Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains

► We propose a tensor-based method for the solution of PDEs defined on uncertain parameterized domains. ► We use a fictitious domain approach to obtain a formulation in a tensor product space. ► We use a PGD algorithm for the construction of a tensor approximation of the solution. ► We introduce a c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 200; číslo 45; s. 3066 - 3082
Hlavní autoři: Nouy, A., Chevreuil, M., Safatly, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 01.01.2011
Elsevier
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ► We propose a tensor-based method for the solution of PDEs defined on uncertain parameterized domains. ► We use a fictitious domain approach to obtain a formulation in a tensor product space. ► We use a PGD algorithm for the construction of a tensor approximation of the solution. ► We introduce a constrained SVD of the parameterized indicator function which preserves positivity. ► We analyze errors due to fictitious domain formulations and approximations of indicator functions. A tensor-based method is proposed for the solution of partial differential equations defined on uncertain parameterized domains. It provides an accurate solution which is explicit with respect to parameters defining the shape of the domain, thus allowing efficient a posteriori probabilistic or parametric analyses. In the proposed method, a fictitious domain approach is first adopted for the reformulation of the parametric problem on a fixed domain, yielding a weak formulation in a tensor product space (product of space functions and parametric functions). The paper is limited to the case of Neumann conditions on uncertain parts of the boundary. The Proper Generalized Decomposition method is then introduced for the construction of a tensor product approximation (separated representation) of the solution. It can be seen as an a priori model reduction technique which automatically captures reduced bases of space functions and parametric functions which are optimal for the representation of the solution. This tensor-based method is made computationally tractable by introducing separated representations of variational forms, resulting from separated representations of the parameterized indicator function of the uncertain domain. For this purpose, a method is proposed for the construction of a constrained tensor product approximation which preserves positivity and therefore ensures well-posedness of problems associated with approximate indicator functions. Moreover, a regularization of the geometry is introduced to speed up the convergence of these tensor product approximations.
AbstractList ► We propose a tensor-based method for the solution of PDEs defined on uncertain parameterized domains. ► We use a fictitious domain approach to obtain a formulation in a tensor product space. ► We use a PGD algorithm for the construction of a tensor approximation of the solution. ► We introduce a constrained SVD of the parameterized indicator function which preserves positivity. ► We analyze errors due to fictitious domain formulations and approximations of indicator functions. A tensor-based method is proposed for the solution of partial differential equations defined on uncertain parameterized domains. It provides an accurate solution which is explicit with respect to parameters defining the shape of the domain, thus allowing efficient a posteriori probabilistic or parametric analyses. In the proposed method, a fictitious domain approach is first adopted for the reformulation of the parametric problem on a fixed domain, yielding a weak formulation in a tensor product space (product of space functions and parametric functions). The paper is limited to the case of Neumann conditions on uncertain parts of the boundary. The Proper Generalized Decomposition method is then introduced for the construction of a tensor product approximation (separated representation) of the solution. It can be seen as an a priori model reduction technique which automatically captures reduced bases of space functions and parametric functions which are optimal for the representation of the solution. This tensor-based method is made computationally tractable by introducing separated representations of variational forms, resulting from separated representations of the parameterized indicator function of the uncertain domain. For this purpose, a method is proposed for the construction of a constrained tensor product approximation which preserves positivity and therefore ensures well-posedness of problems associated with approximate indicator functions. Moreover, a regularization of the geometry is introduced to speed up the convergence of these tensor product approximations.
A tensor-based method is proposed for the solution of partial differential equations defined on uncertain parameterized domains. It provides an accurate solution which is explicit with respect to parameters defining the shape of the domain, thus allowing efficient a posteriori probabilistic or parametric analyses. In the proposed method, a fictitious domain approach is first adopted for the reformulation of the parametric problem on a fixed domain, yielding a weak formulation in a tensor product space (product of space functions and parametric functions). The paper is limited to the case of Neumann conditions on uncertain parts of the boundary. The Proper Generalized Decomposition method is then introduced for the construction of a tensor product approximation (separated representation) of the solution. It can be seen as an a priori model reduction technique which automatically captures reduced bases of space functions and parametric functions which are optimal for the representation of the solution. This tensor-based method is made computationally tractable by introducing separated representations of variational forms, resulting from separated representations of the parameterized indicator function of the uncertain domain. For this purpose, a method is proposed for the construction of a constrained tensor product approximation which preserves positivity and therefore ensures well-posedness of problems associated with approximate indicator functions. Moreover, a regularization of the geometry is introduced to speed up the convergence of these tensor product approximations.
A tensor-based method is proposed for the solution of partial differential equations defined on uncertain parameterized domains. It provides an accurate solution which is explicit with respect to parameters defining the shape of the domain, thus allowing efficient a posteriori probabilistic or parametric analyses. In the proposed method, a fictitious domain approach is first adopted for the reformulation of the parametric problem on a fixed domain, yielding a weak formulation in a tensor product space (product of space functions and parametric functions). The paper is limited to the case of Neumann conditions on uncertain parts of the boundary. The Proper Generalized Decomposition method is then introduced for the construction of a tensor product approximation (separated representation) of the solution. It can be seen as an a priori model reduction technique which automatically captures reduced bases of space functions and parametric functions which are optimal for the representation of the solution. This tensor-based method is made computationally tractable by introducing separated representations of variational forms, resulting from separated representations of the parameterized indicator function of the uncertain domain. For this purpose, a method is proposed for the construction of a constrained tensor product approximation which preserves positivity and therefore ensures well-posedness of problems associated with approximate indicator functions. Moreover, a regularization of the geometry is introduced to speed up the convergence of these tensor product approximations.
Author Nouy, A.
Safatly, E.
Chevreuil, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Nouy
  fullname: Nouy, A.
  email: anthony.nouy@ec-nantes.fr
– sequence: 2
  givenname: M.
  surname: Chevreuil
  fullname: Chevreuil, M.
– sequence: 3
  givenname: E.
  surname: Safatly
  fullname: Safatly, E.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24549597$$DView record in Pascal Francis
https://hal.science/hal-00662564$$DView record in HAL
BookMark eNp9kcGL1DAUxoOs4OzqH-AtFxEPrUnapC2elsV1hQEveg5v0hcmQ5uMSTqgd__vTenqwcMGQuDl930ved81ufLBIyFvOas54-rjqTYz1IJxXrOuZky8IDved0MleNNfkR1jray6XshX5DqlEyur52JH_tw7k112YUl0DDM4T2fMxzBS8CNNeIYIGUca8Rwxoc9QWJ-oDZHmI9IUpmWt0GDpISx-hPiLXmBakJ5jOEw4J1puF28w5tV9NSwdMLrfxXZrmV6TlxamhG-ezhvy4_7z97uHav_ty9e7231l2kblyigjmOwlWNWbQR7scDA9NryBoWdywLGDTqi2RdMYy1Ciase2AbSqUUpa09yQD5vvESZ9jm4ur9UBnH643eu1xphSQqr2wgv7fmPLP34umLKeXTI4TeCxTEsPfBjEugv57omEZGCyEbxx6Z-_aGU7yKErXLdxJoaUIlpt3DbPHMFNmjO9ZqlPumSp1yw168qT1g78P-Vf8-c0nzYNloFeHEadjMOSw-gimqzH4J5RPwKZm7vc
CODEN CMMECC
CitedBy_id crossref_primary_10_1016_j_cma_2012_12_003
crossref_primary_10_1016_j_cma_2022_115143
crossref_primary_10_1016_j_cma_2022_115860
crossref_primary_10_7717_peerj_13239
crossref_primary_10_1016_j_anucene_2020_107360
crossref_primary_10_1016_j_compstruct_2014_06_039
crossref_primary_10_1016_j_cma_2017_08_047
crossref_primary_10_1016_j_cma_2012_10_016
crossref_primary_10_1016_j_compstruc_2017_07_020
crossref_primary_10_1007_s00211_020_01139_7
crossref_primary_10_1155_2013_426061
crossref_primary_10_1002_nme_5695
crossref_primary_10_1007_s11831_011_9064_7
crossref_primary_10_1016_j_finel_2013_04_003
crossref_primary_10_1016_j_cma_2023_115997
crossref_primary_10_1016_j_jsv_2013_08_016
crossref_primary_10_1016_j_ress_2016_05_016
crossref_primary_10_1002_nme_6045
Cites_doi 10.1016/j.cma.2009.06.023
10.1016/j.cma.2004.05.027
10.1016/j.cma.2004.12.014
10.1016/j.jcp.2009.03.006
10.1016/j.jcp.2007.01.026
10.1002/nme.3004
10.1016/j.jnnfm.2006.07.007
10.1002/nme.2865
10.1002/zamm.200800095
10.1016/j.jcp.2006.02.029
10.1016/j.cma.2008.06.010
10.1016/j.cma.2006.05.012
10.1016/j.cma.2004.02.026
10.1007/s11831-010-9054-1
10.1007/s11831-009-9034-5
10.1007/s11831-010-9049-y
10.1016/j.cma.2007.05.016
10.1137/040613160
10.1006/jcph.1996.0118
10.1166/jctn.2009.1283
10.1007/s00211-007-0086-x
10.1016/j.cma.2010.01.009
10.1017/S0962492902000090
10.1061/(ASCE)0733-9399(1996)122:4(361)
10.1016/j.jmaa.2010.12.003
10.1016/j.cma.2008.06.012
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.cma.2011.07.002
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1879-2138
EndPage 3082
ExternalDocumentID oai:HAL:hal-00662564v1
24549597
10_1016_j_cma_2011_07_002
S0045782511002362
GrantInformation_xml – fundername: French National Research Agency
  grantid: ANR-2010-COSI-006-01
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c436t-c6c20585af68c95bf9bc8e313a98059ed7a72644ec3cf0e5e64d43aef63665fc3
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295753800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Tue Oct 14 20:41:15 EDT 2025
Sun Sep 28 06:09:02 EDT 2025
Mon Jul 21 09:13:23 EDT 2025
Sat Nov 29 03:21:28 EST 2025
Tue Nov 18 22:27:16 EST 2025
Fri Feb 23 02:24:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords Uncertainty quantification
Proper Generalized Decomposition
Fictitious domain method
Spectral stochastic methods
Random domain
Tensor product approximation
Function space
Tensor product
Decomposition method
Positivity
Modeling
Partial differential equation
Uncertain system
System reduction
Variational calculus
Reduced order systems
Neumann problem
Spectral method
Probabilistic approach
Well posed problem
Indicator
Reduction method
Boundary value problem
Weak solution
Regularization
Tensor method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-c6c20585af68c95bf9bc8e313a98059ed7a72644ec3cf0e5e64d43aef63665fc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-2149-2986
0000-0002-9445-7399
OpenAccessLink https://hal.science/hal-00662564
PQID 919921992
PQPubID 23500
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_00662564v1
proquest_miscellaneous_919921992
pascalfrancis_primary_24549597
crossref_citationtrail_10_1016_j_cma_2011_07_002
crossref_primary_10_1016_j_cma_2011_07_002
elsevier_sciencedirect_doi_10_1016_j_cma_2011_07_002
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Soize (b0140) 2006; 195
Ghanem, Brzakala (b0050) 1996; 122
Nouy, Clement (b0110) 2010; 83
submitted for publication.
Nouy (b0085) 2007; 196
Matthies, Keese (b0075) 2005; 194
Xiu, Tartakovsky (b0155) 2006; 28
Nouy (b0100) 2010; 199
Nouy (b0095) 2009; 16
Nouy, Clément, Schoefs, Moës (b0115) 2008; 197
Ramière, Angot, Belliard (b0125) 2007; 196
Nouy (b0105) 2010; 17
Riesz, Sz.-Nagy (b0135) 1990
Xiu (b0150) 2009; 5
Glowinski, Pan, Wells, Zhou (b0055) 1996; 126
Chinesta, Ammar, Cueto (b0030) 2010; 17
Arnst, Ghanem (b0010) 2009; 6
Ammar, Mokdad, Chinesta, Keunings (b0005) 2006; 139
Le Maitre, Knio (b0065) 2010
Babuska, Tempone, Zouraris (b0020) 2005; 194
Ladevèze, Passieux, Néron (b0060) 2010; 199
Matthies (b0070) 2008; 88
Surya Mohan, Nair, Keane (b0080) 2011; 85
Canuto, Kozubek (b0025) 2007; 107
A. Nouy, A. Falco, Constrained tensor product approximations based on penalized best approximations.
Nouy (b0090) 2008; 197
Falco, Nouy (b0040) 2011; 376
Doostan, Iaccarino (b0035) 2009; 228
Ramière, Angot, Belliard (b0130) 2007; 225
Tartakovsky, Xiu (b0145) 2006; 217
Babuska, Banerjee, Osborn (b0015) 2003; 12
Ghanem, Spanos (b0045) 1991
Babuska (10.1016/j.cma.2011.07.002_b0020) 2005; 194
Nouy (10.1016/j.cma.2011.07.002_b0090) 2008; 197
Ghanem (10.1016/j.cma.2011.07.002_b0050) 1996; 122
Nouy (10.1016/j.cma.2011.07.002_b0110) 2010; 83
Ramière (10.1016/j.cma.2011.07.002_b0125) 2007; 196
Ladevèze (10.1016/j.cma.2011.07.002_b0060) 2010; 199
Le Maitre (10.1016/j.cma.2011.07.002_b0065) 2010
Nouy (10.1016/j.cma.2011.07.002_b0095) 2009; 16
Nouy (10.1016/j.cma.2011.07.002_b0085) 2007; 196
Falco (10.1016/j.cma.2011.07.002_b0040) 2011; 376
Ramière (10.1016/j.cma.2011.07.002_b0130) 2007; 225
Nouy (10.1016/j.cma.2011.07.002_b0105) 2010; 17
Nouy (10.1016/j.cma.2011.07.002_b0115) 2008; 197
Tartakovsky (10.1016/j.cma.2011.07.002_b0145) 2006; 217
Surya Mohan (10.1016/j.cma.2011.07.002_b0080) 2011; 85
10.1016/j.cma.2011.07.002_b0120
Xiu (10.1016/j.cma.2011.07.002_b0155) 2006; 28
Arnst (10.1016/j.cma.2011.07.002_b0010) 2009; 6
Xiu (10.1016/j.cma.2011.07.002_b0150) 2009; 5
Nouy (10.1016/j.cma.2011.07.002_b0100) 2010; 199
Ammar (10.1016/j.cma.2011.07.002_b0005) 2006; 139
Glowinski (10.1016/j.cma.2011.07.002_b0055) 1996; 126
Soize (10.1016/j.cma.2011.07.002_b0140) 2006; 195
Ghanem (10.1016/j.cma.2011.07.002_b0045) 1991
Babuska (10.1016/j.cma.2011.07.002_b0015) 2003; 12
Riesz (10.1016/j.cma.2011.07.002_b0135) 1990
Matthies (10.1016/j.cma.2011.07.002_b0070) 2008; 88
Matthies (10.1016/j.cma.2011.07.002_b0075) 2005; 194
Doostan (10.1016/j.cma.2011.07.002_b0035) 2009; 228
Chinesta (10.1016/j.cma.2011.07.002_b0030) 2010; 17
Canuto (10.1016/j.cma.2011.07.002_b0025) 2007; 107
References_xml – volume: 194
  start-page: 1251
  year: 2005
  end-page: 1294
  ident: b0020
  article-title: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 199
  start-page: 1287
  year: 2010
  end-page: 1296
  ident: b0060
  article-title: The LATIN multiscale computational method and the proper generalized decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 88
  start-page: 849
  year: 2008
  end-page: 873
  ident: b0070
  article-title: Stochastic finite elements: computational approaches to stochastic partial differential equations
  publication-title: Z. Angew. Math. Mech.
– volume: 225
  start-page: 1347
  year: 2007
  end-page: 1387
  ident: b0130
  article-title: A general fictitious domain method with immersed jumps and multilevel nested structured meshes
  publication-title: J. Comput. Phys.
– volume: 196
  start-page: 766
  year: 2007
  end-page: 781
  ident: b0125
  article-title: A fictitious domain approach with spread interface for elliptic problems with general boundary conditions
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 17
  start-page: 327
  year: 2010
  end-page: 350
  ident: b0030
  article-title: Recent advances in the use of the proper generalized decomposition for solving multidimensional models
  publication-title: Arch. Comput. Methods Engrg.
– volume: 376
  start-page: 469
  year: 2011
  end-page: 480
  ident: b0040
  article-title: A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach
  publication-title: J. Math. Anal. Appl.
– volume: 139
  start-page: 153
  year: 2006
  end-page: 176
  ident: b0005
  article-title: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids
  publication-title: J. Non-Newtonian Fluid Mech.
– volume: 199
  start-page: 1603
  year: 2010
  end-page: 1626
  ident: b0100
  article-title: A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 16
  start-page: 251
  year: 2009
  end-page: 285
  ident: b0095
  article-title: Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations
  publication-title: Arch. Comput. Methods Engrg.
– volume: 196
  start-page: 4521
  year: 2007
  end-page: 4537
  ident: b0085
  article-title: A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 126
  start-page: 40
  year: 1996
  end-page: 51
  ident: b0055
  article-title: Wavelet and finite element solutions for the Neumann problem using fictitious domains
  publication-title: J. Comput. Phys.
– volume: 85
  start-page: 874
  year: 2011
  end-page: 895
  ident: b0080
  article-title: Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains
  publication-title: Int. J. Numer. Methods Engrg.
– volume: 17
  start-page: 403
  year: 2010
  end-page: 434
  ident: b0105
  article-title: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems
  publication-title: Arch. Comput. Methods Engrg.
– volume: 217
  start-page: 248
  year: 2006
  end-page: 259
  ident: b0145
  article-title: Stochastic analysis of transport in tubes with rough walls
  publication-title: J. Comput. Phys.
– volume: 197
  start-page: 4718
  year: 2008
  end-page: 4736
  ident: b0090
  article-title: Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 195
  start-page: 26
  year: 2006
  end-page: 64
  ident: b0140
  article-title: Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 6
  start-page: 2256
  year: 2009
  end-page: 2272
  ident: b0010
  article-title: Probabilistic electromechanical modeling of nanostructures with random geometry
  publication-title: J. Comput. Theor. Nanosci.
– year: 2010
  ident: b0065
  article-title: Spectral Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics
– volume: 228
  start-page: 4332
  year: 2009
  end-page: 4345
  ident: b0035
  article-title: A least-squares approximation of partial differential equations with high-dimensional random inputs
  publication-title: J. Comput. Phys.
– year: 1991
  ident: b0045
  article-title: Stochastic Finite Elements: A Spectral Approach
– volume: 122
  start-page: 361
  year: 1996
  end-page: 369
  ident: b0050
  article-title: Stochastic finite-element analysis of soil layers with random interface
  publication-title: J. Engrg. Mech.
– reference: , submitted for publication.
– volume: 194
  start-page: 1295
  year: 2005
  end-page: 1331
  ident: b0075
  article-title: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 197
  start-page: 4663
  year: 2008
  end-page: 4682
  ident: b0115
  article-title: An extended stochastic finite element method for solving stochastic partial differential equations on random domains
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 12
  start-page: 1
  year: 2003
  end-page: 125
  ident: b0015
  article-title: Survey of meshless and generalized finite element methods: a unified approach
  publication-title: Acta Numer.
– volume: 28
  start-page: 1167
  year: 2006
  end-page: 1185
  ident: b0155
  article-title: Numerical methods for differential equations in random domains
  publication-title: SIAM J. Sci. Comput.
– reference: A. Nouy, A. Falco, Constrained tensor product approximations based on penalized best approximations.
– volume: 83
  start-page: 127
  year: 2010
  end-page: 155
  ident: b0110
  article-title: Extended stochastic finite element method for the numerical simulation of heterogenous materials with random material interfaces
  publication-title: Int. J. Numer. Methods Engrg.
– year: 1990
  ident: b0135
  article-title: Functional Analysis
– volume: 5
  start-page: 242
  year: 2009
  end-page: 272
  ident: b0150
  article-title: Fast numerical methods for stochastic computations: a review
  publication-title: Commun. Comput. Phys.
– volume: 107
  start-page: 257
  year: 2007
  end-page: 293
  ident: b0025
  article-title: A fictitious domain approach to the numerical solution of pdes in stochastic domains
  publication-title: Numer. Math.
– volume: 199
  start-page: 1287
  issue: 21–22
  year: 2010
  ident: 10.1016/j.cma.2011.07.002_b0060
  article-title: The LATIN multiscale computational method and the proper generalized decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.06.023
– volume: 194
  start-page: 1295
  issue: 12–16
  year: 2005
  ident: 10.1016/j.cma.2011.07.002_b0075
  article-title: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.05.027
– volume: 195
  start-page: 26
  issue: 1–3
  year: 2006
  ident: 10.1016/j.cma.2011.07.002_b0140
  article-title: Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.12.014
– volume: 228
  start-page: 4332
  issue: 12
  year: 2009
  ident: 10.1016/j.cma.2011.07.002_b0035
  article-title: A least-squares approximation of partial differential equations with high-dimensional random inputs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.03.006
– volume: 225
  start-page: 1347
  issue: 2
  year: 2007
  ident: 10.1016/j.cma.2011.07.002_b0130
  article-title: A general fictitious domain method with immersed jumps and multilevel nested structured meshes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.01.026
– volume: 85
  start-page: 874
  year: 2011
  ident: 10.1016/j.cma.2011.07.002_b0080
  article-title: Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains
  publication-title: Int. J. Numer. Methods Engrg.
  doi: 10.1002/nme.3004
– volume: 139
  start-page: 153
  issue: 3
  year: 2006
  ident: 10.1016/j.cma.2011.07.002_b0005
  article-title: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids
  publication-title: J. Non-Newtonian Fluid Mech.
  doi: 10.1016/j.jnnfm.2006.07.007
– volume: 83
  start-page: 127
  issue: 10
  year: 2010
  ident: 10.1016/j.cma.2011.07.002_b0110
  article-title: Extended stochastic finite element method for the numerical simulation of heterogenous materials with random material interfaces
  publication-title: Int. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2865
– volume: 88
  start-page: 849
  issue: 11
  year: 2008
  ident: 10.1016/j.cma.2011.07.002_b0070
  article-title: Stochastic finite elements: computational approaches to stochastic partial differential equations
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.200800095
– volume: 217
  start-page: 248
  year: 2006
  ident: 10.1016/j.cma.2011.07.002_b0145
  article-title: Stochastic analysis of transport in tubes with rough walls
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.02.029
– year: 2010
  ident: 10.1016/j.cma.2011.07.002_b0065
– volume: 197
  start-page: 4663
  year: 2008
  ident: 10.1016/j.cma.2011.07.002_b0115
  article-title: An extended stochastic finite element method for solving stochastic partial differential equations on random domains
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2008.06.010
– volume: 196
  start-page: 766
  issue: 4–6
  year: 2007
  ident: 10.1016/j.cma.2011.07.002_b0125
  article-title: A fictitious domain approach with spread interface for elliptic problems with general boundary conditions
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2006.05.012
– volume: 194
  start-page: 1251
  year: 2005
  ident: 10.1016/j.cma.2011.07.002_b0020
  article-title: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.02.026
– volume: 17
  start-page: 403
  year: 2010
  ident: 10.1016/j.cma.2011.07.002_b0105
  article-title: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems
  publication-title: Arch. Comput. Methods Engrg.
  doi: 10.1007/s11831-010-9054-1
– volume: 16
  start-page: 251
  issue: 3
  year: 2009
  ident: 10.1016/j.cma.2011.07.002_b0095
  article-title: Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations
  publication-title: Arch. Comput. Methods Engrg.
  doi: 10.1007/s11831-009-9034-5
– ident: 10.1016/j.cma.2011.07.002_b0120
– volume: 17
  start-page: 327
  year: 2010
  ident: 10.1016/j.cma.2011.07.002_b0030
  article-title: Recent advances in the use of the proper generalized decomposition for solving multidimensional models
  publication-title: Arch. Comput. Methods Engrg.
  doi: 10.1007/s11831-010-9049-y
– volume: 196
  start-page: 4521
  issue: 45–48
  year: 2007
  ident: 10.1016/j.cma.2011.07.002_b0085
  article-title: A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2007.05.016
– volume: 28
  start-page: 1167
  issue: 3
  year: 2006
  ident: 10.1016/j.cma.2011.07.002_b0155
  article-title: Numerical methods for differential equations in random domains
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040613160
– volume: 126
  start-page: 40
  issue: 1
  year: 1996
  ident: 10.1016/j.cma.2011.07.002_b0055
  article-title: Wavelet and finite element solutions for the Neumann problem using fictitious domains
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0118
– year: 1990
  ident: 10.1016/j.cma.2011.07.002_b0135
– volume: 6
  start-page: 2256
  issue: 10
  year: 2009
  ident: 10.1016/j.cma.2011.07.002_b0010
  article-title: Probabilistic electromechanical modeling of nanostructures with random geometry
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2009.1283
– volume: 5
  start-page: 242
  year: 2009
  ident: 10.1016/j.cma.2011.07.002_b0150
  article-title: Fast numerical methods for stochastic computations: a review
  publication-title: Commun. Comput. Phys.
– year: 1991
  ident: 10.1016/j.cma.2011.07.002_b0045
– volume: 107
  start-page: 257
  issue: 2
  year: 2007
  ident: 10.1016/j.cma.2011.07.002_b0025
  article-title: A fictitious domain approach to the numerical solution of pdes in stochastic domains
  publication-title: Numer. Math.
  doi: 10.1007/s00211-007-0086-x
– volume: 199
  start-page: 1603
  issue: 23–24
  year: 2010
  ident: 10.1016/j.cma.2011.07.002_b0100
  article-title: A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.01.009
– volume: 12
  start-page: 1
  year: 2003
  ident: 10.1016/j.cma.2011.07.002_b0015
  article-title: Survey of meshless and generalized finite element methods: a unified approach
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000090
– volume: 122
  start-page: 361
  issue: 4
  year: 1996
  ident: 10.1016/j.cma.2011.07.002_b0050
  article-title: Stochastic finite-element analysis of soil layers with random interface
  publication-title: J. Engrg. Mech.
  doi: 10.1061/(ASCE)0733-9399(1996)122:4(361)
– volume: 376
  start-page: 469
  year: 2011
  ident: 10.1016/j.cma.2011.07.002_b0040
  article-title: A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.12.003
– volume: 197
  start-page: 4718
  year: 2008
  ident: 10.1016/j.cma.2011.07.002_b0090
  article-title: Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2008.06.012
SSID ssj0000812
Score 2.1420586
Snippet ► We propose a tensor-based method for the solution of PDEs defined on uncertain parameterized domains. ► We use a fictitious domain approach to obtain a...
A tensor-based method is proposed for the solution of partial differential equations defined on uncertain parameterized domains. It provides an accurate...
A tensor-based method is proposed for the solution of partial differential equations defined on uncertain parameterized domains. It provides an accurate solution...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3066
SubjectTerms Approximation
Construction
Engineering Sciences
Exact sciences and technology
Fictitious domain method
Indicators
Mathematical analysis
Mathematical models
Mathematics
Mechanics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical Analysis
Numerical analysis. Scientific computation
Partial differential equations
Preserves
Proper Generalized Decomposition
Random domain
Representations
Sciences and techniques of general use
Spectral stochastic methods
Tensor product approximation
Tensors
Uncertainty quantification
Title Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains
URI https://dx.doi.org/10.1016/j.cma.2011.07.002
https://www.proquest.com/docview/919921992
https://hal.science/hal-00662564
Volume 200
WOSCitedRecordID wos000295753800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6XQ4gxGMBUR4rC3GiCkoTO49jtWrVRWVB0KLdU-Q4tuhqm1ZNt1q485_4eYxjO0kLLHDg0KhxEzvVfPHM2DPfIPRSRtynMk2dniSBSskRDiM8dDxOApqCiR5zXWwiPDmJTk_j963Wd5sLs7kI8zy6uoqX_1XU0AbCVqmz_yDuqlNogO8gdDiC2OH4V4IfzjQB0WXRzRZzcPxNlehym6AQJde3UDkryzrzKC-qcEP7cMqKTMuaS6svXUUJrjKqyuIz5QYDqEMdTNBVHc5VUM3sK3SrhyyaNq8tHGGeowzAZcb4nQuVeWyZokVNjlgtUr-bnm0tuR6NBp8-DKbH462l3I_9YX8yPqtTK7J6ZXZrIcNm2DRna0IdsGBoc7bWxKYWlnABac6_4AAFDV2uuHh-qSf0ksX5a15yTykaV8Vk6dVK0QYC7OjKKoLRI-BYgzO2h_a9kMZRG-33jwenb2orIOpppnrzH-yOehlbuDPs72yivc8qOPf2khXwvkpdaOUnm6E0hCb30B3jweC-Rt591BL5AbprvBlsdEVxgG41qC7h7G3FD1w8QN9qkGKNGKzBgQEGuAIp3gEpBpBi6AZbkOKFxBakuAQptiDF8GsFUrwFUjNk8RBNh4PJ0cgxBUEcTvxg7fCAey74t0wGEY9pKuOUR8Lv-SyOwE0QWchCZeAL7nPpCioCkhGfCRn4QUAl9x-hdr7IxWOEM0E4jYkUPY-RKHMjwTwa-cwNZSgZSTvItSJJuGHLV0VbLhIbFnmegBQTJcXEVTEcXge9qm5ZaqqY6y4mVs6JsXW1DZsARK-77QVgoupeccOP-uNEtZW1HGhANr0OOtyCTHW5BW0HYYuhBLSJ2iJkuQCRJ7GKRlefJ3_q4ym6Wb_Ez1B7vboUz9ENvlnPitWheRt-ABK18BU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fictitious+domain+method+and+separated+representations+for+the+solution+of+boundary+value+problems+on+uncertain+parameterized+domains&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=NOUY%2C+A&rft.au=CHEVREUIL%2C+M&rft.au=SAFATLY%2C+E&rft.date=2011-01-01&rft.pub=Elsevier&rft.issn=0045-7825&rft.volume=200&rft.issue=45-46&rft.spage=3066&rft.epage=3082&rft_id=info:doi/10.1016%2Fj.cma.2011.07.002&rft.externalDBID=n%2Fa&rft.externalDocID=24549597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon