Optimized Spatiotemporal Data Scheduling Based on Maximum Flow for Multilevel Visualization Tasks

Massive spatiotemporal data scheduling in a cloud environment play a significant role in real-time visualization. Existing methods focus on preloading, prefetching, multithread processing and multilevel cache collaboration, which waste hardware resources and cannot fully meet the different schedulin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISPRS international journal of geo-information Ročník 9; číslo 9; s. 518
Hlavní autoři: Zhu, Qing, Chen, Meite, Feng, Bin, Zhou, Yan, Li, Maosu, Xu, Zhaowen, Ding, Yulin, Liu, Mingwei, Wang, Wei, Xie, Xiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2020
Témata:
ISSN:2220-9964, 2220-9964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Massive spatiotemporal data scheduling in a cloud environment play a significant role in real-time visualization. Existing methods focus on preloading, prefetching, multithread processing and multilevel cache collaboration, which waste hardware resources and cannot fully meet the different scheduling requirements of diversified tasks. This paper proposes an optimized spatiotemporal data scheduling method based on maximum flow for multilevel visualization tasks. First, the spatiotemporal data scheduling framework is designed based on the analysis of three levels of visualization tasks. Second, the maximum flow model is introduced to construct the spatiotemporal data scheduling topological network, and the calculation algorithm of the maximum data flow is presented in detail. Third, according to the change in the data access hotspot, the adaptive caching algorithm and maximum flow model parameter switching strategy are devised to achieve task-driven spatiotemporal data optimization scheduling. Compared with two typical methods of first come first serve (FCFS) and priority scheduling algorithm (PSA) by simulating visualization tasks at three levels, the proposed maximum flow scheduling (MFS) method has been proven to be more flexible and efficient in adjusting each spatiotemporal data flow type as needed, and the method realizes spatiotemporal data flow global optimization under limited hardware resources in the cloud environment.
AbstractList Massive spatiotemporal data scheduling in a cloud environment play a significant role in real-time visualization. Existing methods focus on preloading, prefetching, multithread processing and multilevel cache collaboration, which waste hardware resources and cannot fully meet the different scheduling requirements of diversified tasks. This paper proposes an optimized spatiotemporal data scheduling method based on maximum flow for multilevel visualization tasks. First, the spatiotemporal data scheduling framework is designed based on the analysis of three levels of visualization tasks. Second, the maximum flow model is introduced to construct the spatiotemporal data scheduling topological network, and the calculation algorithm of the maximum data flow is presented in detail. Third, according to the change in the data access hotspot, the adaptive caching algorithm and maximum flow model parameter switching strategy are devised to achieve task-driven spatiotemporal data optimization scheduling. Compared with two typical methods of first come first serve (FCFS) and priority scheduling algorithm (PSA) by simulating visualization tasks at three levels, the proposed maximum flow scheduling (MFS) method has been proven to be more flexible and efficient in adjusting each spatiotemporal data flow type as needed, and the method realizes spatiotemporal data flow global optimization under limited hardware resources in the cloud environment.
Massive spatiotemporal data scheduling in a cloud environment play a significant role in real-time visualization. Existing methods focus on preloading, prefetching, multithread processing and multilevel cache collaboration, which waste hardware resources and cannot fully meet the different scheduling requirements of diversified tasks. This paper proposes an optimized spatiotemporal data scheduling method based on maximum flow for multilevel visualization tasks. First, the spatiotemporal data scheduling framework is designed based on the analysis of three levels of visualization tasks. Second, the maximum flow model is introduced to construct the spatiotemporal data scheduling topological network, and the calculation algorithm of the maximum data flow is presented in detail. Third, according to the change in the data access hotspot, the adaptive caching algorithm and maximum flow model parameter switching strategy are devised to achieve task-driven spatiotemporal data optimization scheduling. Compared with two typical methods of first come first serve (FCFS) and priority scheduling algorithm (PSA) by simulating visualization tasks at three levels, the proposed maximum flow scheduling (MFS) method has been proven to be more flexible and efficient in adjusting each spatiotemporal data flow type as needed, and the method realizes spatiotemporal data flow global optimization under limited hardware resources in the cloud environment. Keywords: scheduling optimization; maximum flow; spatiotemporal data; multilevel visualization tasks; cloud environment
Audience Academic
Author Zhou, Yan
Feng, Bin
Wang, Wei
Liu, Mingwei
Li, Maosu
Xu, Zhaowen
Ding, Yulin
Chen, Meite
Zhu, Qing
Xie, Xiao
Author_xml – sequence: 1
  givenname: Qing
  surname: Zhu
  fullname: Zhu, Qing
– sequence: 2
  givenname: Meite
  surname: Chen
  fullname: Chen, Meite
– sequence: 3
  givenname: Bin
  surname: Feng
  fullname: Feng, Bin
– sequence: 4
  givenname: Yan
  surname: Zhou
  fullname: Zhou, Yan
– sequence: 5
  givenname: Maosu
  surname: Li
  fullname: Li, Maosu
– sequence: 6
  givenname: Zhaowen
  surname: Xu
  fullname: Xu, Zhaowen
– sequence: 7
  givenname: Yulin
  surname: Ding
  fullname: Ding, Yulin
– sequence: 8
  givenname: Mingwei
  surname: Liu
  fullname: Liu, Mingwei
– sequence: 9
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
– sequence: 10
  givenname: Xiao
  surname: Xie
  fullname: Xie, Xiao
BookMark eNptkU9PFTEUxScGExFZ-QUmcWNiHvbvzHSJKEoCYQG6be5rb599dqZj21Hg01t4xhBiu2jT_M45uT0vm70pTtg0ryk54lyR93678YooIunwrNlnjJGVUp3Ye3R_0RzmvCV1KcoHQfYbuJyLH_0d2vZqhuJjwXGOCUL7EQq0V-Y72iX4adN-gFyhOLUXcOPHZWxPQ_zdupjaiyUUH_AXhvabzwsEf3fvNLXXkH_kV81zByHj4d_zoPl6-un65Mvq_PLz2cnx-coI3pWVYdQBRWYcRw5ybUjHnERHCUNliJWdNSh7LvqeUDsgCuuMdYwTYNg7zg-as52vjbDVc_IjpFsdweuHh5g2GlLxJqCuUUoqiTDItaCKg7WMCNn1a2uHal-93u685hR_LpiLHn02GAJMGJesmVADJ1R0rKJvnqDbuKSpTloproTkkspKHe2oDdR8P7lYEpi6LY7e1B5d_UB93AnKJBl6VQXvdgKTYs4J3b-JKNH3detHdVeaPqGNLw8d1Bgf_qv5A2Str5c
CitedBy_id crossref_primary_10_1007_s13369_021_05603_w
crossref_primary_10_3390_agriculture12091433
Cites_doi 10.1007/978-3-319-69137-4_28
10.3390/ijgi6010021
10.1016/j.future.2010.02.004
10.1080/13658816.2020.1749637
10.1016/j.neucom.2016.06.099
10.1109/CCGrid.2013.89
10.1016/j.jpdc.2019.01.005
10.1109/ACCESS.2018.2829142
10.1109/PDGC.2016.7913185
10.1016/j.compenvurbsys.2014.02.009
10.1109/CIVEMSA.2015.7158625
10.4401/ag-7268
10.1007/s41324-016-0080-4
10.1007/978-3-319-25691-7_12
10.1109/CCET.2018.8542359
10.1016/j.advengsoft.2016.01.009
10.1016/j.ins.2018.12.009
10.1109/MNET.2018.1700141
10.1109/TVCG.2013.226
10.3390/ijgi6040116
10.1016/j.isprsjprs.2015.12.003
10.1145/2628036
10.3390/ijgi6060165
10.1145/3139645.3139650
10.1007/978-3-319-12181-9_1
10.5194/isprsannals-II-4-W2-55-2015
10.1007/b138407
10.1109/PDP.2013.41
10.3390/ijgi7100393
10.1007/s11227-017-2012-z
10.1145/2788397
10.1109/ICRAECT.2017.28
10.1080/13658816.2017.1334897
10.1016/j.isprsjprs.2012.04.004
10.1109/EMEIT.2011.6024076
10.1007/s11806-011-0478-z
10.1007/BF02288321
10.1080/17538947.2018.1550122
10.3390/ijgi7090371
10.1109/CCGrid.2011.55
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/ijgi9090518
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_21f9595ea85b4193add204567bdd8701
A641250879
10_3390_ijgi9090518
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ZBA
ITC
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c436t-c21fa1e2cf3e3a5bc062f5ef102e9c0d56dce57347701d8ee4dfcdf230a2e7f33
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580789900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2220-9964
IngestDate Fri Oct 03 12:33:27 EDT 2025
Fri Sep 05 08:36:36 EDT 2025
Fri Jul 25 12:03:52 EDT 2025
Tue Nov 04 18:00:22 EST 2025
Tue Nov 18 19:49:09 EST 2025
Sat Nov 29 07:12:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-c21fa1e2cf3e3a5bc062f5ef102e9c0d56dce57347701d8ee4dfcdf230a2e7f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2439453515?pq-origsite=%requestingapplication%
PQID 2439453515
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_21f9595ea85b4193add204567bdd8701
proquest_miscellaneous_2498301462
proquest_journals_2439453515
gale_infotracacademiconefile_A641250879
crossref_primary_10_3390_ijgi9090518
crossref_citationtrail_10_3390_ijgi9090518
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mingwei (ref_46) 2018; 47
Arslan (ref_42) 2019; 126
ref_12
ref_11
ref_10
Kharouf (ref_34) 2017; 25
ref_53
ref_51
Trubka (ref_6) 2016; 117
Yuan (ref_36) 2010; 26
ref_17
Ma (ref_27) 2018; 6
ref_15
Li (ref_26) 2014; 2
Calciu (ref_33) 2017; 51
ref_24
ref_22
ref_21
ref_20
Bhat (ref_32) 2011; 3
Pan (ref_25) 2017; 73
Ramkumar (ref_41) 2019; 12
(ref_4) 2012; 71
ref_28
Zhao (ref_13) 2018; 507
Su (ref_16) 2016; 95
Zhang (ref_23) 2018; 32
Ferreira (ref_18) 2013; 19
Wang (ref_9) 2018; 274
Goldfarb (ref_50) 1988; 13
ref_35
ref_31
ref_30
Goldberg (ref_48) 2014; 57
ref_39
Liu (ref_1) 2017; 31
Zhang (ref_7) 2011; 14
ref_37
Li (ref_29) 2017; 61
Song (ref_14) 2015; 2
Zhan (ref_38) 2015; 47
ref_45
ref_44
ref_43
ref_40
ref_3
ref_2
Li (ref_54) 2018; 2
ref_49
Qing (ref_47) 2017; 46
Gaillard (ref_19) 2020; 13
ref_8
ref_5
Zhu (ref_52) 2020; 49
References_xml – ident: ref_49
– ident: ref_37
  doi: 10.1007/978-3-319-69137-4_28
– ident: ref_2
  doi: 10.3390/ijgi6010021
– volume: 26
  start-page: 1200
  year: 2010
  ident: ref_36
  article-title: A data placement strategy in scientific cloud workflows
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2010.02.004
– ident: ref_20
  doi: 10.1080/13658816.2020.1749637
– ident: ref_39
– volume: 274
  start-page: 88
  year: 2018
  ident: ref_9
  article-title: Spatial query based virtual reality GIS analysis platform
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.099
– ident: ref_30
  doi: 10.1109/CCGrid.2013.89
– volume: 126
  start-page: 134
  year: 2019
  ident: ref_42
  article-title: Scheduling opportunities for asymmetrically reliable caches
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2019.01.005
– volume: 6
  start-page: 27010
  year: 2018
  ident: ref_27
  article-title: An improved web cache replacement algorithm based on weighting and cost
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2829142
– ident: ref_28
  doi: 10.1109/PDGC.2016.7913185
– volume: 61
  start-page: 163
  year: 2017
  ident: ref_29
  article-title: A replication strategy for a distributed high-speed caching system based on spatiotemporal access patterns of geospatial data
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2014.02.009
– volume: 3
  start-page: 594
  year: 2011
  ident: ref_32
  article-title: Cloud Computing: A solution to Geographical Information Systems (GIS)
  publication-title: Int. J. Comput. Sci. Eng.
– ident: ref_8
– ident: ref_11
  doi: 10.1109/CIVEMSA.2015.7158625
– ident: ref_35
  doi: 10.4401/ag-7268
– volume: 25
  start-page: 89
  year: 2017
  ident: ref_34
  article-title: An integrated architectural framework for geoprocessing in cloud environment
  publication-title: Spat. Inf. Res.
  doi: 10.1007/s41324-016-0080-4
– ident: ref_45
  doi: 10.1007/978-3-319-25691-7_12
– ident: ref_10
  doi: 10.1109/CCET.2018.8542359
– volume: 95
  start-page: 7
  year: 2016
  ident: ref_16
  article-title: Multi-dimensional visualization of large-scale marine hydrological environmental data
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.009
– volume: 507
  start-page: 472
  year: 2018
  ident: ref_13
  article-title: Relational granulation method based on quotient space theory for maximum flow problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.009
– volume: 32
  start-page: 140
  year: 2018
  ident: ref_23
  article-title: A Multi-Level Cache Framework for Remote Resource Access in Transparent Computing
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700141
– volume: 12
  start-page: 77
  year: 2019
  ident: ref_41
  article-title: Preserving security using crisscross AES and FCFS scheduling in cloud computing
  publication-title: Int. J. Adv. Intell. Paradig.
– volume: 19
  start-page: 2149
  year: 2013
  ident: ref_18
  article-title: Visual exploration of big spatio-temporal urban data: A study of new york city taxi trips
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2013.226
– ident: ref_17
  doi: 10.3390/ijgi6040116
– volume: 117
  start-page: 175
  year: 2016
  ident: ref_6
  article-title: A web-based 3D visualisation and assessment system for urban precinct scenario modelling
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.12.003
– volume: 57
  start-page: 82
  year: 2014
  ident: ref_48
  article-title: Efficient maximum flow algorithms
  publication-title: Commun. Acm
  doi: 10.1145/2628036
– ident: ref_3
– ident: ref_24
  doi: 10.3390/ijgi6060165
– volume: 51
  start-page: 24
  year: 2017
  ident: ref_33
  article-title: How to implement any concurrent data structure for modern servers
  publication-title: Acm Sigops Oper. Syst. Rev.
  doi: 10.1145/3139645.3139650
– volume: 2
  start-page: 136
  year: 2018
  ident: ref_54
  article-title: ECharts: A declarative framework for rapid construction of web-based visualization
  publication-title: Vis. Inform.
– ident: ref_5
  doi: 10.1007/978-3-319-12181-9_1
– volume: 2
  start-page: 55
  year: 2015
  ident: ref_14
  article-title: Building spatiotemporal cloud platform for supporting GIS application
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprsannals-II-4-W2-55-2015
– ident: ref_44
  doi: 10.1007/b138407
– ident: ref_40
  doi: 10.1109/PDP.2013.41
– ident: ref_21
– volume: 2
  start-page: 133
  year: 2014
  ident: ref_26
  article-title: A Replacement Strategy for A Distributed Caching System Based on The Spatiotemporal Access Pattern of Geospatial Data
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref_22
  doi: 10.3390/ijgi7100393
– volume: 73
  start-page: 4324
  year: 2017
  ident: ref_25
  article-title: An enhanced active caching strategy for data-intensive computations in distributed GIS
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2012-z
– volume: 47
  start-page: 63
  year: 2015
  ident: ref_38
  article-title: Cloud computing resource scheduling and a survey of its evolutionary approaches
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2788397
– ident: ref_51
  doi: 10.1109/ICRAECT.2017.28
– volume: 46
  start-page: 1672
  year: 2017
  ident: ref_47
  article-title: The review of visual analysis methods of multi-modal spatio-temporal big data
  publication-title: Acta Geod. Cartogr. Sin.
– volume: 31
  start-page: 1891
  year: 2017
  ident: ref_1
  article-title: Optimization of simulation and visualization analysis of dam-failure flood disaster for diverse computing systems
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2017.1334897
– volume: 71
  start-page: 12
  year: 2012
  ident: ref_4
  article-title: CityGML–Interoperable semantic 3D city models
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.04.004
– ident: ref_12
– ident: ref_43
  doi: 10.1109/EMEIT.2011.6024076
– ident: ref_15
– volume: 14
  start-page: 150
  year: 2011
  ident: ref_7
  article-title: GeoScope: Full 3D geospatial information system case study
  publication-title: Geo-Spat. Inf. Sci.
  doi: 10.1007/s11806-011-0478-z
– volume: 13
  start-page: 81
  year: 1988
  ident: ref_50
  article-title: A computational comparison of the dinic and network simplex methods for maximum flow
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02288321
– volume: 13
  start-page: 627
  year: 2020
  ident: ref_19
  article-title: Visualisation and personalisation of multi-representations city models
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2018.1550122
– ident: ref_53
  doi: 10.3390/ijgi7090371
– ident: ref_31
  doi: 10.1109/CCGrid.2011.55
– volume: 49
  start-page: 681
  year: 2020
  ident: ref_52
  article-title: An efficient sparse graph index method for dynamic and associated data
  publication-title: Acta Geodaetica et Cartographica Sinica
– volume: 47
  start-page: 1098
  year: 2018
  ident: ref_46
  article-title: The multi-level visualization task model for multi-modal spatio-temporal data
  publication-title: Acta Geod. Cartogr. Sin.
SSID ssj0000913840
Score 2.1762557
Snippet Massive spatiotemporal data scheduling in a cloud environment play a significant role in real-time visualization. Existing methods focus on preloading,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 518
SubjectTerms Adaptive algorithms
Algorithms
Caching
Cloud computing
cloud environment
Computer simulation
Data
Data processing
Efficiency
Electronic data processing
environment
flow
Global optimization
Hardware
Mathematical optimization
Maximum flow
methodology
Methods
Multilevel
multilevel visualization tasks
Optimization
Priority scheduling
Resources
Scheduling
Scheduling (Management)
scheduling optimization
Software
spatial data
Spatiotemporal data
Task scheduling
topology
Visualization
Visualization (Computers)
wastes
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yCOqD6KlYPSXCgSCUa5smaR7v1MUXT-FOubeQj8nZc7cr112__nonaW5ZQfHF13YI6Xwk86MzvyFkH0wdKsOhrJh0ZQuWl7bjvAytZKEOltWmSsMm5PFxd3am3m-N-oo1YRM98KS4g6YOiisOpuO2xWwD4zEyqAtpvUdfS8CnkmoLTKUzWNUMocvUkMcQ1x_0F-e9qiIbVffbFZSY-v92HqdLZnaH3M7ZIT2cdnWXXINhl9zIg8o__dgltz7243qSGO8R8w4DftH_BE9PUmV0Jpqa01dmZegJGsTHSvNzeoSXlafLgb413_vFekFn8-U3igkrTR2481g6RKe1c2MmPTXj5_E--TB7ffryTZlnJpSuZWJVOtSXqaFxgQEz3LpKNIFDwDwClKs8F94Bl6yVqDvfAbQ-OB8QiJgGZGDsAdkZlgM8JLTxzBnPubAIqRx01gqoa3BSQBuUFQV5caVG7TKheJxrMdcILKLO9ZbOC7K_Ef4y8Wj8Wewo2mMjEsmv0wN0CZ1dQv_LJQryPFpTxxDFDTmTOw3wsyLZlT4ULaZ1VSdVQfauDK5z7I66ic3CnGGiV5Bnm9cYdfFXihlguY4yqotgVDSP_seOH5ObTcTxqXZtj-ysLtfwhFx3X1f9ePk0ufYvszz_ZQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimized Spatiotemporal Data Scheduling Based on Maximum Flow for Multilevel Visualization Tasks
URI https://www.proquest.com/docview/2439453515
https://www.proquest.com/docview/2498301462
https://doaj.org/article/21f9595ea85b4193add204567bdd8701
Volume 9
WOSCitedRecordID wos000580789900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PCBAR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M7S
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgFwk48FgWUVgqI62EhBRtEsd5nNAWWsFhS0QXtHCJHHtcAm2zNC2vA7-dmcQtIAEXLj4kI8vWjOdhz3zD2CGowPpKgueLRHsRlNIrUyk9GyXCBrYUgfLbZhPJeJyenWW5u3BrXFrlRie2itrUmu7Ij0Iq4ZQCze_j848edY2i11XXQuMi2yWkMpTz3cFwnL_c3rIQ6iWGMF1hnsD4_qh6P60yn1Cp0t9MUYvY_ze93Bqb0fX_XeYNds25mfy4k4ub7AIs9thl1_H83dc9dvV11aw7iuYWUy9Qc8yrb2D4pE2xdohVM_5UrRSfIGcNpaxP-QCtnuH1gp-oL9V8PeejWf2Zo-fL21LeGeUg8W5uV-HJT1Xzodlnr0bD0yfPPNd8wdORiFeeDgOrAgi1FSCULLUfh1aCRYcEMu0bGRsNMhFRkviBSQEiY7WxGNGoEBIrxG22s6gXcIfx0AitjJRxibGZhrQsYwgC0EkMkc3KuMcebfhQaIdMTg0yZgVGKMS04hem9djhlvi8A-T4M9mAGLolIRTt9kO9nBbuUBa4xUxmElQqywjFB3U9ofPHSWkM6rGgxx6SOBR01nFBWrmSBdwWoWYVx3GE_qGfJlmPHWzEoXBKoCl-ykKPPdj-xuNLbzJqAfWaaLKUoto4vPvvKe6xKyGF-m162wHbWS3XcJ9d0p9WVbPsO7nvt1cKfUpgndD4fYhjLt_i__z5Sf7mB3zPFUA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKVLhwKOACBRYpCIkJKu21-vHAaGWEjVqEyI1oPZk1vsIhiQucUIpP4rfyIztBJCAWw9c7ZHl9X7-5rHzANg20rOuFMZxeaScwGTCyWIhHBtE3Ho24550q2ETUb8fn5wkgzX4vqyFobTKJSdWRK0LRTHyHZ9KOAVH9fvy7LNDU6PodHU5QqOGxaG5OEeXrXzR3cf9fer7ndfDVwdOM1XAUQEP547yPSs94yvLDZciU27oW2EsalqTKFeLUCsjIh5Ekevp2JhAW6UtmurSN5GlAChS_nqAYHdbsD7o9ganq6gOddlEl6kuBOQ8cXfyj6M8cakLVvyb6qsmBPxND1TKrXPjf_ssN-F6Y0az3Rr3t2DNTDdho5no_uFiE669y8tFLVHeBvkGmXGSfzOaHVcp5E1HrjHbl3PJjhG5mlLyR2wPtbpmxZT15Nd8spiwzrg4Z2jZs6pUeUw5Vqx-dlPByoay_FTegbeXst670JoWU3MPmK-5klqIMEPfU5k4y0LjeUZFoQlskoVteL7c91Q1nddpAMg4RQ-MQJL-ApI2bK-Ez-qGI38W2yMArUSoS3h1oZiN0oZ0UlxiIhJhZCyyAC111GU0fSCMMq2Rp702PCP4pcRl-EJKNiUZuCzqCpbuhgHav24cJW3YWsIvbUiuTH9irw1PVreRnujMSU5NsSCZJCavPfTv__sRj2HjYNg7So-6_cMHcNWnsEaVyrcFrflsYR7CFfVlnpezR80_x-D9ZeP5BwQLb18
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB5VKWI5sBRQAwUGqQgJyYrt8XjsA0INaURVCBEtVW9mPEtqSOISJ5Ty0_h1vGdPAkjArQeu9tPIY3_-3jJvIWTbyMD6khvPZ0J5kcm5lyecezYSzAY2Z4H062ETYjBIjo_T4Rr5vqyFwbTKJSfWRK1LhTHyToglnJyB-u1YlxYx7PVfnH72cIIUnrQux2k0ENk352fgvlXP93rwrZ-EYX_38OUrz00Y8FTE4rmnwsDKwITKMsMkz5Ufh5YbC1rXpMrXPNbKcMEiIfxAJ8ZE2iptwWyXoREWg6FA_-uCgdPTIuvd3cHw3SrCgx03wX1qigIZS_1O8XFUpD52xEp-U4P1tIC_6YRa0fVv_M-v6Ca57sxrutP8D7fImplukCtu0vvJ-Qa5dlRUi0aiuk3kW2DMSfHNaHpQp5a7Tl1j2pNzSQ8A0RpT9Ue0C9pe03JK38ivxWQxof1xeUbB4qd1CfMYc69os7arbKWHsvpU3SHvL2S_d0lrWk7NJqGhZkpqzuMcfFJlkjyPTRAYJWIT2TSP2-TZEgOZch3ZcTDIOAPPDAGT_QKYNtleCZ82jUj-LNZFMK1EsHt4faGcjTJHRhlsMeUpNzLheQQWPOg4nEoQi1xr4O-gTZ4iFDPkOHggJV2pBmwLu4VlO3EEdrGfiLRNtpZQzBz5VdlPHLbJ49VtoC08i5JTUy5QJk3Qm4_De_9e4hG5DCDOXu8N9u-TqyFGO-oMvy3Sms8W5gG5pL7Mi2r20P1-lHy4aDj_ADwcd_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Spatiotemporal+Data+Scheduling+Based+on+Maximum+Flow+for+Multilevel+Visualization+Tasks&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Zhu%2C+Qing&rft.au=Chen%2C+Meite&rft.au=Feng%2C+Bin&rft.au=Zhou%2C+Yan&rft.date=2020-09-01&rft.pub=MDPI+AG&rft.eissn=2220-9964&rft.volume=9&rft.issue=9&rft.spage=518&rft_id=info:doi/10.3390%2Fijgi9090518&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon