A Multimodal Data Fusion and Deep Learning Framework for Large-Scale Wildfire Surface Fuel Mapping

Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have leveraged remote sensing and machine learning for classifying land cover and mapping forest vegetation species. In most cases that focused on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire (Basel, Switzerland) Jg. 6; H. 2; S. 36
Hauptverfasser: Alipour, Mohamad, La Puma, Inga, Picotte, Joshua, Shamsaei, Kasra, Rowell, Eric, Watts, Adam, Kosovic, Branko, Ebrahimian, Hamed, Taciroglu, Ertugrul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2023
Schlagworte:
ISSN:2571-6255, 2571-6255
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have leveraged remote sensing and machine learning for classifying land cover and mapping forest vegetation species. In most cases that focused on surface fuel mapping, the spatial scale of interest was smaller than a few hundred square kilometers; thus, many small-scale site-specific models had to be created to cover the landscape at the national scale. The present work aims to develop a large-scale surface fuel identification model using a custom deep learning framework that can ingest multimodal data. Specifically, we use deep learning to extract information from multispectral signatures, high-resolution imagery, and biophysical climate and terrain data in a way that facilitates their end-to-end training on labeled data. A multi-layer neural network is used with spectral and biophysical data, and a convolutional neural network backbone is used to extract the visual features from high-resolution imagery. A Monte Carlo dropout mechanism was also devised to create a stochastic ensemble of models that can capture classification uncertainties while boosting the prediction performance. To train the system as a proof-of-concept, fuel pseudo-labels were created by a random geospatial sampling of existing fuel maps across California. Application results on independent test sets showed promising fuel identification performance with an overall accuracy ranging from 55% to 75%, depending on the level of granularity of the included fuel types. As expected, including the rare—and possibly less consequential—fuel types reduced the accuracy. On the other hand, the addition of high-resolution imagery improved classification performance at all levels.
AbstractList Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have leveraged remote sensing and machine learning for classifying land cover and mapping forest vegetation species. In most cases that focused on surface fuel mapping, the spatial scale of interest was smaller than a few hundred square kilometers; thus, many small-scale site-specific models had to be created to cover the landscape at the national scale. The present work aims to develop a large-scale surface fuel identification model using a custom deep learning framework that can ingest multimodal data. Specifically, we use deep learning to extract information from multispectral signatures, high-resolution imagery, and biophysical climate and terrain data in a way that facilitates their end-to-end training on labeled data. A multi-layer neural network is used with spectral and biophysical data, and a convolutional neural network backbone is used to extract the visual features from high-resolution imagery. A Monte Carlo dropout mechanism was also devised to create a stochastic ensemble of models that can capture classification uncertainties while boosting the prediction performance. To train the system as a proof-of-concept, fuel pseudo-labels were created by a random geospatial sampling of existing fuel maps across California. Application results on independent test sets showed promising fuel identification performance with an overall accuracy ranging from 55% to 75%, depending on the level of granularity of the included fuel types. As expected, including the rare—and possibly less consequential—fuel types reduced the accuracy. On the other hand, the addition of high-resolution imagery improved classification performance at all levels.
Audience Academic
Author Kosovic, Branko
Watts, Adam
Alipour, Mohamad
Shamsaei, Kasra
La Puma, Inga
Rowell, Eric
Picotte, Joshua
Taciroglu, Ertugrul
Ebrahimian, Hamed
Author_xml – sequence: 1
  givenname: Mohamad
  orcidid: 0000-0003-2018-134X
  surname: Alipour
  fullname: Alipour, Mohamad
– sequence: 2
  givenname: Inga
  orcidid: 0000-0002-6865-820X
  surname: La Puma
  fullname: La Puma, Inga
– sequence: 3
  givenname: Joshua
  orcidid: 0000-0002-4021-4623
  surname: Picotte
  fullname: Picotte, Joshua
– sequence: 4
  givenname: Kasra
  orcidid: 0000-0003-3396-7683
  surname: Shamsaei
  fullname: Shamsaei, Kasra
– sequence: 5
  givenname: Eric
  surname: Rowell
  fullname: Rowell, Eric
– sequence: 6
  givenname: Adam
  surname: Watts
  fullname: Watts, Adam
– sequence: 7
  givenname: Branko
  orcidid: 0000-0002-1746-0746
  surname: Kosovic
  fullname: Kosovic, Branko
– sequence: 8
  givenname: Hamed
  orcidid: 0000-0003-1992-6033
  surname: Ebrahimian
  fullname: Ebrahimian, Hamed
– sequence: 9
  givenname: Ertugrul
  orcidid: 0000-0001-9618-1210
  surname: Taciroglu
  fullname: Taciroglu, Ertugrul
BookMark eNptkdFrFDEQxhepYK198h8I-CLI1kmym2Qfj9bTwhUfqvgYZrOTI2dus2Z3Ef97U0-kFMnDhOH3fcPM97I6G9NIVfWaw5WUHbz3IZMCASDVs-pctJrXSrTt2aP_i-pyng8AIASXSrfnVb9hd2tcwjENGNkNLsi26xzSyHAc2A3RxHaEeQzjnm0zHulnyt-ZT5ntMO-pvncYiX0LcXgYz-7X7NFR8aDI7nCaiu5V9dxjnOnyb72ovm4_fLn-VO8-f7y93uxq10i11AjGdb3qHQKaXkoOHCQq35NG0APnoA1qI0gR9lyDR45yMKr1ErSSJC-q25PvkPBgpxyOmH_ZhMH-aaS8t5iX4CJZoZq-RS_NIEXDB-o8B6E8Cd54rqUpXm9PXlNOP1aaF3sMs6MYcaS0zlYYY8qhpegK-uYJekhrHsumVmjdtVI3jSzU1Ynal3vZMPq0ZHTlDXQMrgTpQ-lvdCNkx7sGiuDdSeBymudM_t9GHOxD3vZR3oXmT2gXFlxKjmVMiP_V_AaLFK0M
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3508271
crossref_primary_10_1016_j_jag_2025_104436
crossref_primary_10_3390_land13101696
crossref_primary_10_3390_fire7110407
crossref_primary_10_3390_fire6100395
crossref_primary_10_1038_s41598_025_05706_6
crossref_primary_10_3390_drones7070456
crossref_primary_10_3390_rs16183536
crossref_primary_10_1016_j_inffus_2025_103440
crossref_primary_10_3390_f16071088
crossref_primary_10_1016_j_jag_2025_104455
crossref_primary_10_3390_fire6070264
crossref_primary_10_3390_fire6060235
crossref_primary_10_1016_j_rse_2024_114351
crossref_primary_10_1109_MGRS_2024_3495516
crossref_primary_10_1109_ACCESS_2024_3486188
crossref_primary_10_1016_j_cscm_2023_e02842
crossref_primary_10_1016_j_earscirev_2025_105064
crossref_primary_10_3390_fire6030108
crossref_primary_10_1071_WF24224
Cites_doi 10.1016/S0034-4257(02)00096-2
10.1016/j.foreco.2009.01.020
10.1109/CVPR.2009.5206848
10.1109/CVPR.2016.308
10.3390/rs8080669
10.1016/j.inffus.2022.09.023
10.3390/rs12193151
10.1007/978-3-319-09015-3
10.1016/S0034-4257(01)00289-9
10.1016/j.rse.2007.05.005
10.1016/j.rse.2011.01.017
10.1016/0034-4257(94)90134-1
10.1071/WF08088
10.1109/LSP.2021.3130504
10.1071/WF11068
10.3390/rs5126481
10.1371/journal.pone.0147121
10.3390/rs13193836
10.1002/9781119028116
10.1016/0034-4257(88)90106-X
10.3390/rs12010086
10.1080/10106049109354290
10.1016/j.rse.2016.10.020
10.1016/j.cageo.2022.105249
10.1016/j.foreco.2005.06.013
10.5194/nhess-16-643-2016
10.3390/rs10040515
10.3390/rs13081472
10.1007/s11676-017-0452-1
10.1117/12.210877
10.1007/978-1-4614-1034-8_11
10.1139/x02-052
10.3390/rs71114680
10.3390/rs6021684
10.1609/aaai.v31i1.11231
10.1073/pnas.1903070116
10.1080/07038992.2016.1220827
10.14358/PERS.79.1.37
10.1109/TGRS.2020.3037160
10.1016/j.isprsjprs.2020.12.010
10.1016/j.rse.2019.02.016
10.2737/INT-GTR-122
10.1007/978-3-030-30508-6_6
10.1109/JPROC.2020.3004555
10.2737/RMRS-GTR-153
10.1109/CVPR.2016.90
10.1126/sciadv.abc0020
10.3390/rs12213660
10.1371/journal.pone.0143619
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
COVID
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.3390/fire6020036
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Agricultural Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Agricultural Science Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2571-6255
ExternalDocumentID oai_doaj_org_article_264b5af38d3241de9f1026fe214f1738
A742391940
10_3390_fire6020036
GeographicLocations United States
United States--US
California
GeographicLocations_xml – name: United States
– name: United States--US
– name: California
GroupedDBID 7X2
AAFWJ
AAHBH
AAYXX
ABDBF
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c436t-a08c9b6bca0a8b3310103a6fbe7a07d11078a782e6eab170fa1a3d865f30763e3
IEDL.DBID BENPR
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000945115900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2571-6255
IngestDate Tue Oct 14 18:44:52 EDT 2025
Fri Sep 05 06:40:26 EDT 2025
Mon Jun 30 13:24:09 EDT 2025
Tue Nov 04 18:43:17 EST 2025
Tue Nov 18 21:56:00 EST 2025
Sat Nov 29 07:12:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-a08c9b6bca0a8b3310103a6fbe7a07d11078a782e6eab170fa1a3d865f30763e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3396-7683
0000-0003-2018-134X
0000-0002-4021-4623
0000-0001-9618-1210
0000-0002-1746-0746
0000-0003-1992-6033
0000-0002-6865-820X
OpenAccessLink https://www.proquest.com/docview/2779537443?pq-origsite=%requestingapplication%
PQID 2779537443
PQPubID 5046899
ParticipantIDs doaj_primary_oai_doaj_org_article_264b5af38d3241de9f1026fe214f1738
proquest_miscellaneous_2888003329
proquest_journals_2779537443
gale_infotracacademiconefile_A742391940
crossref_primary_10_3390_fire6020036
crossref_citationtrail_10_3390_fire6020036
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fire (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Zhu (ref_52) 2019; 224
ref_58
Krasnow (ref_25) 2009; 257
ref_57
ref_56
Keane (ref_11) 2012; Volume 9781461410348
Falkowski (ref_26) 2005; 217
ref_51
Chuvieco (ref_19) 2011; 115
Jakubowksi (ref_18) 2013; 79
Rollins (ref_10) 2009; 18
Huete (ref_60) 2002; 83
ref_59
Lasaponara (ref_17) 2007; 9
Stavros (ref_13) 2018; 11
ref_69
ref_24
ref_68
ref_23
ref_67
Zhuang (ref_37) 2021; 109
ref_64
ref_63
Hu (ref_38) 2015; 7
Caselles (ref_66) 1991; 6
ref_29
ref_28
Flood (ref_53) 2013; 5
Chirici (ref_15) 2013; 25
Belkin (ref_42) 2019; 116
ref_72
ref_71
ref_70
Rowell (ref_9) 2016; 42
Sakellariou (ref_5) 2017; 28
ref_36
ref_34
ref_33
ref_32
ref_76
ref_31
ref_30
Kattenborn (ref_35) 2021; 173
ref_74
ref_73
Huete (ref_61) 1988; 25
Sadr (ref_47) 2021; 29
ref_39
Gitelson (ref_65) 2002; 80
Pickell (ref_12) 2020; 59
Mallinis (ref_27) 2014; 6
Gesch (ref_55) 2002; 68
Qi (ref_62) 1994; 48
Kalabokidis (ref_4) 2016; 16
Huesca (ref_16) 2019; 74
Riano (ref_22) 2002; 32
Hao (ref_75) 2023; 170
ref_46
ref_45
Marino (ref_21) 2016; 187
ref_43
Tuomisto (ref_54) 2018; 4
ref_41
ref_40
ref_1
Srivastava (ref_44) 2014; 15
ref_3
Benito (ref_14) 2013; 22
ref_2
ref_49
ref_48
Mutlu (ref_20) 2008; 112
ref_8
ref_7
ref_6
References_xml – volume: 83
  start-page: 195
  year: 2002
  ident: ref_60
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 74
  start-page: 159
  year: 2019
  ident: ref_16
  article-title: Spectral mapping methods applied to LiDAR data: Application to fuel type mapping
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 257
  start-page: 1603
  year: 2009
  ident: ref_25
  article-title: Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2009.01.020
– ident: ref_74
– ident: ref_32
– ident: ref_41
  doi: 10.1109/CVPR.2009.5206848
– ident: ref_68
– ident: ref_33
  doi: 10.1109/CVPR.2016.308
– volume: 4
  start-page: 197
  year: 2018
  ident: ref_54
  article-title: A Landsat composite covering all Amazonia for applications in ecology and conservation. Remote Sens
  publication-title: Ecol. Conserv.
– ident: ref_23
  doi: 10.3390/rs8080669
– ident: ref_46
  doi: 10.1016/j.inffus.2022.09.023
– ident: ref_49
  doi: 10.3390/rs12193151
– ident: ref_1
– ident: ref_71
– ident: ref_6
  doi: 10.1007/978-3-319-09015-3
– volume: 80
  start-page: 76
  year: 2002
  ident: ref_65
  article-title: Novel algorithms for remote estimation of vegetation fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00289-9
– volume: 112
  start-page: 274
  year: 2008
  ident: ref_20
  article-title: Mapping surface fuel models using lidar and multispectral data fusion for fire behavior
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.05.005
– volume: 115
  start-page: 1369
  year: 2011
  ident: ref_19
  article-title: Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.017
– volume: 48
  start-page: 119
  year: 1994
  ident: ref_62
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90134-1
– volume: 11
  start-page: 41
  year: 2018
  ident: ref_13
  article-title: Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 18
  start-page: 235
  year: 2009
  ident: ref_10
  article-title: LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08088
– volume: 29
  start-page: 269
  year: 2021
  ident: ref_47
  article-title: Uncertainty Estimation via Monte Carlo Dropout in CNN-Based mmWave MIMO Localization
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3130504
– volume: 22
  start-page: 306
  year: 2013
  ident: ref_14
  article-title: Pixel and object-based classification approaches for mapping forest fuel types in Tenerife Island from ASTER data
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF11068
– ident: ref_56
– volume: 5
  start-page: 6481
  year: 2013
  ident: ref_53
  article-title: Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median)
  publication-title: Remote Sens.
  doi: 10.3390/rs5126481
– ident: ref_69
  doi: 10.1371/journal.pone.0147121
– ident: ref_51
  doi: 10.3390/rs13193836
– ident: ref_28
  doi: 10.1002/9781119028116
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_61
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– ident: ref_39
  doi: 10.3390/rs12010086
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_44
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_45
– volume: 6
  start-page: 31
  year: 1991
  ident: ref_66
  article-title: Mapping burns and natural reforestation using thematic Mapper data
  publication-title: Geocarto Int.
  doi: 10.1080/10106049109354290
– ident: ref_72
– volume: 187
  start-page: 267
  year: 2016
  ident: ref_21
  article-title: Generation of high-resolution fuel model maps from discrete airborne laser scanner and Landsat-8 OLI: A low-cost and highly updated methodology for large areas
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.020
– ident: ref_59
– volume: 170
  start-page: 105249
  year: 2023
  ident: ref_75
  article-title: Semi-supervised label propagation for multi-source remote sensing image change detection
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2022.105249
– volume: 217
  start-page: 129
  year: 2005
  ident: ref_26
  article-title: Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.06.013
– volume: 16
  start-page: 643
  year: 2016
  ident: ref_4
  article-title: AEGIS: A wildfire prevention and management information system
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-16-643-2016
– ident: ref_30
– ident: ref_76
  doi: 10.3390/rs10040515
– ident: ref_3
– volume: 25
  start-page: 87
  year: 2013
  ident: ref_15
  article-title: Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_48
  doi: 10.3390/rs13081472
– volume: 28
  start-page: 1107
  year: 2017
  ident: ref_5
  article-title: Review of state-of-the-art decision support systems (DSSs) for prevention and suppression of forest fires
  publication-title: J. For. Res.
  doi: 10.1007/s11676-017-0452-1
– ident: ref_63
  doi: 10.1117/12.210877
– ident: ref_40
– volume: Volume 9781461410348
  start-page: 211
  year: 2012
  ident: ref_11
  article-title: Use of Expert Knowledge to Develop Fuel Maps for Wildland Fire Management
  publication-title: Expert Knowledge and its Application in Landscape Ecology
  doi: 10.1007/978-1-4614-1034-8_11
– ident: ref_67
– ident: ref_73
– volume: 32
  start-page: 1301
  year: 2002
  ident: ref_22
  article-title: Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems
  publication-title: Can. J. For. Res.
  doi: 10.1139/x02-052
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref_38
  article-title: Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 6
  start-page: 1684
  year: 2014
  ident: ref_27
  article-title: A Comparative Analysis of EO-1 Hyperion, Quickbird and Landsat TM Imagery for Fuel Type Mapping of a Typical Mediterranean Landscape
  publication-title: Remote Sens.
  doi: 10.3390/rs6021684
– ident: ref_34
  doi: 10.1609/aaai.v31i1.11231
– volume: 116
  start-page: 15849
  year: 2019
  ident: ref_42
  article-title: Reconciling modern machine-learning practice and the classical bias–variance trade-off
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1903070116
– volume: 42
  start-page: 443
  year: 2016
  ident: ref_9
  article-title: Using Simulated 3D Surface Fuelbeds and Terrestrial Laser Scan Data to Develop Inputs to Fire Behavior Models
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1220827
– volume: 79
  start-page: 37
  year: 2013
  ident: ref_18
  article-title: Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.79.1.37
– ident: ref_29
– volume: 68
  start-page: 5
  year: 2002
  ident: ref_55
  article-title: The National Elevation Dataset
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 59
  start-page: 7338
  year: 2020
  ident: ref_12
  article-title: FuelNet: An Artificial Neural Network for Learning and Updating Fuel Types for Fire Research
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3037160
– volume: 173
  start-page: 24
  year: 2021
  ident: ref_35
  article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.12.010
– volume: 224
  start-page: 382
  year: 2019
  ident: ref_52
  article-title: Benefits of the free and open Landsat data policy. Remote
  publication-title: Sens. Environ.
  doi: 10.1016/j.rse.2019.02.016
– ident: ref_7
  doi: 10.2737/INT-GTR-122
– ident: ref_50
  doi: 10.1007/978-3-030-30508-6_6
– volume: 109
  start-page: 43
  year: 2021
  ident: ref_37
  article-title: A Comprehensive Survey on Transfer Learning
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.3004555
– ident: ref_8
  doi: 10.2737/RMRS-GTR-153
– ident: ref_64
– ident: ref_31
  doi: 10.1109/CVPR.2016.90
– ident: ref_36
– ident: ref_70
– ident: ref_43
– ident: ref_2
  doi: 10.1126/sciadv.abc0020
– ident: ref_57
– volume: 9
  start-page: 225
  year: 2007
  ident: ref_17
  article-title: Remotely sensed characterization of forest fuel types by using satellite ASTER data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_24
  doi: 10.3390/rs12213660
– ident: ref_58
  doi: 10.1371/journal.pone.0143619
SSID ssj0002213675
Score 2.3862941
Snippet Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 36
SubjectTerms Accuracy
Active learning
artificial intelligence
Artificial neural networks
California
Classification
climate
Climate change
Data integration
Decision making
Deep learning
Feature extraction
Forest & brush fires
Forest fires
forests
fuel mapping
Fuels
Geospatial data
High resolution
Identification
Image classification
Image resolution
Information processing
Land cover
Land management
landscapes
Machine learning
Mapping
Mental task performance
Multilayers
Neural networks
prediction
Quality control
Remote sensing
Simulation
Vegetation
Visual system
Wildfires
wildland fire
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SfNAH8RNXq0QQBGHpbpLNx-NpPXzQIlShb2GSTIrS7pXrnX-_k-xeOUHxxdfdYZlkPrOZ-Q1jr6M1gDKKVmQXW0UesA2oVWutAhHFkIJLddiEOTmxZ2fuy96or1ITNsEDTxt3RAE7DJClTRT6-4QuU0jUGUWvcm9kbfOlrGfvMPWjgroUKLJhasiTdK4_yuRBdFdKsfRvIagi9f_NH9cgs7zP7s3ZIV9MXD1gt3B8yO7uYQY-YmHBa9Ps5SoR5TFsgC-35ZcXhzHxY8QrPmOmnvPlrvKKU2rKP5Wi7_aUhIKcnEEqvPLT7TpDRPoGXvDPUNAazh-zb8sPX99_bOdBCW1UUm9a6Gx0QYcIHdggKWPrOwk6BzTQmVSOeBYoFUCNEHrTZehBJquHTBauJcon7GBcjfiUcUxVQk51GZVEyibEIIhUyyyyAdGwt7u983FGES_DLC48nSbKRvu9jW5IF3bEVxN4xp_J3hUh3JAUxOv6gPTAz3rg_6UHDXtTROiLXRJDEeb2AlpWQbjyi3Il7XpaWMMOd1L2s8Fee2GMG6RRSjbs1c1rMrVyfwIjrrZEY8nZdVIK9-x_cPyc3Smz66f_OYfsYLPe4gt2O_7cfL9ev6z6_As6Bvhi
  priority: 102
  providerName: Directory of Open Access Journals
Title A Multimodal Data Fusion and Deep Learning Framework for Large-Scale Wildfire Surface Fuel Mapping
URI https://www.proquest.com/docview/2779537443
https://www.proquest.com/docview/2888003329
https://doaj.org/article/264b5af38d3241de9f1026fe214f1738
Volume 6
WOSCitedRecordID wos000945115900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: M0K
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-654M--C1WzyOCIAjl0iRN0ifZ825RdJfFUzifSpqPRTjbdT_8-53ppusJ6osvfUiHkHYmk18mk98Q8sIZbYNwPOexcrkED5g3QcncGGm546VvKt8Xm9Czmbm4qOYp4LZOaZWDT-wdte8cxsiPudZVKbSU4vXye45Vo_B0NZXQuE4OkKlMjsjBydls_nEfZeEcKcnK3cU8Afv74wieRDFMyVK_LUU9Y__f_HK_2Ezu_O8w75LbCWbS8c4u7pFrob1Pbl0hH3xAmjHtb99-6zxIntqNpZMtxs6obT09DWFJE_nqgk6GFC4KGJd-wOzx_By0Gyh4FY8fS8-3q2hdgD7CJZ1apH1YPCSfJ2ef3rzNU8WF3EmhNrllxlWNapxl1jQCoF_BhFWxCdoy7XGvaCxgiqCCbQrNoi2s8EaVEVyFEkE8IqO2a8NjQoPvVV1JFoMUAWAJLzmIKhF51JZn5NXw82uX6MixKsZlDdsS1FR9RVMZGNUgvNyxcPxZ7AS1uBdB6uy-oVst6jQTa0CATWmjMB6wZOFDFQFjqRh4IWOhhcnIS7SBGic4DMjZdE8BPgupsuoxnm1XYGwsI4eDDdRp5q_rXwaQkef71zBn8SDGtqHbgowBr8mE4NWTf3fxlNzE8va7kM8hGW1W2_CM3HA_Nl_Xq6Nk7Ed9HAGeU_Ye2ubvpvMvPwGqmgwy
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXSTgwBsRWMBIICSkaBM7cZwDQoVSbbVtVWkXaTkFxx5XK-22pQ8Qf4rfyDiPskjAbQ9ck5EVx5-_GY_nAfDCqEyjMDzkLjdhQgwYliiTUKlEc8NTW-a2ajaRjcfq5CSf7MCPNhfGh1W2nFgRtZ0b7yPf51mWpyJLEvF28SX0XaP87WrbQqOGxSF-_0ZHttWbQY_W9yXn_Q_H7w_CpqtAaBIh16GOlMlLWRodaVUKMm_iSGjpSsx0lFl_HlKa9CZK1GWcRU7HWlglU0fbQQoUNO4V2E0I7KoDu5PBaPJp69Xh3JdAS-tEQCHyaN8Rc8nIh4DJ31Rf1SHgb3qgUm79W__bb7kNNxszmnVr3N-BHZzdhRsXiiveg7LLquzi87klyZ5ea9bfeN8g0zPLeogL1hSXnbJ-G6LGyIZnQx8dHx4RepERa1r_c9nRZum0QRoDz9hI-7IW0_vw8VIm-QA6s_kMHwJDW0E5TyKHiUAyu3jKSVQKx12meQCv28UuTFNu3Xf9OCvo2OWRUVxARkCbphVe1FVG_iz2zqNmK-JLg1cP5stp0TBNQRZumWonlCVbObaYO7IhpUMeJy7OhArglcdc4QmMPsjoJg-DpuVLgRVdf3efxzSxAPZazBUNs62KX4AL4Pn2NXGSv2jSM5xvSEaRVoiE4Pmjfw_xDK4dHI-GxXAwPnwM1zkZkLV7aw866-UGn8BV83V9ulo-bTYag8-XDeKf4Nplkg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3di9QwEA_nKaIPfovVUyMoglC2TdokfRBZXYvH3i0Hp3BvNU0mi3Bu1_1Q_Nf865zptusJ6ts9-NoOoWl-85tJMh-MPXVGW5BOxCIULs6QAeMaVBYbk1nhRO7rwrfNJvRkYk5OiqMd9qPPhaGwyp4TW6L2jaMz8oHQusilzjI5CF1YxNGofDX_ElMHKbpp7dtpbCAyhu_fcPu2fLk_wrV-JkT59v2bd3HXYSB2mVSr2CbGFbWqnU2sqSW6OmkirQo1aJtoT3sjY9GGggJbpzoJNrXSG5UHVA0lQeK4F9hFneUphZMdJuPt-Y4QVAwt36QESlkkg4AcphIKBlO_GcG2V8DfLEJr5srr__MPusGudc41H2604SbbgdktdvVMycXbrB7yNuf4c-NRcmRXlpdrOjHkdub5CGDOu5KzU172gWscPXt-QDHz8TFiGjhyqacfzY_Xi2Ad4Bhwyg8tFbuY3mEfzmWSd9nurJnBPcbBtwAvsiRAJgGdMZELFFUyiKCtiNiLfuEr1xVhp14gpxVuxggl1RmURKhKvfB8U3vkz2KvCUFbESoY3j5oFtOq458K_d46t0Eajx506qEI6FmqACLNQqqlidhzwl9FtIYf5GyXnYHTogJh1ZBu9IsUJxaxvR5_Vcd3y-oX-CL2ZPsamYqun-wMmjXKGLQViZSiuP_vIR6zy4jc6mB_Mn7Argj0KjdnXntsd7VYw0N2yX1dfVouHrUax9nH80bwT2JqbMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Data+Fusion+and+Deep+Learning+Framework+for+Large-Scale+Wildfire+Surface+Fuel+Mapping&rft.jtitle=Fire+%28Basel%2C+Switzerland%29&rft.au=Alipour%2C+Mohamad&rft.au=La+Puma%2C+Inga&rft.au=Picotte%2C+Joshua&rft.au=Shamsaei%2C+Kasra&rft.date=2023-01-01&rft.issn=2571-6255&rft.eissn=2571-6255&rft.volume=6&rft.issue=2&rft_id=info:doi/10.3390%2Ffire6020036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-6255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-6255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-6255&client=summon