Feature uncertainty bounds for explicit feature maps and large robust nonlinear SVM classifiers

We consider the binary classification problem when data are large and subject to unknown but bounded uncertainties. We address the problem by formulating the nonlinear support vector machine training problem with robust optimization. To do so, we analyze and propose two bounding schemes for uncertai...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of mathematics and artificial intelligence Ročník 88; číslo 1-3; s. 269 - 289
Hlavní autori: Couellan, Nicolas, Jan, Sophie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.03.2020
Springer
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:1012-2443, 1573-7470
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the binary classification problem when data are large and subject to unknown but bounded uncertainties. We address the problem by formulating the nonlinear support vector machine training problem with robust optimization. To do so, we analyze and propose two bounding schemes for uncertainties associated to random approximate features in low dimensional spaces. The proposed bound calculations are based on Random Fourier Features and the Nyström methods. Numerical experiments are conducted to illustrate the benefit of the technique. We also emphasize the decomposable structure of the proposed robust nonlinear formulation that allows the use of efficient stochastic approximation techniques when datasets are large.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1012-2443
1573-7470
DOI:10.1007/s10472-019-09676-0