Fake Fingerprint Classification Using Hybrid Features Learning With Gradient Boosting

Biometric security systems must be able to detect phony fingerprints to provide reliable authentication. The findings of this study suggest a hybrid approach to the detection of fake fingerprints that uses information on the texture and shape of the fingerprint. The novelty of this approach lies in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Computational Intelligence and Soft Computing Jg. 2025; H. 1
Hauptverfasser: Ali, Muhammad Salman, Akram, Arslan, Rashid, Javed, Jaffar, Muhammad Arfan, Shah, Dilawar, Ali, Shujaat, Tahir, Muhammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York John Wiley & Sons, Inc 01.01.2025
Wiley
Schlagworte:
ISSN:1687-9724, 1687-9732
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Biometric security systems must be able to detect phony fingerprints to provide reliable authentication. The findings of this study suggest a hybrid approach to the detection of fake fingerprints that uses information on the texture and shape of the fingerprint. The novelty of this approach lies in integrating both traditional fingerprint information and geometric features obtained through wavelet transformation, which has not been extensively explored in previous studies. The proposed procedure uses the traditional fingerprint information and the geometric features that may be collected by wavelet modification. This allows it to take advantage of the complementary capabilities that these two types of capabilities offer. In addition, the hybrid feature set improves the system’s robustness and accuracy by leveraging each feature type’s unique strengths. To achieve this goal, the standard fingerprint information and the geometric aspects of the fingerprint are combined. It is possible to efficiently identify authentic and forged fingerprints by using these hybrid features and training a gradient boosting classifier. The findings of the studies demonstrate that the suggested technique achieves an accuracy of 96% on medium spoofing photos from the SOCOFing dataset, 97% on hard spoofing images, and 98% on mixed spoofing images. This high level of accuracy, especially on mixed spoofing images, showcases the effectiveness of the novel hybrid approach in diverse and challenging scenarios. This places it in the position of being the most accurate way currently accessible among the existing state‐of‐the‐art methods. Furthermore, the proposed method’s scalability and adaptability make it suitable for real‐world applications, potentially setting a new standard in biometric security. There is a great deal of optimism that the technique that has been described can increase the reliability and safety of biometric systems when used in situations representative of the actual world.
AbstractList Biometric security systems must be able to detect phony fingerprints to provide reliable authentication. The findings of this study suggest a hybrid approach to the detection of fake fingerprints that uses information on the texture and shape of the fingerprint. The novelty of this approach lies in integrating both traditional fingerprint information and geometric features obtained through wavelet transformation, which has not been extensively explored in previous studies. The proposed procedure uses the traditional fingerprint information and the geometric features that may be collected by wavelet modification. This allows it to take advantage of the complementary capabilities that these two types of capabilities offer. In addition, the hybrid feature set improves the system’s robustness and accuracy by leveraging each feature type’s unique strengths. To achieve this goal, the standard fingerprint information and the geometric aspects of the fingerprint are combined. It is possible to efficiently identify authentic and forged fingerprints by using these hybrid features and training a gradient boosting classifier. The findings of the studies demonstrate that the suggested technique achieves an accuracy of 96% on medium spoofing photos from the SOCOFing dataset, 97% on hard spoofing images, and 98% on mixed spoofing images. This high level of accuracy, especially on mixed spoofing images, showcases the effectiveness of the novel hybrid approach in diverse and challenging scenarios. This places it in the position of being the most accurate way currently accessible among the existing state‐of‐the‐art methods. Furthermore, the proposed method’s scalability and adaptability make it suitable for real‐world applications, potentially setting a new standard in biometric security. There is a great deal of optimism that the technique that has been described can increase the reliability and safety of biometric systems when used in situations representative of the actual world.
Audience Academic
Author Rashid, Javed
Ali, Shujaat
Tahir, Muhammad
Ali, Muhammad Salman
Akram, Arslan
Jaffar, Muhammad Arfan
Shah, Dilawar
Author_xml – sequence: 1
  givenname: Muhammad Salman
  orcidid: 0000-0003-3645-3303
  surname: Ali
  fullname: Ali, Muhammad Salman
– sequence: 2
  givenname: Arslan
  orcidid: 0000-0001-9424-1697
  surname: Akram
  fullname: Akram, Arslan
– sequence: 3
  givenname: Javed
  surname: Rashid
  fullname: Rashid, Javed
– sequence: 4
  givenname: Muhammad Arfan
  surname: Jaffar
  fullname: Jaffar, Muhammad Arfan
– sequence: 5
  givenname: Dilawar
  orcidid: 0000-0003-2701-6646
  surname: Shah
  fullname: Shah, Dilawar
– sequence: 6
  givenname: Shujaat
  surname: Ali
  fullname: Ali, Shujaat
– sequence: 7
  givenname: Muhammad
  orcidid: 0000-0002-0826-7346
  surname: Tahir
  fullname: Tahir, Muhammad
BookMark eNptkU9vEzEQxVeoSJTSGx9gJa6k9dhee30sEWkrReJCxdGa9Z8wJVkX2zn02-M0VRGo8sHWzO-9Geu9707mNIeu-wjsAmAYLtFRuRyl5CDFm-4U1KgXRgt-8vLm8l13XgpNjAnGpB7H0-5uhb9Cv6J5E_JDprn2yy02JpLDSmnu70rr9TePUybfrwLWfQ6lXwfM86Hxg-rP_jqjp9C0X1IqtZU_dG8jbks4f77P2pyv35c3i_W369vl1XrhpFB1EYDxCVGoABpxEhwAGHM6TsBE1MpJ1NOo4oCOK4gBfWTSe6kMMyiRibPu9ujrE97btv8O86NNSPapkPLGYq7ktsFKg2icF4DopTDSaDOayJBPIow-xub16ej1kNPvfSjV3qd9ntv6VoAe5ACDgb_UBpspzTHVjG5HxdmrUXCpQDHRqItXqHZ82JFruUVq9X8En48Cl1MpOcSXzwCzh3jtIV77HG_D-X-4o_qUV5tD29dFfwB296mS
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3583885
crossref_primary_10_1007_s13369_025_10528_9
Cites_doi 10.3390/sym13050750
10.1109/ACCESS.2020.2990909
10.1007/s11042-020-09314-6
10.1007/s11042-023-16776-x
10.56536/jicet.v3i1.55
10.1016/j.net.2020.03.022
10.1109/ICMLA.2018.00187
10.1109/TPAMI.2011.161
10.1007/s00521-019-04499-w
10.3390/jimaging9080158
10.1145/982507.982516
10.32604/cmc.2023.035287
10.1007/978-0-85729-748-8
10.1007/978-3-642-04070-2_21
10.32604/cmc.2023.032005
10.1145/2933241
10.1007/s11760-022-02270-8
10.1109/ACCESS.2020.3047723
10.32604/cmc.2023.041074
10.1016/j.patcog.2022.109050
10.14500/aro.10975
10.1108/WJE-09-2020-0456
10.1109/ASPCON49795.2020.9276660
10.1007/978-3-031-14054-9_31
10.1007/978-3-030-83624-5
10.1007/s00371-021-02173-8
10.21123/bsj.2022.6550
10.3390/app12115714
10.5220/0011327100003271
10.1109/TCYB.2021.3081764
ContentType Journal Article
Copyright COPYRIGHT 2025 John Wiley & Sons, Inc.
Copyright © 2025 Muhammad Salman Ali et al. Applied Computational Intelligence and Soft Computing published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: COPYRIGHT 2025 John Wiley & Sons, Inc.
– notice: Copyright © 2025 Muhammad Salman Ali et al. Applied Computational Intelligence and Soft Computing published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/acis/8442143
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
Middle East & Africa Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1687-9732
Editor Ridha Ejbali
Editor_xml – fullname: Ridha Ejbali
ExternalDocumentID oai_doaj_org_article_49aa9cd31aad439497989f0a2b3e8dff
A832461603
10_1155_acis_8442143
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 0R~
188
24P
2UF
4.4
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAKPC
AAMMB
AAYXX
ABUWG
ACCMX
ACIPV
ADBBV
ADDVE
AEFGJ
AFFHD
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CCPQU
CITATION
CNMHZ
CVCKV
CWDGH
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
IL9
ITC
K6V
K7-
KQ8
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
Q2X
RHU
RNS
TR2
TUXDW
UZ4
M~E
3V.
7SC
7XB
8AL
8FD
8FK
AAJEY
AINHJ
COVID
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c436t-e102baa36e17aab3211100c7fb103f76c4a7b86f5ac261feadf04dd46909a4a03
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001428827500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-9724
IngestDate Fri Oct 03 12:27:20 EDT 2025
Tue Jul 22 18:41:08 EDT 2025
Wed Apr 02 17:12:18 EDT 2025
Tue Apr 01 03:56:39 EDT 2025
Tue Nov 18 22:32:12 EST 2025
Sat Nov 29 08:12:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-e102baa36e17aab3211100c7fb103f76c4a7b86f5ac261feadf04dd46909a4a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9424-1697
0000-0003-3645-3303
0000-0002-0826-7346
0000-0003-2701-6646
OpenAccessLink https://doaj.org/article/49aa9cd31aad439497989f0a2b3e8dff
PQID 3175451591
PQPubID 237331
ParticipantIDs doaj_primary_oai_doaj_org_article_49aa9cd31aad439497989f0a2b3e8dff
proquest_journals_3175451591
gale_infotracmisc_A832461603
gale_infotracacademiconefile_A832461603
crossref_primary_10_1155_acis_8442143
crossref_citationtrail_10_1155_acis_8442143
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Computational Intelligence and Soft Computing
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_10_22_2
e_1_2_10_44_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_21_2
e_1_2_10_41_2
e_1_2_10_40_2
Ali A. M. (e_1_2_10_1_2) 2024; 14
e_1_2_10_19_2
Ahmed M. (e_1_2_10_32_2) 2023; 4
B D. (e_1_2_10_38_2) 2020
Ross A. A. (e_1_2_10_7_2) 2006
e_1_2_10_17_2
Ahmad S. (e_1_2_10_16_2) 2022
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_37_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_10_2
Kim J. (e_1_2_10_23_2) 2020; 63
e_1_2_10_31_2
Akram A. (e_1_2_10_42_2) 2023; 3
Chougule A. (e_1_2_10_26_2) 2019
Mathur S. (e_1_2_10_2_2) 2016
Nahar P. (e_1_2_10_28_2) 2018; 5
Ametefe D. S. (e_1_2_10_29_2) 2023; 39
Das S. (e_1_2_10_3_2) 2011; 1
e_1_2_10_27_2
Li X. (e_1_2_10_30_2) 2020; 8
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – ident: e_1_2_10_33_2
  doi: 10.3390/sym13050750
– ident: e_1_2_10_36_2
  doi: 10.1109/ACCESS.2020.2990909
– volume: 8
  year: 2020
  ident: e_1_2_10_30_2
  article-title: Fingerprint Liveness Detection Based on Fine-Grained Feature Fusion for Intelligent Devices
  publication-title: Mathematics
– ident: e_1_2_10_18_2
  doi: 10.1007/s11042-020-09314-6
– volume: 39
  start-page: 1703
  year: 2023
  ident: e_1_2_10_29_2
  article-title: Fingerprint Pattern Classification Using Deep Transfer Learning and Data Augmentation
  publication-title: The Visual Computer
– ident: e_1_2_10_15_2
  doi: 10.1007/s11042-023-16776-x
– ident: e_1_2_10_43_2
  doi: 10.56536/jicet.v3i1.55
– ident: e_1_2_10_39_2
  doi: 10.1016/j.net.2020.03.022
– ident: e_1_2_10_21_2
  doi: 10.1109/ICMLA.2018.00187
– ident: e_1_2_10_19_2
  doi: 10.1109/TPAMI.2011.161
– ident: e_1_2_10_22_2
– ident: e_1_2_10_31_2
  doi: 10.1007/s00521-019-04499-w
– ident: e_1_2_10_44_2
  doi: 10.3390/jimaging9080158
– ident: e_1_2_10_5_2
  doi: 10.1145/982507.982516
– start-page: 1
  year: 2022
  ident: e_1_2_10_16_2
  article-title: Fingerprint Classification Using Deep Learning
  publication-title: 2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)
– volume: 3
  year: 2023
  ident: e_1_2_10_42_2
  article-title: Recognizing Facial Expressions Across Cultures Using Gradient Features
  publication-title: Journal of Innovative Computing and Emerging Technologies
– volume: 14
  year: 2024
  ident: e_1_2_10_1_2
  article-title: A Novel Multi-Biometric Technique for Verification of Secure E-Document
  publication-title: International Journal of Electrical and Computer Engineering
– ident: e_1_2_10_14_2
  doi: 10.32604/cmc.2023.035287
– ident: e_1_2_10_10_2
  doi: 10.1007/978-0-85729-748-8
– ident: e_1_2_10_40_2
  doi: 10.1007/978-3-642-04070-2_21
– ident: e_1_2_10_8_2
  doi: 10.32604/cmc.2023.032005
– year: 2020
  ident: e_1_2_10_38_2
  article-title: Extracting Regions of Interest From Images
  publication-title: The Medium
– ident: e_1_2_10_4_2
  doi: 10.1145/2933241
– ident: e_1_2_10_11_2
  doi: 10.1007/s11760-022-02270-8
– start-page: 1
  year: 2016
  ident: e_1_2_10_2_2
  article-title: Methodology for Partial Fingerprint Enrollment and Authentication on Mobile Devices
  publication-title: International Conference on Biometrics (ICB)
– ident: e_1_2_10_35_2
  doi: 10.1109/ACCESS.2020.3047723
– ident: e_1_2_10_41_2
  doi: 10.32604/cmc.2023.041074
– ident: e_1_2_10_12_2
  doi: 10.1016/j.patcog.2022.109050
– volume: 63
  year: 2020
  ident: e_1_2_10_23_2
  article-title: Left or Right Hand Classification From Fingerprint Images Using a Deep Neural Network
  publication-title: Computers, Materials and Continua
– start-page: 1084
  year: 2019
  ident: e_1_2_10_26_2
  article-title: Local Binary Pattern With Hyperparameter Tuned Support Vector Machine for Fingerprint Classification
  publication-title: 2019 International Conference on Intelligent Computing and Control Systems (ICCS)
– ident: e_1_2_10_37_2
  doi: 10.14500/aro.10975
– ident: e_1_2_10_13_2
  doi: 10.1108/WJE-09-2020-0456
– ident: e_1_2_10_27_2
  doi: 10.1109/ASPCON49795.2020.9276660
– volume: 4
  start-page: 41
  year: 2023
  ident: e_1_2_10_32_2
  article-title: A Deep Learning Approach in Detailed Fingerprint Identification
  publication-title: Computer Vision and Image Analysis for Industry
– ident: e_1_2_10_17_2
  doi: 10.1007/978-3-031-14054-9_31
– ident: e_1_2_10_6_2
  doi: 10.1007/978-3-030-83624-5
– ident: e_1_2_10_24_2
  doi: 10.1007/s00371-021-02173-8
– volume: 5
  start-page: 1521
  year: 2018
  ident: e_1_2_10_28_2
  article-title: Fingerprint Classification Using Deep Neural Network Model Resnet50
  publication-title: International Journal of Research and Analytical Reviews
– volume: 1
  year: 2011
  ident: e_1_2_10_3_2
  article-title: Designing a Biometric Strategy (Fingerprint) Measure for Enhancing ATM Security in Indian E-Banking System
  publication-title: International Journal of Information and Communication Technology Research
– ident: e_1_2_10_20_2
  doi: 10.21123/bsj.2022.6550
– ident: e_1_2_10_9_2
  doi: 10.3390/app12115714
– volume-title: Handbook of Multibiometrics
  year: 2006
  ident: e_1_2_10_7_2
– ident: e_1_2_10_25_2
  doi: 10.5220/0011327100003271
– ident: e_1_2_10_34_2
  doi: 10.1109/TCYB.2021.3081764
SSID ssib003004788
ssj0000395709
ssib044730003
Score 2.3124616
Snippet Biometric security systems must be able to detect phony fingerprints to provide reliable authentication. The findings of this study suggest a hybrid approach...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Access control
Accuracy
Biometric identification
Biometrics
Biometry
Classification
Cooperation
Deep learning
Fingerprints
Identification systems
Information systems
Literature reviews
Safety and security measures
Security systems
Spoofing
Wavelet transforms
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODSUh5iaUE-gAChaBPbseMTahFLJVDFgUdv1vhVVq027SZF4t_jcb1leygXrrEVxZmXZzz-PkJeMK49A-Urn-JphfTaVae9r5gOUcbkM9vM1vD9szo87I6O9JdScBtKW-XKJ2ZH7XuHNfIpxjmBwbd5d3ZeIWsUnq4WCo3b5E7DWIN6_klVa_pbr6PDC4Hg7OXUMXtqPKTKXSCNTLamFROr3vi2nYKbD9NOCJav9KxFrQzuf5MLz3FptvW_K7pPNsuOlO5dqtA2uRUWD8h2sfmBvi7A1G8ekm8zOAl0lguBWA8caabUxGajLF-a-w_owW-8BUZxc3mRknlaIFyP6Y_5-JN-XOYms5Hu9_2APdeP0ns_fH1_UBVahsoJLscqpD2JBeAyNArA8pRCNnXtVLRNzaOSToCynYwtuJSexaSqsRbeYx6uQUDNH5ONRb8ITwh1vgtQW59CZhRt5GCtVTIKy4XjLcgJebv67cYVzHKkzjg1OXdpW4NCMkVIE_LyavbZJVbHDfP2UYJXcxBhOz_ol8emGKwRGkA7zxsAj7eHtdKdjjUwy0PnY5yQVyh_g34gfZKDcp0hLQwRtcxecpVCIon3hOxem5ns110fXqmHKf5jMH914-m_h3fIPYaMxLkotEs2xuVFeEbuul_jfFg-z-bwB-_yDl4
  priority: 102
  providerName: ProQuest
Title Fake Fingerprint Classification Using Hybrid Features Learning With Gradient Boosting
URI https://www.proquest.com/docview/3175451591
https://doaj.org/article/49aa9cd31aad439497989f0a2b3e8dff
Volume 2025
WOSCitedRecordID wos001428827500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044730003
  issn: 1687-9724
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: CWDGH
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQ4cAFUR4ipVQ-gAChVXbX3oePDUoogkYrxKNwscYviEAJym6RuPDbmXGcKj1UXLj4sB6tvOOZ8Yx3Zj7GHpdCuRIalzk8TzOC185a5VxWKh_qgDazimgNH98283l7dqa6HagvygnbtAfeMG4sFYCyThQAjqo4VaNaFXIojfCtC4GsL3o9O8FUtMH0-ylX20z3qhqDXfTjVsoyFujsnEGxVf9VBjmeMrPb7FZyD_nxZln77Jpf3mH7SQF7_ix1iX5-l32YwXfPZ_FWji7nBh7xLSnzJzKbx2QAfvKbSrI4eXrnGFnz1E_1K_-0GL7xV-uY8TXwyWrVUwL0PXzv9P3LkyxhJGRWinrIPDoIBkDUvmgAjMB4rshz2wRT5CI0tZXQmLYOFViMlQLKTcilcxQUK5CQi_tsb7la-geMW9d6yI3D8yvIKggwxjR1kEZIKyqoR-zFlmvapgbihGPxQ8dAoqo08VgnHo_Ykwvqn5vGGVfQTWgDLmio3XV8gEKgkxDofwnBiD2l7dOklLgkC6m2AD-M2lvpY7RbsiZE7RE7vESJymQvT28FQCdl7jW5WJL8vuLgfyz2IbtZEohwvMc5ZHvD-tw_Yjfsr2HRr4_Y9cl03r07ivKM45smw_H0zxTHrvqC893r0-7zX_Hy_so
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQaIXoHyIhQI-UAFC0Sax8-EDQi2wbNVl1UOBiosZ23G7Am1KkoL6p_iNeLxO6R7KrQeuiWXFzpt5Hns8j5CnKRMmhcJExvFphPLaUSmMiVJR2dw6n5l5tYZPk2I6LQ8OxN4K-d3fhcG0yt4nekdtao175EPkOY7km7w-_hGhahServYSGgtY7Fanv1zI1r7aeev-72aajt7tvxlHQVUg0pzlXVQ5SlUALK-SAkAxFwElcawLq5KY2SLXHApV5jYD7aIL62baxtwYDCMFcIiZ6_cKucq5C5ac_exlX87ZS3y-Gj3nWAw-nHJ6ZsBDMZ91kuTOtkWR8j4XP8uGoGftsMR-OVtiSS8mcBFleB4c3fzfZvAWuRFW3HRrYSLrZKWa3ybrwae19HkovP3iDvk4gm8VHfmNTtzv7KiXDMVkKo9f6vMr6PgUb7lRXDyfNK6HUKL2kH6edUf0feOT6Dq6Xdct5pTfdf1exvDukdV5Pa_uE6pNWUGsjFsSWJ5ZBkqpIrdcMa5ZBvmAvOx_s9ShJjtKg3yXPjbLMomgkAEUA7J51vp4UYvkgnbbiJizNlhB3D-om0MZHJLkAkBowxIAg7ejRSFKYWNIFatKY-2APEO8SfRz7pM0hOsabmBYMUxuOSrgOYqUD8jGUkvnn_Ty6x6OMvjHVv7F4oN_v35Cro_3P0zkZGe6-5Cspai-7DfANshq15xUj8g1_bObtc1jb4qUfL1s5P4BoWRscw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYgLUB5ioYAPVIBQtEnsxPEBoZYSWrVa7YFH1Yvxs6xAm5KkoP41fh0er1O2h3LrgatjWXHyeT6PPTMfQs9ywk0umUmM59ME5LWTihuT5Ny60nmbWQS1hk_7bDKpDg74dAX9HnJhIKxysInBUJtGwxn5GHiOAvlmYxfDIqbb9ZvjHwkoSMFN6yCnsYDInj395d237vXutv_XG3lev_vwdieJCgOJpqTsE-vpVUlJSpsxKRXx3lCWppo5laXEsVJTyVRVukJq72k4_9VdSo0Bl5JLKlPix72CrjLfAI7ftDhcWjvpcmV6SqEwfLzxDCwBF2QhAiUr_TrnLKdDXH5RjKWedeOK0jykEy0xZhAWuIg-AifWt_7nr3kb3Yw7cby5WDpraMXO76C1aOs6_CIW5H55F32s5TeL63AACuegPQ5SohBkFXCNQ9wF3jmF7DcMm-qT1o8QS9ce4c-z_it-34bguh5vNU0Hseb3_LiXMb37aHXezO0DhLWprEyV8VsFRwtHpFKKlY4qQjUpZDlCr4ZfLnSs1Q6SId9F8NmKQgBARATICG2c9T5e1Ci5oN8WoOesD1QWDw1NeySioRKUS8m1IZmUBrKmOeMVd6nMFbGVcW6EngP2BNg__0paxjQOPzGoJCY2PUXQEsTLR2j9XE9vt_T5xwM0RbSbnfiLy4f_fvwUXfeAFfu7k71H6EYOoszhXGwdrfbtiX2Mrumf_axrn4RVidGXywbuH7IgdUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fake+Fingerprint+Classification+Using+Hybrid+Features+Learning+With+Gradient+Boosting&rft.jtitle=Applied+computational+intelligence+and+soft+computing&rft.au=Muhammad+Salman+Ali&rft.au=Arslan+Akram&rft.au=Javed+Rashid&rft.au=Muhammad+Arfan+Jaffar&rft.date=2025-01-01&rft.pub=Wiley&rft.eissn=1687-9732&rft.volume=2025&rft_id=info:doi/10.1155%2Facis%2F8442143&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_49aa9cd31aad439497989f0a2b3e8dff
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-9724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-9724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-9724&client=summon