Realistic Speech-Driven Facial Animation with GANs
Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-processing using computer graphics techniques to pr...
Uložené v:
| Vydané v: | International journal of computer vision Ročník 128; číslo 5; s. 1398 - 1413 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2020
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-5691, 1573-1405 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-processing using computer graphics techniques to produce realistic albeit subject dependent results. We present an end-to-end system that generates videos of a talking head, using only a still image of a person and an audio clip containing speech, without relying on handcrafted intermediate features. Our method generates videos which have (a) lip movements that are in sync with the audio and (b) natural facial expressions such as blinks and eyebrow movements. Our temporal GAN uses 3 discriminators focused on achieving detailed frames, audio-visual synchronization, and realistic expressions. We quantify the contribution of each component in our model using an ablation study and we provide insights into the latent representation of the model. The generated videos are evaluated based on sharpness, reconstruction quality, lip-reading accuracy, synchronization as well as their ability to generate natural blinks. |
|---|---|
| AbstractList | Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-processing using computer graphics techniques to produce realistic albeit subject dependent results. We present an end-to-end system that generates videos of a talking head, using only a still image of a person and an audio clip containing speech, without relying on handcrafted intermediate features. Our method generates videos which have (a) lip movements that are in sync with the audio and (b) natural facial expressions such as blinks and eyebrow movements. Our temporal GAN uses 3 discriminators focused on achieving detailed frames, audio-visual synchronization, and realistic expressions. We quantify the contribution of each component in our model using an ablation study and we provide insights into the latent representation of the model. The generated videos are evaluated based on sharpness, reconstruction quality, lip-reading accuracy, synchronization as well as their ability to generate natural blinks. |
| Audience | Academic |
| Author | Vougioukas, Konstantinos Petridis, Stavros Pantic, Maja |
| Author_xml | – sequence: 1 givenname: Konstantinos orcidid: 0000-0001-8552-5559 surname: Vougioukas fullname: Vougioukas, Konstantinos email: k.vougioukas@imperial.ac.uk organization: Department of Computing, Imperial College London – sequence: 2 givenname: Stavros surname: Petridis fullname: Petridis, Stavros organization: Department of Computing, Imperial College London, Samsung AI Research Centre Cambridge – sequence: 3 givenname: Maja surname: Pantic fullname: Pantic, Maja organization: Department of Computing, Imperial College London, Samsung AI Research Centre Cambridge |
| BookMark | eNp9kE1LAzEQhoMoWKt_wNOCJw-rmWQ3H8dStRaKQqvnkKbZNrLu1iT1498bu4LUQwkhMLxPZuY5QYdN21iEzgFfAcb8OgAQRnMMMl1SQi4OUA9KTnMocHmIelgSnJdMwjE6CeEFY0wEoT1EplbXLkRnstnaWrPKb7x7t012p43TdTZo3KuOrm2yDxdX2WjwEE7RUaXrYM9-3z56vrt9Gt7nk8fReDiY5KagLOaSzIVYYI3nHKDgBS-BcWOEJLZgXGLJF0IYqhkzXBtiKy4EWKs1NYYBBdpHF92_a9--bWyI6qXd-Ca1VIRKiUsmQKbUVZda6toq11Rt9Nqks7CvziRLlUv1ASNEUkE4S8DlDpAy0X7Gpd6EoMaz6W6WdFnj2xC8rdTaJx_-SwFWP-JVJ14l8WorXokEiX-QcXHrME3m6v0o7dCQ-jRL6_9W3kN9A1NRlZQ |
| CitedBy_id | crossref_primary_10_1002_cav_2110 crossref_primary_10_1007_s00530_025_01980_6 crossref_primary_10_1002_cav_2076 crossref_primary_10_1145_3478513_3480484 crossref_primary_10_1145_3742790 crossref_primary_10_1109_TVCG_2024_3476275 crossref_primary_10_3390_electronics12010218 crossref_primary_10_1109_TPAMI_2024_3376710 crossref_primary_10_1145_3522615 crossref_primary_10_1109_TPAMI_2020_3002500 crossref_primary_10_1007_s00371_021_02074_w crossref_primary_10_1016_j_livsci_2021_104700 crossref_primary_10_1109_TIP_2023_3323452 crossref_primary_10_1007_s00371_020_01982_7 crossref_primary_10_1007_s10489_022_03766_z crossref_primary_10_1109_ACCESS_2024_3390182 crossref_primary_10_1587_transinf_2020MUI0002 crossref_primary_10_1007_s11263_025_02481_9 crossref_primary_10_1109_TVCG_2021_3117484 crossref_primary_10_1587_transinf_2020MUI0001 crossref_primary_10_3390_info15110675 crossref_primary_10_1016_j_inffus_2023_102103 crossref_primary_10_1109_TCSVT_2024_3436029 crossref_primary_10_3145_epi_2021_mar_16 crossref_primary_10_1109_TVCG_2022_3199412 crossref_primary_10_1007_s40593_024_00419_9 crossref_primary_10_1109_TCSVT_2023_3311039 crossref_primary_10_1109_TVCG_2024_3409568 crossref_primary_10_1016_j_neucom_2022_09_025 crossref_primary_10_1109_TVCG_2020_3023573 crossref_primary_10_1016_j_patrec_2025_07_021 crossref_primary_10_3389_fnins_2021_781196 crossref_primary_10_1109_TCSVT_2024_3414412 crossref_primary_10_1109_TVCG_2025_3566382 crossref_primary_10_1109_TCSVT_2024_3394850 crossref_primary_10_1007_s13735_022_00241_w crossref_primary_10_1145_3635154 crossref_primary_10_1007_s42979_020_00263_3 crossref_primary_10_1109_TCSVT_2024_3351601 crossref_primary_10_1016_j_jsr_2024_10_002 crossref_primary_10_1177_23312165221136934 crossref_primary_10_1109_JSTSP_2023_3333552 crossref_primary_10_1109_TCE_2023_3323684 crossref_primary_10_1016_j_imavis_2024_104911 crossref_primary_10_1038_s42256_021_00417_9 crossref_primary_10_1016_j_dsp_2024_104462 crossref_primary_10_1109_TCE_2024_3516387 crossref_primary_10_1109_TCSVT_2023_3330920 crossref_primary_10_1145_3449063 crossref_primary_10_3390_electronics12234788 crossref_primary_10_1007_s11042_024_20156_4 crossref_primary_10_1007_s11704_020_0133_7 crossref_primary_10_1109_TAFFC_2020_3008456 crossref_primary_10_1109_ACCESS_2022_3231137 crossref_primary_10_1109_ACCESS_2024_3404056 crossref_primary_10_1007_s10489_024_05769_4 crossref_primary_10_1016_j_displa_2023_102558 crossref_primary_10_1109_TAFFC_2023_3334511 crossref_primary_10_1016_j_neucom_2024_128168 crossref_primary_10_1016_j_knosys_2025_113193 crossref_primary_10_3390_electronics14173487 crossref_primary_10_1007_s11063_023_11272_7 crossref_primary_10_1016_j_neunet_2025_107122 crossref_primary_10_1145_3414685_3417836 crossref_primary_10_1109_TCYB_2022_3162495 crossref_primary_10_3390_electronics13122398 crossref_primary_10_1109_TPAMI_2024_3357808 crossref_primary_10_1007_s11633_021_1293_0 crossref_primary_10_1007_s11042_023_17728_1 crossref_primary_10_1109_TAFFC_2020_3022017 crossref_primary_10_3389_frvir_2022_827312 crossref_primary_10_1007_s11042_025_20936_6 crossref_primary_10_1145_3487891 crossref_primary_10_1109_ACCESS_2020_3042328 crossref_primary_10_1109_TPAMI_2024_3420239 crossref_primary_10_1109_ACCESS_2023_3311461 crossref_primary_10_1109_TPAMI_2023_3253243 crossref_primary_10_1109_TMM_2022_3142387 crossref_primary_10_1007_s00371_024_03768_7 crossref_primary_10_1109_TAFFC_2021_3062406 crossref_primary_10_1109_ACCESS_2024_3430835 crossref_primary_10_1109_TMM_2021_3087020 crossref_primary_10_1109_TVCG_2025_3549168 crossref_primary_10_1109_TNNLS_2023_3274676 |
| Cites_doi | 10.1145/258734.258880 10.1109/CVPRW.2017.287 10.1007/978-3-030-01249-6_50 10.1016/S0167-6393(98)00048-X 10.1145/1095878.1095881 10.1002/mds.870120629 10.1145/3072959.3073699 10.1109/CVPR.2018.00165 10.1109/ICCV.2017.308 10.1016/j.patcog.2006.12.001 10.1007/978-3-030-01234-2_32 10.1145/3072959.3073658 10.1016/S0167-6393(98)00054-5 10.1145/3072959.3073640 10.1609/aaai.v33i01.33019299 10.1109/WIFS.2018.8630787 10.1145/3126686.3126723 10.1109/ICASSP.2017.7952190 10.1109/TAFFC.2014.2336244 10.1007/978-3-319-24574-4_28 10.1121/1.2229005 10.1109/TMM.2015.2407694 10.1109/ICASSP.2015.7178899 10.1109/CVPR.2019.00802 10.1006/jpho.2002.0165 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 COPYRIGHT 2020 Springer The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2020 Springer – notice: The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U |
| DOI | 10.1007/s11263-019-01251-8 |
| DatabaseName | Springer Nature Link CrossRef Gale In Context: Science ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 1413 |
| ExternalDocumentID | A622938276 10_1007_s11263_019_01251_8 |
| GrantInformation_xml | – fundername: Imperial College London |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c436t-92b88d0a0b71147475167cc892e4679097d88c3a66c7ac2ef7881eeaa3cc61313 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 204 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490090600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-5691 |
| IngestDate | Tue Nov 04 23:32:44 EST 2025 Sat Nov 29 10:04:42 EST 2025 Wed Nov 26 10:38:43 EST 2025 Sat Nov 29 06:42:27 EST 2025 Tue Nov 18 21:26:48 EST 2025 Fri Feb 21 02:35:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Face generation Generative modelling Speech-driven animation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-92b88d0a0b71147475167cc892e4679097d88c3a66c7ac2ef7881eeaa3cc61313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8552-5559 |
| OpenAccessLink | https://link.springer.com/10.1007/s11263-019-01251-8 |
| PQID | 2399056819 |
| PQPubID | 1456341 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2399056819 gale_infotracacademiconefile_A622938276 gale_incontextgauss_ISR_A622938276 crossref_primary_10_1007_s11263_019_01251_8 crossref_citationtrail_10_1007_s11263_019_01251_8 springer_journals_10_1007_s11263_019_01251_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20200500 2020-05-00 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Pham, H. X., Wang, Y., & Pavlovic, V. (2018). Generative adversarial talking head: Bringing portraits to life with a weakly supervised neural network (pp. 1–18). Saito, M., Matsumoto, E., & Saito, S. (2017). Temporal generative adversarial nets with singular value clipping. In ICCV (pp. 2830–2839). SimonsADCoxSJGeneration of mouthshapes for a synthetic talking headProceedings of the Institute of Acoustics, Autumn Meeting199012January475482 Jianzhu Guo, X. Z., & Lei, Z. (2018). 3DDFA. https://github.com/cleardusk/3DDFA. Accessed 17 Feb 2019. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241). YehiaHRubinPVatikiotis-BatesonEQuantitative association of vocal-tract and facial behaviorSpeech Communication1998261–2234310.1016/S0167-6393(98)00048-X Tulyakov, S., Liu, M., Yang, X., & Kautz, J. (2018). MoCoGAN: Decomposing motion and content for video generation. In CVPR (pp. 1526–1535). Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Chen, L., Li, Z., Maddox, R. K., Duan, Z., & Xu, C. (2018). Lip movements generation at a glance. In ECCV (pp. 1–15). TaylorSKimTYueYMahlerMKraheJRodriguezAGA deep learning approach for generalized speech animationACM TOG201736411310.1145/3072959.3073699 Fan, B., Wang, L., Soong, F., & Xie, L. (2015). Photo-real talking head with deep bidirectional LSTM. In ICASSP (pp. 4884–4888). Chen, L., Maddox, R. K., Duan, Z., & Xu, C. (2019). Hierarchical cross-modal talking face generation with dynamic pixel-wise loss. In CVPR. Chung, J. S., Jamaludin, A., & Zisserman, A. (2017) You said that? In BMVC. Pham, H. X., Cheung, S., & Pavlovic, V. (2017). Speech-driven 3D facial animation with implicit emotional awareness: a deep learning approach. In CVPR-Workshop (pp. 2328–2336). BentivoglioARBressmanSBCassettaECarrettaDTonaliPAlbaneseAAnalysis of blink rate patterns in normal subjectsMovement Disorders19971261028103410.1002/mds.870120629 Vondrick, C., Pirsiavash, H., & Torralba, A. (2016). Generating videos with scene dynamics. In NIPS (pp. 613–621). Chen, L., Srivastava, S., Duan, Z., & Xu, C. (2017). Deep cross-modal audio-visual generation. In Thematic workshops of ACM multimedia (pp. 349–357). XieLLiuZQA coupled HMM approach to video-realistic speech animationPattern Recognition20074082325234010.1016/j.patcog.2006.12.001 YamamotoENakamuraSShikanoKLip movement synthesis from speech based on hidden Markov ModelsSpeech Communication1998261–210511510.1016/S0167-6393(98)00054-5 KarrasTAilaTLaineSHervaALehtinenJAudio-driven facial animation by joint end-to-end learning of pose and emotionACM TOG201736411210.1145/3072959.3073658 Van Der MaatenLJPHintonGEVisualizing high-dimensional data using t-SNEJMLR20089257926051225.68219 Li, Y., Chang, M., & Lyu, S. (2018). In Ictu Oculi: Exposing AI created fake videos by detecting eye blinking. In WIFS. NarvekarNDKaramLJA no-reference perceptual image sharpness metric based on a cumulative probability of blur detectionInternational Workshop on Quality of Multimedia Experience (QoMEx)20092098791 Chung, J. S., & Zisserman, A. (2016a). Lip reading in the wild. In ACCV. Soukupova, T., & Cech, J. (2016). Real-time eye blink detection using facial landmarks. In Computer vision winter workshop. Bregler, C., Covell, M., & Slaney, M. (1997). Video rewrite. In Proceedings of the 24th annual conference on computer graphics and interactive techniques (pp. 353–360). Assael, Y. M., Shillingford, B., Whiteson, S., & de Freitas, N. (2016). LipNet: End-to-end sentence-level Lipreading. arXiv preprint arXiv:1611.01599. Vougioukas, K., Petridis, S., & Pantic, M. (2018). End-to-end speech-driven facial animation with temporal GANs. In BMVC. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. SuwajanakornSSeitzSKemelmacher-ShlizermanISynthesizing Obama: Learning lip sync from audio output Obama videoACM TOG201736411310.1145/3072959.3073640 Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). OpenFace: A general-purpose face recognition library with mobile applications. Technical Report, 118. CaoHCooperDGKeutmannMKGurRCNenkovaAVermaRCREMA-D: Crowd-sourced emotional multimodal actors datasetIEEE Transactions on Affective Computing20145437739010.1109/TAFFC.2014.2336244 CookeMBarkerJCunninghamSShaoXAn audio-visual corpus for speech perception and automatic speech recognitionThe Journal of the Acoustical Society of America200612052421242410.1121/1.2229005 Zhu, X., Lei, Z., Li, S. Z., et al. (2017). Face alignment in full pose range: A 3D total solution. In IEEE TPAMI. HarteNGillenETCD-TIMIT: An audio-visual corpus of continuous speechIEEE Transactions on Multimedia201517560361510.1109/TMM.2015.2407694 Li, Y., Min, M. R., Shen, D., Carlson, D., & Carin, L. (2017). Video generation from text. arXiv preprint arXiv:1710.00421 YehiaHCKuratateTVatikiotis-BatesonELinking facial animation, head motion and speech acousticsJournal of Phonetics200230355556810.1006/jpho.2002.0165 Dai, W., Dai, C., Qu, S., Li, J., & Das, S. (2017) Very deep convolutional neural networks for raw waveforms. In ICASSP (pp. 421–425). Zhou, H., Liu, Y., Liu, Z., Luo, P., & Wang, X. (2019). Talking face generation by adversarially disentangled audio-visual representation. In AAAI. Mathieu, M., Couprie, C., & LeCun, Y. (2015). Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440. ZhouYXuZLandrethCKalogerakisEMajiSSinghKVisemeNet: Audio-driven animator-centric speech animationACM TOG2018374161:1161:10 CaoYTienWCFaloutsosPPighinFExpressive speech-driven facial animationACM TOG20052441283130210.1145/1095878.1095881 Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. In ICLR. Pumarola, A., Agudo, A., Martinez, A., Sanfeliu, A., & Moreno-Noguer, F. (2018). GANimation: Anatomically-aware facial animation from a single image. In ECCV. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial networks. In NIPS (pp. 2672–2680). Chung, J. S., & Zisserman, A. (2016b). Out of time: Automated lip sync in the wild. In Workshop on Multi-view Lip-reading, ACCV. 1251_CR1 T Karras (1251_CR20) 2017; 36 1251_CR27 1251_CR2 1251_CR28 1251_CR3 1251_CR26 1251_CR5 N Harte (1251_CR18) 2015; 17 1251_CR23 AR Bentivoglio (1251_CR4) 1997; 12 1251_CR24 1251_CR46 1251_CR21 1251_CR8 1251_CR22 1251_CR44 Y Zhou (1251_CR45) 2018; 37 1251_CR9 H Yehia (1251_CR42) 1998; 26 M Cooke (1251_CR14) 2006; 120 AD Simons (1251_CR32) 1990; 12 1251_CR29 S Suwajanakorn (1251_CR34) 2017; 36 L Xie (1251_CR40) 2007; 40 Y Cao (1251_CR7) 2005; 24 ND Narvekar (1251_CR25) 2009; 20 E Yamamoto (1251_CR41) 1998; 26 1251_CR16 1251_CR38 1251_CR17 1251_CR39 1251_CR36 1251_CR15 1251_CR12 1251_CR13 1251_CR10 1251_CR11 1251_CR33 HC Yehia (1251_CR43) 2002; 30 1251_CR19 H Cao (1251_CR6) 2014; 5 1251_CR30 1251_CR31 S Taylor (1251_CR35) 2017; 36 LJP Van Der Maaten (1251_CR37) 2008; 9 |
| References_xml | – reference: Assael, Y. M., Shillingford, B., Whiteson, S., & de Freitas, N. (2016). LipNet: End-to-end sentence-level Lipreading. arXiv preprint arXiv:1611.01599. – reference: Vougioukas, K., Petridis, S., & Pantic, M. (2018). End-to-end speech-driven facial animation with temporal GANs. In BMVC. – reference: SuwajanakornSSeitzSKemelmacher-ShlizermanISynthesizing Obama: Learning lip sync from audio output Obama videoACM TOG201736411310.1145/3072959.3073640 – reference: Chung, J. S., & Zisserman, A. (2016a). Lip reading in the wild. In ACCV. – reference: Jianzhu Guo, X. Z., & Lei, Z. (2018). 3DDFA. https://github.com/cleardusk/3DDFA. Accessed 17 Feb 2019. – reference: Chung, J. S., & Zisserman, A. (2016b). Out of time: Automated lip sync in the wild. In Workshop on Multi-view Lip-reading, ACCV. – reference: Pumarola, A., Agudo, A., Martinez, A., Sanfeliu, A., & Moreno-Noguer, F. (2018). GANimation: Anatomically-aware facial animation from a single image. In ECCV. – reference: Saito, M., Matsumoto, E., & Saito, S. (2017). Temporal generative adversarial nets with singular value clipping. In ICCV (pp. 2830–2839). – reference: Soukupova, T., & Cech, J. (2016). Real-time eye blink detection using facial landmarks. In Computer vision winter workshop. – reference: Van Der MaatenLJPHintonGEVisualizing high-dimensional data using t-SNEJMLR20089257926051225.68219 – reference: Li, Y., Chang, M., & Lyu, S. (2018). In Ictu Oculi: Exposing AI created fake videos by detecting eye blinking. In WIFS. – reference: Li, Y., Min, M. R., Shen, D., Carlson, D., & Carin, L. (2017). Video generation from text. arXiv preprint arXiv:1710.00421 – reference: BentivoglioARBressmanSBCassettaECarrettaDTonaliPAlbaneseAAnalysis of blink rate patterns in normal subjectsMovement Disorders19971261028103410.1002/mds.870120629 – reference: Mathieu, M., Couprie, C., & LeCun, Y. (2015). Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440. – reference: Pham, H. X., Wang, Y., & Pavlovic, V. (2018). Generative adversarial talking head: Bringing portraits to life with a weakly supervised neural network (pp. 1–18). – reference: YamamotoENakamuraSShikanoKLip movement synthesis from speech based on hidden Markov ModelsSpeech Communication1998261–210511510.1016/S0167-6393(98)00054-5 – reference: Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. In ICLR. – reference: Chen, L., Li, Z., Maddox, R. K., Duan, Z., & Xu, C. (2018). Lip movements generation at a glance. In ECCV (pp. 1–15). – reference: CaoYTienWCFaloutsosPPighinFExpressive speech-driven facial animationACM TOG20052441283130210.1145/1095878.1095881 – reference: CaoHCooperDGKeutmannMKGurRCNenkovaAVermaRCREMA-D: Crowd-sourced emotional multimodal actors datasetIEEE Transactions on Affective Computing20145437739010.1109/TAFFC.2014.2336244 – reference: Chung, J. S., Jamaludin, A., & Zisserman, A. (2017) You said that? In BMVC. – reference: Dai, W., Dai, C., Qu, S., Li, J., & Das, S. (2017) Very deep convolutional neural networks for raw waveforms. In ICASSP (pp. 421–425). – reference: XieLLiuZQA coupled HMM approach to video-realistic speech animationPattern Recognition20074082325234010.1016/j.patcog.2006.12.001 – reference: Chen, L., Maddox, R. K., Duan, Z., & Xu, C. (2019). Hierarchical cross-modal talking face generation with dynamic pixel-wise loss. In CVPR. – reference: NarvekarNDKaramLJA no-reference perceptual image sharpness metric based on a cumulative probability of blur detectionInternational Workshop on Quality of Multimedia Experience (QoMEx)20092098791 – reference: HarteNGillenETCD-TIMIT: An audio-visual corpus of continuous speechIEEE Transactions on Multimedia201517560361510.1109/TMM.2015.2407694 – reference: TaylorSKimTYueYMahlerMKraheJRodriguezAGA deep learning approach for generalized speech animationACM TOG201736411310.1145/3072959.3073699 – reference: Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial networks. In NIPS (pp. 2672–2680). – reference: Pham, H. X., Cheung, S., & Pavlovic, V. (2017). Speech-driven 3D facial animation with implicit emotional awareness: a deep learning approach. In CVPR-Workshop (pp. 2328–2336). – reference: CookeMBarkerJCunninghamSShaoXAn audio-visual corpus for speech perception and automatic speech recognitionThe Journal of the Acoustical Society of America200612052421242410.1121/1.2229005 – reference: Fan, B., Wang, L., Soong, F., & Xie, L. (2015). Photo-real talking head with deep bidirectional LSTM. In ICASSP (pp. 4884–4888). – reference: Zhu, X., Lei, Z., Li, S. Z., et al. (2017). Face alignment in full pose range: A 3D total solution. In IEEE TPAMI. – reference: Vondrick, C., Pirsiavash, H., & Torralba, A. (2016). Generating videos with scene dynamics. In NIPS (pp. 613–621). – reference: Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). OpenFace: A general-purpose face recognition library with mobile applications. Technical Report, 118. – reference: Bregler, C., Covell, M., & Slaney, M. (1997). Video rewrite. In Proceedings of the 24th annual conference on computer graphics and interactive techniques (pp. 353–360). – reference: Chen, L., Srivastava, S., Duan, Z., & Xu, C. (2017). Deep cross-modal audio-visual generation. In Thematic workshops of ACM multimedia (pp. 349–357). – reference: YehiaHRubinPVatikiotis-BatesonEQuantitative association of vocal-tract and facial behaviorSpeech Communication1998261–2234310.1016/S0167-6393(98)00048-X – reference: KarrasTAilaTLaineSHervaALehtinenJAudio-driven facial animation by joint end-to-end learning of pose and emotionACM TOG201736411210.1145/3072959.3073658 – reference: SimonsADCoxSJGeneration of mouthshapes for a synthetic talking headProceedings of the Institute of Acoustics, Autumn Meeting199012January475482 – reference: Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. – reference: Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. – reference: ZhouYXuZLandrethCKalogerakisEMajiSSinghKVisemeNet: Audio-driven animator-centric speech animationACM TOG2018374161:1161:10 – reference: Zhou, H., Liu, Y., Liu, Z., Luo, P., & Wang, X. (2019). Talking face generation by adversarially disentangled audio-visual representation. In AAAI. – reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241). – reference: YehiaHCKuratateTVatikiotis-BatesonELinking facial animation, head motion and speech acousticsJournal of Phonetics200230355556810.1006/jpho.2002.0165 – reference: Tulyakov, S., Liu, M., Yang, X., & Kautz, J. (2018). MoCoGAN: Decomposing motion and content for video generation. In CVPR (pp. 1526–1535). – ident: 1251_CR5 doi: 10.1145/258734.258880 – ident: 1251_CR1 – ident: 1251_CR26 doi: 10.1109/CVPRW.2017.287 – ident: 1251_CR28 doi: 10.1007/978-3-030-01249-6_50 – ident: 1251_CR11 – volume: 26 start-page: 23 issue: 1–2 year: 1998 ident: 1251_CR42 publication-title: Speech Communication doi: 10.1016/S0167-6393(98)00048-X – ident: 1251_CR13 – ident: 1251_CR3 – volume: 24 start-page: 1283 issue: 4 year: 2005 ident: 1251_CR7 publication-title: ACM TOG doi: 10.1145/1095878.1095881 – volume: 12 start-page: 1028 issue: 6 year: 1997 ident: 1251_CR4 publication-title: Movement Disorders doi: 10.1002/mds.870120629 – volume: 12 start-page: 475 issue: January year: 1990 ident: 1251_CR32 publication-title: Proceedings of the Institute of Acoustics, Autumn Meeting – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 1251_CR35 publication-title: ACM TOG doi: 10.1145/3072959.3073699 – ident: 1251_CR36 doi: 10.1109/CVPR.2018.00165 – ident: 1251_CR31 doi: 10.1109/ICCV.2017.308 – ident: 1251_CR46 – ident: 1251_CR21 – ident: 1251_CR23 – volume: 40 start-page: 2325 issue: 8 year: 2007 ident: 1251_CR40 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2006.12.001 – volume: 37 start-page: 161:1 issue: 4 year: 2018 ident: 1251_CR45 publication-title: ACM TOG – ident: 1251_CR8 doi: 10.1007/978-3-030-01234-2_32 – ident: 1251_CR39 – ident: 1251_CR2 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 1251_CR20 publication-title: ACM TOG doi: 10.1145/3072959.3073658 – volume: 26 start-page: 105 issue: 1–2 year: 1998 ident: 1251_CR41 publication-title: Speech Communication doi: 10.1016/S0167-6393(98)00054-5 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 1251_CR34 publication-title: ACM TOG doi: 10.1145/3072959.3073640 – ident: 1251_CR12 – ident: 1251_CR44 doi: 10.1609/aaai.v33i01.33019299 – ident: 1251_CR22 doi: 10.1109/WIFS.2018.8630787 – ident: 1251_CR33 – ident: 1251_CR10 doi: 10.1145/3126686.3126723 – ident: 1251_CR27 – volume: 20 start-page: 87 issue: 9 year: 2009 ident: 1251_CR25 publication-title: International Workshop on Quality of Multimedia Experience (QoMEx) – ident: 1251_CR29 – ident: 1251_CR15 doi: 10.1109/ICASSP.2017.7952190 – volume: 5 start-page: 377 issue: 4 year: 2014 ident: 1251_CR6 publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2014.2336244 – ident: 1251_CR30 doi: 10.1007/978-3-319-24574-4_28 – volume: 120 start-page: 2421 issue: 5 year: 2006 ident: 1251_CR14 publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.2229005 – ident: 1251_CR19 – ident: 1251_CR17 – volume: 17 start-page: 603 issue: 5 year: 2015 ident: 1251_CR18 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2015.2407694 – ident: 1251_CR24 – volume: 9 start-page: 2579 year: 2008 ident: 1251_CR37 publication-title: JMLR – ident: 1251_CR16 doi: 10.1109/ICASSP.2015.7178899 – ident: 1251_CR38 – ident: 1251_CR9 doi: 10.1109/CVPR.2019.00802 – volume: 30 start-page: 555 issue: 3 year: 2002 ident: 1251_CR43 publication-title: Journal of Phonetics doi: 10.1006/jpho.2002.0165 |
| SSID | ssj0002823 |
| Score | 2.6787446 |
| Snippet | Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1398 |
| SubjectTerms | Ablation Animation Artificial Intelligence Computer graphics Computer Imaging Computer Science Discriminators Graphics software Image Processing and Computer Vision Image reconstruction Logistics Mapping Pattern Recognition Pattern Recognition and Graphics Post-production processing Sharpness Signal processing Special Issue on Generating Realistic Visual Data of Human Behavior Speech Synchronism Vision Visual discrimination |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HbjwRoyXKoTEASLadM3jhCZggEAT4iFxi9I0BSTUjXXw-4nblAkQXLi2SevWju049meA3Tym3JkdTCsXOWlnjBJpqCCc5kJYlmQJqwqFr3ivJx4e5LUPuJU-rbLRiZWizvoGY-SHWIMZIlqWPBq8EuwahaervoXGJExHlEYo55ecfGpit52oW8k7WhImI180U5fORRRPMLGEB208EV8M03f1_OOctDI_3fn_Er4Ac97xDDq1pCzChC2WYN47oYFf4qW71PR5aK4tA72xCJPoJga3A2vNEzkZopIMuhoD7kGneK4LIAOM6gZnnV65Avfd07vjc-J7LRDTjtmISJoKkYU6TLnbIbk9RhIxboyQ1DpVKkPJMyFMrBkzXBtqc4Sht1br2BjnEUTxKkwV_cKuQSBlymVqtTUsbedRLjLn01CbCYrKIQlbEDU_WhkPRI79MF7UGEIZmaMcc1TFHCVasP85Z1DDcPw5egf5pxDfosAEmkf9Vpbq4vZGdRh1Do4jhbVgzw_K--71Rvt6BPcRCIn1ZeRmw1nlV3ipxmxtwUEjG-PbvxO3_vfTNmCW4pa-yqnchKnR8M1uwYx5Hz2Xw-1Kvj8AgVD6kA priority: 102 providerName: ProQuest |
| Title | Realistic Speech-Driven Facial Animation with GANs |
| URI | https://link.springer.com/article/10.1007/s11263-019-01251-8 https://www.proquest.com/docview/2399056819 |
| Volume | 128 |
| WOSCitedRecordID | wos000490090600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtswjOixh7302IGmR2AMA_awCbDlWMdjeqQtugVBsqPbiyDL8lagcIs47feXdOQG3doB24sAy5RNU-YlkRTA2zLlEtUOhZWrkvUKwZl2XDHJS6W8yIpMNInCH-VwqM7P9SgkhdVttHu7JdlI6kWyW8Jpz5GSbkgrM7UMq6juFLHjePL1Xv6iEzE_QB4xyIROQqrM4894oI5-F8p_7I42Smew_n_obsBaMDKj_vyv2IQlX72A9WBwRoGda-xqz3Ro-14CH3sqiYgDo8m19-4XO5ySQIwGlhbXo351MU92jGgFNzruD-tX8GVw9PnghIVzFZjrpWLGNM-VKmIb5xK9IfQnskRI55TmHsWmjrUslHKpFcJJ67gvqeS899amzqH2T9LXsFJdVX4LIq1zqXNvvRN5r0xKVaD9wn2hOAmCLO5A0pLXuFB0nM6-uDSLcslEJ4N0Mg2djOrA-_sx1_OSG3-FfkOzZqiWRUXBMj_tTV2b08nY9AVHYwZRER14F4DKK3y9syH3AD-Cyl89gNxtZ98Ebq4N5f_GVKlNd-BDO9uL208jt_1v4DvwnJM738RT7sLKbHrj9-CZu51d1NMuLMtv37uwun80HI3x6kwybD_FB9iOsh_dhgvuAMrq9gE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXyqdYKGAhEAewSJzEsQ8IrVqWrrqsUFuk3ozjOLRSlV02WxB_it_ITOJ0VRC99cA1sR07fp4Z2zNvAJ5XichR7ZBbuap4WkrBtROK56JSysuszGQbKDzJp1N1eKg_rcGvPhaG3Cp7mdgK6nLm6Iz8DcVgRsSWpd_Nv3HKGkW3q30KjQ4Wu_7nD9yyNW_H2zi_L4QYvT_Y2uEhqwB3aSKXXItCqTKyUZHjXgCt6SyWuXNKC49CQ0c6L5VyiZXS5dYJXxHhuvfWJs6h7osTbPcKXE1TXA7kKhhtnUl-3L50qetx7JnUcQjS6UL1YkE3phQyRDYFV-cU4Z_q4K972VbdjTb-tx91C24Gw5oNu5VwG9Z8fQc2gpHNgghr8FGfx6J_dhfEnicaSKzI9ufeuyO-vSAlwEaWLhTYsD7uAjwZnVqzD8Npcw8-X8pg7sN6Pav9A2BaF7kuvPVOFmkVV6pEm034UgkSflk0gLifWOMC0Trl-zgxK4poAoNBMJgWDEYN4NVZnXlHM3Jh6WeEF0P8HTU5CH21p01jxvt7ZigFGnDYFTmAl6FQNcPPOxviLXAQRPl1ruRmjyQTJFhjVjAawOsei6vX_-7cw4tbewrXdw4-TsxkPN19BDcEHV-0_qObsL5cnPrHcM19Xx43iyft2mLw5bIx-hvnPFXp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvLU91S4EIgTiA1cTZ-HFAaMWysNpqVbUg9WYcx2kroeyy2YL4a_w6ZhKnq4LorQeuju348Xlm7HkBPC9TLpHtkFm5Klm_EJxpxxWTvFTKi6zIROMovC-nU3V8rA_W4FfnC0NmlR1NbAh1MXP0Rr5HPpgxRcvSe2UwizgYjt7OvzHKIEWa1i6dRguRif_5A69v9ZvxEPf6Beej95_efWQhwwBz_VQsmea5UkVs41zivQAl6ywR0jmluUcComMtC6VcaoVw0jruSwq-7r21qXPIB5MU-70BN5ELZ3TGJpJdcAG8yrRp7HEdMqGT4LDTuu0lnLSn5D5E8gVTl5jin6zhLx1tw_pGW__zot2BzSBwR4P2hNyFNV_dg60gfEeBtNVY1OW36MruAz_0FB4SG0ZHc-_dKRsuiDlEI0uKhmhQnbWOnxG9ZkcfBtP6AXy-lsk8hPVqVvltiLTOpc699U7k_TIpVYGyHPeF4kQUs7gHSbfJxoUA7JQH5KtZhY4mYBgEhmmAYVQPXl20mbfhR66s_YywYyiuR0WbfWLP69qMjw7NQHAU7HAoogcvQ6Vyhr93Nvhh4CQoFNilmrsdqkygbLVZQaoHrztcrj7_e3A7V_f2FG4jNM3-eDp5BBucXjUas9JdWF8uzv1juOW-L8_qxZPmmEXw5boh-hsK6V6P |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+Speech-Driven+Facial+Animation+with+GANs&rft.jtitle=International+journal+of+computer+vision&rft.au=Vougioukas%2C+Konstantinos&rft.au=Petridis%2C+Stavros&rft.au=Pantic%2C+Maja&rft.date=2020-05-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=128&rft.issue=5&rft.spage=1398&rft.epage=1413&rft_id=info:doi/10.1007%2Fs11263-019-01251-8&rft.externalDocID=10_1007_s11263_019_01251_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |