. 149 - 163
Hlavní autori: Chen, Zhiping, Han, Youpan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.04.2012
Springer
Springer Nature B.V
Predmet:
ISSN:1432-2994, 1432-5217
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For our introduced mixed-integer quadratic stochastic program with fixed recourse matrices, random recourse costs, technology matrix and right-hand sides, we study quantitative stability properties of its optimal value function and optimal solution set when the underlying probability distribution is perturbed with respect to an appropriate probability metric. To this end, we first establish various Lipschitz continuity results about the value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of linear constraints. The obtained results extend earlier results about quantitative stability properties of stochastic integer programming and stability results for mixed-integer parametric quadratic programs.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1432-2994
1432-5217
DOI:10.1007/s00186-010-0326-1