De novo CpG island methylation in human cancer cells

A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo methylation activities of DNA methyltransferases (DNMT) thought to catalyze these reactions. Here, we describe a novel method, using native...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cancer research (Chicago, Ill.) Ročník 66; číslo 2; s. 682
Hlavní autoři: Jair, Kam-Wing, Bachman, Kurtis E, Suzuki, Hiromu, Ting, Angela H, Rhee, Ina, Yen, Ray-Whay Chiu, Baylin, Stephen B, Schuebel, Kornel E
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 15.01.2006
Témata:
ISSN:0008-5472
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo methylation activities of DNA methyltransferases (DNMT) thought to catalyze these reactions. Here, we describe a novel method, using native human CpG island substrates from genes that frequently become hypermethylated in cancer, which generates robust activity for measuring de novo CpG methylation. We then survey colon cancer cells with genetically engineered deficiencies in different DNMTs and find that the major activity against these substrates in extracts of these cells is DNMT1, with minor contribution from DNMT 3b and none from DNMT3a, the only known bona fide de novo methyltransferases. The activity of DNMT1 against unmethylated CpG rich DNA was further tested by introducing CpG island substrates and DNMT1 into Drosophila melanogaster cells. The exogenous DNMT1 methylates the integrated mammalian CpG islands but not the Drosophila DNA. Additionally, in human cancer cells lacking DNMT1 and DNMT3b and having nearly absent genomic methylation, gene-specific de novo methylation can be initiated by reintroduction of DNMT1. Our studies provide a new assay for de novo activity of DNMTs and data suggesting a potential role for DNMT1 in the initiation of promoter CpG island hypermethylation in human cancer cells.
AbstractList A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo methylation activities of DNA methyltransferases (DNMT) thought to catalyze these reactions. Here, we describe a novel method, using native human CpG island substrates from genes that frequently become hypermethylated in cancer, which generates robust activity for measuring de novo CpG methylation. We then survey colon cancer cells with genetically engineered deficiencies in different DNMTs and find that the major activity against these substrates in extracts of these cells is DNMT1, with minor contribution from DNMT 3b and none from DNMT3a, the only known bona fide de novo methyltransferases. The activity of DNMT1 against unmethylated CpG rich DNA was further tested by introducing CpG island substrates and DNMT1 into Drosophila melanogaster cells. The exogenous DNMT1 methylates the integrated mammalian CpG islands but not the Drosophila DNA. Additionally, in human cancer cells lacking DNMT1 and DNMT3b and having nearly absent genomic methylation, gene-specific de novo methylation can be initiated by reintroduction of DNMT1. Our studies provide a new assay for de novo activity of DNMTs and data suggesting a potential role for DNMT1 in the initiation of promoter CpG island hypermethylation in human cancer cells.
A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo methylation activities of DNA methyltransferases (DNMT) thought to catalyze these reactions. Here, we describe a novel method, using native human CpG island substrates from genes that frequently become hypermethylated in cancer, which generates robust activity for measuring de novo CpG methylation. We then survey colon cancer cells with genetically engineered deficiencies in different DNMTs and find that the major activity against these substrates in extracts of these cells is DNMT1, with minor contribution from DNMT 3b and none from DNMT3a, the only known bona fide de novo methyltransferases. The activity of DNMT1 against unmethylated CpG rich DNA was further tested by introducing CpG island substrates and DNMT1 into Drosophila melanogaster cells. The exogenous DNMT1 methylates the integrated mammalian CpG islands but not the Drosophila DNA. Additionally, in human cancer cells lacking DNMT1 and DNMT3b and having nearly absent genomic methylation, gene-specific de novo methylation can be initiated by reintroduction of DNMT1. Our studies provide a new assay for de novo activity of DNMTs and data suggesting a potential role for DNMT1 in the initiation of promoter CpG island hypermethylation in human cancer cells.A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo methylation activities of DNA methyltransferases (DNMT) thought to catalyze these reactions. Here, we describe a novel method, using native human CpG island substrates from genes that frequently become hypermethylated in cancer, which generates robust activity for measuring de novo CpG methylation. We then survey colon cancer cells with genetically engineered deficiencies in different DNMTs and find that the major activity against these substrates in extracts of these cells is DNMT1, with minor contribution from DNMT 3b and none from DNMT3a, the only known bona fide de novo methyltransferases. The activity of DNMT1 against unmethylated CpG rich DNA was further tested by introducing CpG island substrates and DNMT1 into Drosophila melanogaster cells. The exogenous DNMT1 methylates the integrated mammalian CpG islands but not the Drosophila DNA. Additionally, in human cancer cells lacking DNMT1 and DNMT3b and having nearly absent genomic methylation, gene-specific de novo methylation can be initiated by reintroduction of DNMT1. Our studies provide a new assay for de novo activity of DNMTs and data suggesting a potential role for DNMT1 in the initiation of promoter CpG island hypermethylation in human cancer cells.
Author Schuebel, Kornel E
Ting, Angela H
Rhee, Ina
Suzuki, Hiromu
Baylin, Stephen B
Bachman, Kurtis E
Yen, Ray-Whay Chiu
Jair, Kam-Wing
Author_xml – sequence: 1
  givenname: Kam-Wing
  surname: Jair
  fullname: Jair, Kam-Wing
  organization: The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA
– sequence: 2
  givenname: Kurtis E
  surname: Bachman
  fullname: Bachman, Kurtis E
– sequence: 3
  givenname: Hiromu
  surname: Suzuki
  fullname: Suzuki, Hiromu
– sequence: 4
  givenname: Angela H
  surname: Ting
  fullname: Ting, Angela H
– sequence: 5
  givenname: Ina
  surname: Rhee
  fullname: Rhee, Ina
– sequence: 6
  givenname: Ray-Whay Chiu
  surname: Yen
  fullname: Yen, Ray-Whay Chiu
– sequence: 7
  givenname: Stephen B
  surname: Baylin
  fullname: Baylin, Stephen B
– sequence: 8
  givenname: Kornel E
  surname: Schuebel
  fullname: Schuebel, Kornel E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16423997$$D View this record in MEDLINE/PubMed
BookMark eNo9j8lOwzAYhH0oogs8Asgnbi624y3HKtCCVMEFzpGXP2pQ4oQ4QerbU0ThNJrRp9HMEs1iFwGhG0bXjElzTyk1RArN18XmhVBJWG7oDC3-8zlapvRxspJReYnmTAme5bleIPEAOHZfHS76Ha5TY2PALYyHY2PHuou4jvgwtTZib6OHAXtomnSFLirbJLg-6wq9bx_fiieyf909F5s98SJTI8nzKjjGvVJWSOFdAO6EZOCcERyyABnzFTCtjNZQMa60roSyygQFyjHHV-jut7cfus8J0li2dfpZYCN0Uyo1VUZQqU_g7RmcXAuh7Ie6tcOx_PvJvwGLlVTA
CitedBy_id crossref_primary_10_1007_s00204_012_0983_3
crossref_primary_10_1371_journal_pone_0054114
crossref_primary_10_1158_1541_7786_MCR_09_0496
crossref_primary_10_3390_cells11071095
crossref_primary_10_1093_carcin_bgs006
crossref_primary_10_1186_1745_6150_8_14
crossref_primary_10_1002_em_21987
crossref_primary_10_1016_j_chest_2022_12_036
crossref_primary_10_1016_j_phrs_2019_104352
crossref_primary_10_1002_jcp_24141
crossref_primary_10_3389_fonc_2023_1010132
crossref_primary_10_1097_ACO_0b013e3283556211
crossref_primary_10_3390_ijms242015238
crossref_primary_10_1111_j_1365_2583_2011_01092_x
crossref_primary_10_1016_j_envpol_2023_121931
crossref_primary_10_1074_jbc_M603140200
crossref_primary_10_1016_j_yexmp_2017_05_005
crossref_primary_10_1186_1476_4598_5_16
crossref_primary_10_1016_j_prp_2018_07_015
crossref_primary_10_1208_s12248_013_9493_3
crossref_primary_10_1038_modpathol_3800822
crossref_primary_10_3322_caac_20085
crossref_primary_10_1002_ijc_23494
crossref_primary_10_1007_s00204_014_1315_6
crossref_primary_10_1128_MCB_01516_07
crossref_primary_10_3390_ph3072022
crossref_primary_10_1371_journal_pgen_1001286
crossref_primary_10_1007_s11033_015_3931_5
crossref_primary_10_1016_j_ejphar_2021_174698
crossref_primary_10_2217_epi_09_45
crossref_primary_10_1002_path_4120
crossref_primary_10_1039_D3FO03831A
crossref_primary_10_3390_cancers11060797
crossref_primary_10_1016_j_toxlet_2009_08_018
crossref_primary_10_1093_nar_gks031
crossref_primary_10_1371_journal_pone_0142034
crossref_primary_10_4161_epi_29676
crossref_primary_10_1016_j_bbamcr_2013_12_016
crossref_primary_10_1016_j_str_2008_01_004
crossref_primary_10_2217_epi_2016_0175
crossref_primary_10_1074_jbc_M110_155721
crossref_primary_10_1016_j_canlet_2008_03_022
crossref_primary_10_1128_MCB_01073_07
crossref_primary_10_1139_o06_090
crossref_primary_10_1186_s13148_018_0450_y
crossref_primary_10_1517_14712598_2013_819337
crossref_primary_10_4161_15384101_2014_950886
crossref_primary_10_1111_j_1600_0463_2007_apm_776_xml_x
crossref_primary_10_1186_s13148_015_0095_z
crossref_primary_10_1038_s10038_019_0611_7
crossref_primary_10_3390_ijms19020478
crossref_primary_10_1101_gad_1464906
crossref_primary_10_1002_1873_3468_12331
crossref_primary_10_1101_gad_1470906
crossref_primary_10_3390_genes9120620
crossref_primary_10_1016_j_bbrc_2011_07_115
crossref_primary_10_1038_s41598_017_16357_7
crossref_primary_10_1016_j_envres_2013_10_006
crossref_primary_10_1007_s00784_016_1772_9
crossref_primary_10_1016_j_aspen_2022_101879
crossref_primary_10_1093_abbs_gmq015
crossref_primary_10_1158_0008_5472_CAN_06_1937
crossref_primary_10_1016_j_ccell_2019_03_003
crossref_primary_10_1080_15592294_2016_1253651
crossref_primary_10_1016_j_currproblcancer_2018_03_001
crossref_primary_10_1093_carcin_bgm303
crossref_primary_10_1089_cell_2009_0083
crossref_primary_10_1242_dev_032227
crossref_primary_10_1186_1479_5876_4_32
crossref_primary_10_1080_01635581_2014_951727
crossref_primary_10_1002_cne_23020
crossref_primary_10_1016_j_mambio_2019_07_007
crossref_primary_10_4161_cbt_27630
crossref_primary_10_1007_s40291_016_0244_x
crossref_primary_10_3390_biom11101406
crossref_primary_10_1038_embor_2011_110
crossref_primary_10_3390_dna3030010
crossref_primary_10_1016_j_molimm_2012_06_010
crossref_primary_10_1038_ncomms11453
crossref_primary_10_1245_s10434_014_4277_2
crossref_primary_10_3892_ijo_2013_1931
crossref_primary_10_1083_jcb_202307026
crossref_primary_10_1074_jbc_M601155200
crossref_primary_10_3390_cells8080912
crossref_primary_10_1128_MCB_00235_10
crossref_primary_10_1038_s41417_019_0123_9
crossref_primary_10_1186_1746_1596_7_8
crossref_primary_10_3390_epigenomes6030017
crossref_primary_10_1371_journal_pgen_1000155
crossref_primary_10_1093_nar_gkp882
crossref_primary_10_1111_acer_13976
crossref_primary_10_1016_j_oooo_2012_12_011
crossref_primary_10_1016_j_jtbi_2006_05_012
crossref_primary_10_1093_nar_gks197
crossref_primary_10_3892_ijo_2016_3743
crossref_primary_10_15252_embr_202154147
crossref_primary_10_1038_s41467_025_62114_0
crossref_primary_10_1074_jbc_M606203200
crossref_primary_10_1093_molehr_gal074
crossref_primary_10_3892_or_2022_8430
crossref_primary_10_1155_2008_565631
crossref_primary_10_1002_mrd_20968
crossref_primary_10_1016_j_devcel_2007_05_011
crossref_primary_10_1186_bcr2477
crossref_primary_10_1002_ijc_25365
crossref_primary_10_1101_gad_1536807
crossref_primary_10_1038_s41423_020_0505_9
crossref_primary_10_1128_MCB_00484_09
crossref_primary_10_1101_gr_114843_110
crossref_primary_10_7759_cureus_59503
crossref_primary_10_3390_cancers10090295
crossref_primary_10_1016_j_mad_2015_02_002
crossref_primary_10_1016_j_gene_2017_10_011
crossref_primary_10_1038_ncomms2058
crossref_primary_10_1242_dev_016402
crossref_primary_10_1371_journal_pone_0016702
crossref_primary_10_1016_j_etap_2021_103779
crossref_primary_10_1093_jn_137_12_2622
crossref_primary_10_1159_000502885
crossref_primary_10_1002_cbic_201000195
crossref_primary_10_14348_molcells_2015_2138
crossref_primary_10_1016_j_preme_2025_100023
crossref_primary_10_1186_1756_3305_6_167
crossref_primary_10_3390_plants12051047
crossref_primary_10_1007_s00253_022_12029_3
crossref_primary_10_1371_journal_pone_0061658
crossref_primary_10_1074_jbc_M112_443895
crossref_primary_10_1080_07357900802208590
crossref_primary_10_1186_s13059_015_0763_5
crossref_primary_10_1007_s00441_007_0537_9
crossref_primary_10_1016_j_biocel_2010_08_007
crossref_primary_10_1517_14728222_2010_525353
crossref_primary_10_3390_genes10010065
crossref_primary_10_1016_j_pharmthera_2014_09_005
crossref_primary_10_3390_ijms12128661
crossref_primary_10_1186_s12929_014_0073_3
crossref_primary_10_1038_s41467_020_17269_3
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-05-1980
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
ExternalDocumentID 16423997
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: ES 11858
GroupedDBID ---
-ET
.55
.GJ
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
8WZ
A6W
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
MVM
NPM
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHF
RHI
RNS
SJN
TR2
UDS
VH1
VXZ
W2D
W8F
WH7
WHG
WOQ
X7M
XJT
YKV
YZZ
ZCG
ZGI
7X8
AAFWJ
AAJMC
AETEA
ID FETCH-LOGICAL-c436t-99fdb12c66a454cbde2b451ebb842e3de31cfe176877ef12677f46a68d6e6b1b2
IEDL.DBID 7X8
ISICitedReferencesCount 174
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000234915100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-5472
IngestDate Wed Oct 01 13:18:14 EDT 2025
Wed Feb 19 01:42:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-99fdb12c66a454cbde2b451ebb842e3de31cfe176877ef12677f46a68d6e6b1b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16423997
PQID 70684057
PQPubID 23479
ParticipantIDs proquest_miscellaneous_70684057
pubmed_primary_16423997
PublicationCentury 2000
PublicationDate 2006-01-15
PublicationDateYYYYMMDD 2006-01-15
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2006
SSID ssj0005105
Score 2.2996788
Snippet A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 682
SubjectTerms Animals
Colonic Neoplasms - genetics
Colonic Neoplasms - pathology
CpG Islands
DNA (Cytosine-5-)-Methyltransferase 1
DNA (Cytosine-5-)-Methyltransferases - physiology
DNA Methylation
Drosophila - genetics
Genetic Engineering
Humans
Tumor Cells, Cultured
Title De novo CpG island methylation in human cancer cells
URI https://www.ncbi.nlm.nih.gov/pubmed/16423997
https://www.proquest.com/docview/70684057
Volume 66
WOSCitedRecordID wos000234915100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYKRYiF-yinB1bT2vEVCQlVhcJAow6AukX1JXVJSlMq8e-xc8CEGFgyWEpsPb_Y73vXB8B1bIykkklk8ZQj6pxESsQMEYeV8hc8FSVN59uzSBI5mcTjFrhtamFCWmVzJpYHtcl18JF3RS-0JWHibv6OAmdUiK3WBBproB15QybotJj89ApndQJjCPAzP2ddv4OZ7H6P3Qz6SYgFe-jd-93GLO-a4c7_VrkLtmsbE_YrpdgDLZvtg81RHUU_APTewixf5XAwf4SzIuQ2wsAk_VnlxcFZBkvqPqiDSixgcO4Xh-B1-PAyeEI1ewLSNOJLFMfOKEw051PKqFbGEkUZtkpJSmxkbIS1s9jDDSGsw4QL4Sifcmm45QorcgTWszyzJwAybXr-W373nIfTOpbUMcuIR89Oa01MB1w10ki9doZVTTObfxRpI48OOK4Ems6rJhqph2mhrFac_vnuGdhq_B6YnYO28_-lvQAberWcFYvLctP9MxmPvgBBorS7
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+CpG+island+methylation+in+human+cancer+cells&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Jair%2C+Kam-Wing&rft.au=Bachman%2C+Kurtis+E&rft.au=Suzuki%2C+Hiromu&rft.au=Ting%2C+Angela+H&rft.date=2006-01-15&rft.issn=0008-5472&rft.volume=66&rft.issue=2&rft.spage=682&rft_id=info:doi/10.1158%2F0008-5472.CAN-05-1980&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon