A Multimodal Data Fusion and Deep Learning Framework for Large-Scale Wildfire Surface Fuel Mapping
Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have leveraged remote sensing and machine learning for classifying land cover and mapping forest vegetation species. In most cases that focused on...
Gespeichert in:
| Veröffentlicht in: | Fire (Basel, Switzerland) Jg. 6; H. 2; S. 36 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.01.2023
|
| Schlagworte: | |
| ISSN: | 2571-6255, 2571-6255 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have leveraged remote sensing and machine learning for classifying land cover and mapping forest vegetation species. In most cases that focused on surface fuel mapping, the spatial scale of interest was smaller than a few hundred square kilometers; thus, many small-scale site-specific models had to be created to cover the landscape at the national scale. The present work aims to develop a large-scale surface fuel identification model using a custom deep learning framework that can ingest multimodal data. Specifically, we use deep learning to extract information from multispectral signatures, high-resolution imagery, and biophysical climate and terrain data in a way that facilitates their end-to-end training on labeled data. A multi-layer neural network is used with spectral and biophysical data, and a convolutional neural network backbone is used to extract the visual features from high-resolution imagery. A Monte Carlo dropout mechanism was also devised to create a stochastic ensemble of models that can capture classification uncertainties while boosting the prediction performance. To train the system as a proof-of-concept, fuel pseudo-labels were created by a random geospatial sampling of existing fuel maps across California. Application results on independent test sets showed promising fuel identification performance with an overall accuracy ranging from 55% to 75%, depending on the level of granularity of the included fuel types. As expected, including the rare—and possibly less consequential—fuel types reduced the accuracy. On the other hand, the addition of high-resolution imagery improved classification performance at all levels. |
|---|---|
| AbstractList | Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have leveraged remote sensing and machine learning for classifying land cover and mapping forest vegetation species. In most cases that focused on surface fuel mapping, the spatial scale of interest was smaller than a few hundred square kilometers; thus, many small-scale site-specific models had to be created to cover the landscape at the national scale. The present work aims to develop a large-scale surface fuel identification model using a custom deep learning framework that can ingest multimodal data. Specifically, we use deep learning to extract information from multispectral signatures, high-resolution imagery, and biophysical climate and terrain data in a way that facilitates their end-to-end training on labeled data. A multi-layer neural network is used with spectral and biophysical data, and a convolutional neural network backbone is used to extract the visual features from high-resolution imagery. A Monte Carlo dropout mechanism was also devised to create a stochastic ensemble of models that can capture classification uncertainties while boosting the prediction performance. To train the system as a proof-of-concept, fuel pseudo-labels were created by a random geospatial sampling of existing fuel maps across California. Application results on independent test sets showed promising fuel identification performance with an overall accuracy ranging from 55% to 75%, depending on the level of granularity of the included fuel types. As expected, including the rare—and possibly less consequential—fuel types reduced the accuracy. On the other hand, the addition of high-resolution imagery improved classification performance at all levels. |
| Audience | Academic |
| Author | Kosovic, Branko Watts, Adam Alipour, Mohamad Shamsaei, Kasra La Puma, Inga Rowell, Eric Picotte, Joshua Taciroglu, Ertugrul Ebrahimian, Hamed |
| Author_xml | – sequence: 1 givenname: Mohamad orcidid: 0000-0003-2018-134X surname: Alipour fullname: Alipour, Mohamad – sequence: 2 givenname: Inga orcidid: 0000-0002-6865-820X surname: La Puma fullname: La Puma, Inga – sequence: 3 givenname: Joshua orcidid: 0000-0002-4021-4623 surname: Picotte fullname: Picotte, Joshua – sequence: 4 givenname: Kasra orcidid: 0000-0003-3396-7683 surname: Shamsaei fullname: Shamsaei, Kasra – sequence: 5 givenname: Eric surname: Rowell fullname: Rowell, Eric – sequence: 6 givenname: Adam surname: Watts fullname: Watts, Adam – sequence: 7 givenname: Branko orcidid: 0000-0002-1746-0746 surname: Kosovic fullname: Kosovic, Branko – sequence: 8 givenname: Hamed orcidid: 0000-0003-1992-6033 surname: Ebrahimian fullname: Ebrahimian, Hamed – sequence: 9 givenname: Ertugrul orcidid: 0000-0001-9618-1210 surname: Taciroglu fullname: Taciroglu, Ertugrul |
| BookMark | eNptkdFrFDEQxhepYK198h8I-CLI1kmym2Qfj9bTwhUfqvgYZrOTI2dus2Z3Ef97U0-kFMnDhOH3fcPM97I6G9NIVfWaw5WUHbz3IZMCASDVs-pctJrXSrTt2aP_i-pyng8AIASXSrfnVb9hd2tcwjENGNkNLsi26xzSyHAc2A3RxHaEeQzjnm0zHulnyt-ZT5ntMO-pvncYiX0LcXgYz-7X7NFR8aDI7nCaiu5V9dxjnOnyb72ovm4_fLn-VO8-f7y93uxq10i11AjGdb3qHQKaXkoOHCQq35NG0APnoA1qI0gR9lyDR45yMKr1ErSSJC-q25PvkPBgpxyOmH_ZhMH-aaS8t5iX4CJZoZq-RS_NIEXDB-o8B6E8Cd54rqUpXm9PXlNOP1aaF3sMs6MYcaS0zlYYY8qhpegK-uYJekhrHsumVmjdtVI3jSzU1Ynal3vZMPq0ZHTlDXQMrgTpQ-lvdCNkx7sGiuDdSeBymudM_t9GHOxD3vZR3oXmT2gXFlxKjmVMiP_V_AaLFK0M |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3508271 crossref_primary_10_1016_j_jag_2025_104436 crossref_primary_10_3390_land13101696 crossref_primary_10_3390_fire7110407 crossref_primary_10_3390_fire6100395 crossref_primary_10_1038_s41598_025_05706_6 crossref_primary_10_3390_drones7070456 crossref_primary_10_3390_rs16183536 crossref_primary_10_1016_j_inffus_2025_103440 crossref_primary_10_3390_f16071088 crossref_primary_10_1016_j_jag_2025_104455 crossref_primary_10_3390_fire6070264 crossref_primary_10_3390_fire6060235 crossref_primary_10_1016_j_rse_2024_114351 crossref_primary_10_1109_MGRS_2024_3495516 crossref_primary_10_1109_ACCESS_2024_3486188 crossref_primary_10_1016_j_cscm_2023_e02842 crossref_primary_10_1016_j_earscirev_2025_105064 crossref_primary_10_3390_fire6030108 crossref_primary_10_1071_WF24224 |
| Cites_doi | 10.1016/S0034-4257(02)00096-2 10.1016/j.foreco.2009.01.020 10.1109/CVPR.2009.5206848 10.1109/CVPR.2016.308 10.3390/rs8080669 10.1016/j.inffus.2022.09.023 10.3390/rs12193151 10.1007/978-3-319-09015-3 10.1016/S0034-4257(01)00289-9 10.1016/j.rse.2007.05.005 10.1016/j.rse.2011.01.017 10.1016/0034-4257(94)90134-1 10.1071/WF08088 10.1109/LSP.2021.3130504 10.1071/WF11068 10.3390/rs5126481 10.1371/journal.pone.0147121 10.3390/rs13193836 10.1002/9781119028116 10.1016/0034-4257(88)90106-X 10.3390/rs12010086 10.1080/10106049109354290 10.1016/j.rse.2016.10.020 10.1016/j.cageo.2022.105249 10.1016/j.foreco.2005.06.013 10.5194/nhess-16-643-2016 10.3390/rs10040515 10.3390/rs13081472 10.1007/s11676-017-0452-1 10.1117/12.210877 10.1007/978-1-4614-1034-8_11 10.1139/x02-052 10.3390/rs71114680 10.3390/rs6021684 10.1609/aaai.v31i1.11231 10.1073/pnas.1903070116 10.1080/07038992.2016.1220827 10.14358/PERS.79.1.37 10.1109/TGRS.2020.3037160 10.1016/j.isprsjprs.2020.12.010 10.1016/j.rse.2019.02.016 10.2737/INT-GTR-122 10.1007/978-3-030-30508-6_6 10.1109/JPROC.2020.3004555 10.2737/RMRS-GTR-153 10.1109/CVPR.2016.90 10.1126/sciadv.abc0020 10.3390/rs12213660 10.1371/journal.pone.0143619 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU COVID DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 DOA |
| DOI | 10.3390/fire6020036 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Agricultural Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2571-6255 |
| ExternalDocumentID | oai_doaj_org_article_264b5af38d3241de9f1026fe214f1738 A742391940 10_3390_fire6020036 |
| GeographicLocations | United States United States--US California |
| GeographicLocations_xml | – name: United States – name: United States--US – name: California |
| GroupedDBID | 7X2 AAFWJ AAHBH AAYXX ABDBF ADBBV AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC M0K MODMG M~E OK1 PHGZM PHGZT PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c436t-a08c9b6bca0a8b3310103a6fbe7a07d11078a782e6eab170fa1a3d865f30763e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000945115900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2571-6255 |
| IngestDate | Tue Oct 14 18:44:52 EDT 2025 Fri Sep 05 06:40:26 EDT 2025 Mon Jun 30 13:24:09 EDT 2025 Tue Nov 04 18:43:17 EST 2025 Tue Nov 18 21:56:00 EST 2025 Sat Nov 29 07:12:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-a08c9b6bca0a8b3310103a6fbe7a07d11078a782e6eab170fa1a3d865f30763e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3396-7683 0000-0003-2018-134X 0000-0002-4021-4623 0000-0001-9618-1210 0000-0002-1746-0746 0000-0003-1992-6033 0000-0002-6865-820X |
| OpenAccessLink | https://www.proquest.com/docview/2779537443?pq-origsite=%requestingapplication% |
| PQID | 2779537443 |
| PQPubID | 5046899 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_264b5af38d3241de9f1026fe214f1738 proquest_miscellaneous_2888003329 proquest_journals_2779537443 gale_infotracacademiconefile_A742391940 crossref_primary_10_3390_fire6020036 crossref_citationtrail_10_3390_fire6020036 |
| PublicationCentury | 2000 |
| PublicationDate | 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Fire (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Zhu (ref_52) 2019; 224 ref_58 Krasnow (ref_25) 2009; 257 ref_57 ref_56 Keane (ref_11) 2012; Volume 9781461410348 Falkowski (ref_26) 2005; 217 ref_51 Chuvieco (ref_19) 2011; 115 Jakubowksi (ref_18) 2013; 79 Rollins (ref_10) 2009; 18 Huete (ref_60) 2002; 83 ref_59 Lasaponara (ref_17) 2007; 9 Stavros (ref_13) 2018; 11 ref_69 ref_24 ref_68 ref_23 ref_67 Zhuang (ref_37) 2021; 109 ref_64 ref_63 Hu (ref_38) 2015; 7 Caselles (ref_66) 1991; 6 ref_29 ref_28 Flood (ref_53) 2013; 5 Chirici (ref_15) 2013; 25 Belkin (ref_42) 2019; 116 ref_72 ref_71 ref_70 Rowell (ref_9) 2016; 42 Sakellariou (ref_5) 2017; 28 ref_36 ref_34 ref_33 ref_32 ref_76 ref_31 ref_30 Kattenborn (ref_35) 2021; 173 ref_74 ref_73 Huete (ref_61) 1988; 25 Sadr (ref_47) 2021; 29 ref_39 Gitelson (ref_65) 2002; 80 Pickell (ref_12) 2020; 59 Mallinis (ref_27) 2014; 6 Gesch (ref_55) 2002; 68 Qi (ref_62) 1994; 48 Kalabokidis (ref_4) 2016; 16 Huesca (ref_16) 2019; 74 Riano (ref_22) 2002; 32 Hao (ref_75) 2023; 170 ref_46 ref_45 Marino (ref_21) 2016; 187 ref_43 Tuomisto (ref_54) 2018; 4 ref_41 ref_40 ref_1 Srivastava (ref_44) 2014; 15 ref_3 Benito (ref_14) 2013; 22 ref_2 ref_49 ref_48 Mutlu (ref_20) 2008; 112 ref_8 ref_7 ref_6 |
| References_xml | – volume: 83 start-page: 195 year: 2002 ident: ref_60 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 74 start-page: 159 year: 2019 ident: ref_16 article-title: Spectral mapping methods applied to LiDAR data: Application to fuel type mapping publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 257 start-page: 1603 year: 2009 ident: ref_25 article-title: Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2009.01.020 – ident: ref_74 – ident: ref_32 – ident: ref_41 doi: 10.1109/CVPR.2009.5206848 – ident: ref_68 – ident: ref_33 doi: 10.1109/CVPR.2016.308 – volume: 4 start-page: 197 year: 2018 ident: ref_54 article-title: A Landsat composite covering all Amazonia for applications in ecology and conservation. Remote Sens publication-title: Ecol. Conserv. – ident: ref_23 doi: 10.3390/rs8080669 – ident: ref_46 doi: 10.1016/j.inffus.2022.09.023 – ident: ref_49 doi: 10.3390/rs12193151 – ident: ref_1 – ident: ref_71 – ident: ref_6 doi: 10.1007/978-3-319-09015-3 – volume: 80 start-page: 76 year: 2002 ident: ref_65 article-title: Novel algorithms for remote estimation of vegetation fraction publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00289-9 – volume: 112 start-page: 274 year: 2008 ident: ref_20 article-title: Mapping surface fuel models using lidar and multispectral data fusion for fire behavior publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.05.005 – volume: 115 start-page: 1369 year: 2011 ident: ref_19 article-title: Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.017 – volume: 48 start-page: 119 year: 1994 ident: ref_62 article-title: A modified soil adjusted vegetation index publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90134-1 – volume: 11 start-page: 41 year: 2018 ident: ref_13 article-title: Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction publication-title: Remote Sens. Appl. Soc. Environ. – volume: 18 start-page: 235 year: 2009 ident: ref_10 article-title: LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment publication-title: Int. J. Wildland Fire doi: 10.1071/WF08088 – volume: 29 start-page: 269 year: 2021 ident: ref_47 article-title: Uncertainty Estimation via Monte Carlo Dropout in CNN-Based mmWave MIMO Localization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3130504 – volume: 22 start-page: 306 year: 2013 ident: ref_14 article-title: Pixel and object-based classification approaches for mapping forest fuel types in Tenerife Island from ASTER data publication-title: Int. J. Wildland Fire doi: 10.1071/WF11068 – ident: ref_56 – volume: 5 start-page: 6481 year: 2013 ident: ref_53 article-title: Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median) publication-title: Remote Sens. doi: 10.3390/rs5126481 – ident: ref_69 doi: 10.1371/journal.pone.0147121 – ident: ref_51 doi: 10.3390/rs13193836 – ident: ref_28 doi: 10.1002/9781119028116 – volume: 25 start-page: 295 year: 1988 ident: ref_61 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – ident: ref_39 doi: 10.3390/rs12010086 – volume: 15 start-page: 1929 year: 2014 ident: ref_44 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_45 – volume: 6 start-page: 31 year: 1991 ident: ref_66 article-title: Mapping burns and natural reforestation using thematic Mapper data publication-title: Geocarto Int. doi: 10.1080/10106049109354290 – ident: ref_72 – volume: 187 start-page: 267 year: 2016 ident: ref_21 article-title: Generation of high-resolution fuel model maps from discrete airborne laser scanner and Landsat-8 OLI: A low-cost and highly updated methodology for large areas publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.020 – ident: ref_59 – volume: 170 start-page: 105249 year: 2023 ident: ref_75 article-title: Semi-supervised label propagation for multi-source remote sensing image change detection publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2022.105249 – volume: 217 start-page: 129 year: 2005 ident: ref_26 article-title: Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2005.06.013 – volume: 16 start-page: 643 year: 2016 ident: ref_4 article-title: AEGIS: A wildfire prevention and management information system publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-16-643-2016 – ident: ref_30 – ident: ref_76 doi: 10.3390/rs10040515 – ident: ref_3 – volume: 25 start-page: 87 year: 2013 ident: ref_15 article-title: Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_48 doi: 10.3390/rs13081472 – volume: 28 start-page: 1107 year: 2017 ident: ref_5 article-title: Review of state-of-the-art decision support systems (DSSs) for prevention and suppression of forest fires publication-title: J. For. Res. doi: 10.1007/s11676-017-0452-1 – ident: ref_63 doi: 10.1117/12.210877 – ident: ref_40 – volume: Volume 9781461410348 start-page: 211 year: 2012 ident: ref_11 article-title: Use of Expert Knowledge to Develop Fuel Maps for Wildland Fire Management publication-title: Expert Knowledge and its Application in Landscape Ecology doi: 10.1007/978-1-4614-1034-8_11 – ident: ref_67 – ident: ref_73 – volume: 32 start-page: 1301 year: 2002 ident: ref_22 article-title: Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems publication-title: Can. J. For. Res. doi: 10.1139/x02-052 – volume: 7 start-page: 14680 year: 2015 ident: ref_38 article-title: Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 6 start-page: 1684 year: 2014 ident: ref_27 article-title: A Comparative Analysis of EO-1 Hyperion, Quickbird and Landsat TM Imagery for Fuel Type Mapping of a Typical Mediterranean Landscape publication-title: Remote Sens. doi: 10.3390/rs6021684 – ident: ref_34 doi: 10.1609/aaai.v31i1.11231 – volume: 116 start-page: 15849 year: 2019 ident: ref_42 article-title: Reconciling modern machine-learning practice and the classical bias–variance trade-off publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1903070116 – volume: 42 start-page: 443 year: 2016 ident: ref_9 article-title: Using Simulated 3D Surface Fuelbeds and Terrestrial Laser Scan Data to Develop Inputs to Fire Behavior Models publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2016.1220827 – volume: 79 start-page: 37 year: 2013 ident: ref_18 article-title: Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.79.1.37 – ident: ref_29 – volume: 68 start-page: 5 year: 2002 ident: ref_55 article-title: The National Elevation Dataset publication-title: Photogramm. Eng. Remote Sens. – volume: 59 start-page: 7338 year: 2020 ident: ref_12 article-title: FuelNet: An Artificial Neural Network for Learning and Updating Fuel Types for Fire Research publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3037160 – volume: 173 start-page: 24 year: 2021 ident: ref_35 article-title: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.12.010 – volume: 224 start-page: 382 year: 2019 ident: ref_52 article-title: Benefits of the free and open Landsat data policy. Remote publication-title: Sens. Environ. doi: 10.1016/j.rse.2019.02.016 – ident: ref_7 doi: 10.2737/INT-GTR-122 – ident: ref_50 doi: 10.1007/978-3-030-30508-6_6 – volume: 109 start-page: 43 year: 2021 ident: ref_37 article-title: A Comprehensive Survey on Transfer Learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 – ident: ref_8 doi: 10.2737/RMRS-GTR-153 – ident: ref_64 – ident: ref_31 doi: 10.1109/CVPR.2016.90 – ident: ref_36 – ident: ref_70 – ident: ref_43 – ident: ref_2 doi: 10.1126/sciadv.abc0020 – ident: ref_57 – volume: 9 start-page: 225 year: 2007 ident: ref_17 article-title: Remotely sensed characterization of forest fuel types by using satellite ASTER data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_24 doi: 10.3390/rs12213660 – ident: ref_58 doi: 10.1371/journal.pone.0143619 |
| SSID | ssj0002213675 |
| Score | 2.3862941 |
| Snippet | Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 36 |
| SubjectTerms | Accuracy Active learning artificial intelligence Artificial neural networks California Classification climate Climate change Data integration Decision making Deep learning Feature extraction Forest & brush fires Forest fires forests fuel mapping Fuels Geospatial data High resolution Identification Image classification Image resolution Information processing Land cover Land management landscapes Machine learning Mapping Mental task performance Multilayers Neural networks prediction Quality control Remote sensing Simulation Vegetation Visual system Wildfires wildland fire |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SfNAH8RNXq0QQBGHpbpLNx-NpPXzQIlShb2GSTIrS7pXrnX-_k-xeOUHxxdfdYZlkPrOZ-Q1jr6M1gDKKVmQXW0UesA2oVWutAhHFkIJLddiEOTmxZ2fuy96or1ITNsEDTxt3RAE7DJClTRT6-4QuU0jUGUWvcm9kbfOlrGfvMPWjgroUKLJhasiTdK4_yuRBdFdKsfRvIagi9f_NH9cgs7zP7s3ZIV9MXD1gt3B8yO7uYQY-YmHBa9Ps5SoR5TFsgC-35ZcXhzHxY8QrPmOmnvPlrvKKU2rKP5Wi7_aUhIKcnEEqvPLT7TpDRPoGXvDPUNAazh-zb8sPX99_bOdBCW1UUm9a6Gx0QYcIHdggKWPrOwk6BzTQmVSOeBYoFUCNEHrTZehBJquHTBauJcon7GBcjfiUcUxVQk51GZVEyibEIIhUyyyyAdGwt7u983FGES_DLC48nSbKRvu9jW5IF3bEVxN4xp_J3hUh3JAUxOv6gPTAz3rg_6UHDXtTROiLXRJDEeb2AlpWQbjyi3Il7XpaWMMOd1L2s8Fee2GMG6RRSjbs1c1rMrVyfwIjrrZEY8nZdVIK9-x_cPyc3Smz66f_OYfsYLPe4gt2O_7cfL9ev6z6_As6Bvhi priority: 102 providerName: Directory of Open Access Journals |
| Title | A Multimodal Data Fusion and Deep Learning Framework for Large-Scale Wildfire Surface Fuel Mapping |
| URI | https://www.proquest.com/docview/2779537443 https://www.proquest.com/docview/2888003329 https://doaj.org/article/264b5af38d3241de9f1026fe214f1738 |
| Volume | 6 |
| WOSCitedRecordID | wos000945115900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: M0K dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-654M--C1WzyOCIAjl0iRN0ifZ825RdJfFUzifSpqPRTjbdT_8-53ppusJ6osvfUiHkHYmk18mk98Q8sIZbYNwPOexcrkED5g3QcncGGm546VvKt8Xm9Czmbm4qOYp4LZOaZWDT-wdte8cxsiPudZVKbSU4vXye45Vo_B0NZXQuE4OkKlMjsjBydls_nEfZeEcKcnK3cU8Afv74wieRDFMyVK_LUU9Y__f_HK_2Ezu_O8w75LbCWbS8c4u7pFrob1Pbl0hH3xAmjHtb99-6zxIntqNpZMtxs6obT09DWFJE_nqgk6GFC4KGJd-wOzx_By0Gyh4FY8fS8-3q2hdgD7CJZ1apH1YPCSfJ2ef3rzNU8WF3EmhNrllxlWNapxl1jQCoF_BhFWxCdoy7XGvaCxgiqCCbQrNoi2s8EaVEVyFEkE8IqO2a8NjQoPvVV1JFoMUAWAJLzmIKhF51JZn5NXw82uX6MixKsZlDdsS1FR9RVMZGNUgvNyxcPxZ7AS1uBdB6uy-oVst6jQTa0CATWmjMB6wZOFDFQFjqRh4IWOhhcnIS7SBGic4DMjZdE8BPgupsuoxnm1XYGwsI4eDDdRp5q_rXwaQkef71zBn8SDGtqHbgowBr8mE4NWTf3fxlNzE8va7kM8hGW1W2_CM3HA_Nl_Xq6Nk7Ed9HAGeU_Ye2ubvpvMvPwGqmgwy |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXSTgwBsRWMBIICSkaBM7cZwDQoVSbbVtVWkXaTkFxx5XK-22pQ8Qf4rfyDiPskjAbQ9ck5EVx5-_GY_nAfDCqEyjMDzkLjdhQgwYliiTUKlEc8NTW-a2ajaRjcfq5CSf7MCPNhfGh1W2nFgRtZ0b7yPf51mWpyJLEvF28SX0XaP87WrbQqOGxSF-_0ZHttWbQY_W9yXn_Q_H7w_CpqtAaBIh16GOlMlLWRodaVUKMm_iSGjpSsx0lFl_HlKa9CZK1GWcRU7HWlglU0fbQQoUNO4V2E0I7KoDu5PBaPJp69Xh3JdAS-tEQCHyaN8Rc8nIh4DJ31Rf1SHgb3qgUm79W__bb7kNNxszmnVr3N-BHZzdhRsXiiveg7LLquzi87klyZ5ea9bfeN8g0zPLeogL1hSXnbJ-G6LGyIZnQx8dHx4RepERa1r_c9nRZum0QRoDz9hI-7IW0_vw8VIm-QA6s_kMHwJDW0E5TyKHiUAyu3jKSVQKx12meQCv28UuTFNu3Xf9OCvo2OWRUVxARkCbphVe1FVG_iz2zqNmK-JLg1cP5stp0TBNQRZumWonlCVbObaYO7IhpUMeJy7OhArglcdc4QmMPsjoJg-DpuVLgRVdf3efxzSxAPZazBUNs62KX4AL4Pn2NXGSv2jSM5xvSEaRVoiE4Pmjfw_xDK4dHI-GxXAwPnwM1zkZkLV7aw866-UGn8BV83V9ulo-bTYag8-XDeKf4Nplkg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3di9QwEA_nKaIPfovVUyMoglC2TdokfRBZXYvH3i0Hp3BvNU0mi3Bu1_1Q_Nf865zptusJ6ts9-NoOoWl-85tJMh-MPXVGW5BOxCIULs6QAeMaVBYbk1nhRO7rwrfNJvRkYk5OiqMd9qPPhaGwyp4TW6L2jaMz8oHQusilzjI5CF1YxNGofDX_ElMHKbpp7dtpbCAyhu_fcPu2fLk_wrV-JkT59v2bd3HXYSB2mVSr2CbGFbWqnU2sqSW6OmkirQo1aJtoT3sjY9GGggJbpzoJNrXSG5UHVA0lQeK4F9hFneUphZMdJuPt-Y4QVAwt36QESlkkg4AcphIKBlO_GcG2V8DfLEJr5srr__MPusGudc41H2604SbbgdktdvVMycXbrB7yNuf4c-NRcmRXlpdrOjHkdub5CGDOu5KzU172gWscPXt-QDHz8TFiGjhyqacfzY_Xi2Ad4Bhwyg8tFbuY3mEfzmWSd9nurJnBPcbBtwAvsiRAJgGdMZELFFUyiKCtiNiLfuEr1xVhp14gpxVuxggl1RmURKhKvfB8U3vkz2KvCUFbESoY3j5oFtOq458K_d46t0Eajx506qEI6FmqACLNQqqlidhzwl9FtIYf5GyXnYHTogJh1ZBu9IsUJxaxvR5_Vcd3y-oX-CL2ZPsamYqun-wMmjXKGLQViZSiuP_vIR6zy4jc6mB_Mn7Argj0KjdnXntsd7VYw0N2yX1dfVouHrUax9nH80bwT2JqbMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Data+Fusion+and+Deep+Learning+Framework+for+Large-Scale+Wildfire+Surface+Fuel+Mapping&rft.jtitle=Fire+%28Basel%2C+Switzerland%29&rft.au=Alipour%2C+Mohamad&rft.au=La+Puma%2C+Inga&rft.au=Picotte%2C+Joshua&rft.au=Shamsaei%2C+Kasra&rft.date=2023-01-01&rft.issn=2571-6255&rft.eissn=2571-6255&rft.volume=6&rft.issue=2&rft_id=info:doi/10.3390%2Ffire6020036&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-6255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-6255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-6255&client=summon |