Realistic Speech-Driven Facial Animation with GANs

Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-processing using computer graphics techniques to pr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer vision Ročník 128; číslo 5; s. 1398 - 1413
Hlavní autori: Vougioukas, Konstantinos, Petridis, Stavros, Pantic, Maja
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2020
Springer
Springer Nature B.V
Predmet:
ISSN:0920-5691, 1573-1405
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-processing using computer graphics techniques to produce realistic albeit subject dependent results. We present an end-to-end system that generates videos of a talking head, using only a still image of a person and an audio clip containing speech, without relying on handcrafted intermediate features. Our method generates videos which have (a) lip movements that are in sync with the audio and (b) natural facial expressions such as blinks and eyebrow movements. Our temporal GAN uses 3 discriminators focused on achieving detailed frames, audio-visual synchronization, and realistic expressions. We quantify the contribution of each component in our model using an ablation study and we provide insights into the latent representation of the model. The generated videos are evaluated based on sharpness, reconstruction quality, lip-reading accuracy, synchronization as well as their ability to generate natural blinks.
AbstractList Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-processing using computer graphics techniques to produce realistic albeit subject dependent results. We present an end-to-end system that generates videos of a talking head, using only a still image of a person and an audio clip containing speech, without relying on handcrafted intermediate features. Our method generates videos which have (a) lip movements that are in sync with the audio and (b) natural facial expressions such as blinks and eyebrow movements. Our temporal GAN uses 3 discriminators focused on achieving detailed frames, audio-visual synchronization, and realistic expressions. We quantify the contribution of each component in our model using an ablation study and we provide insights into the latent representation of the model. The generated videos are evaluated based on sharpness, reconstruction quality, lip-reading accuracy, synchronization as well as their ability to generate natural blinks.
Audience Academic
Author Vougioukas, Konstantinos
Petridis, Stavros
Pantic, Maja
Author_xml – sequence: 1
  givenname: Konstantinos
  orcidid: 0000-0001-8552-5559
  surname: Vougioukas
  fullname: Vougioukas, Konstantinos
  email: k.vougioukas@imperial.ac.uk
  organization: Department of Computing, Imperial College London
– sequence: 2
  givenname: Stavros
  surname: Petridis
  fullname: Petridis, Stavros
  organization: Department of Computing, Imperial College London, Samsung AI Research Centre Cambridge
– sequence: 3
  givenname: Maja
  surname: Pantic
  fullname: Pantic, Maja
  organization: Department of Computing, Imperial College London, Samsung AI Research Centre Cambridge
BookMark eNp9kE1LAzEQhoMoWKt_wNOCJw-rmWQ3H8dStRaKQqvnkKbZNrLu1iT1498bu4LUQwkhMLxPZuY5QYdN21iEzgFfAcb8OgAQRnMMMl1SQi4OUA9KTnMocHmIelgSnJdMwjE6CeEFY0wEoT1EplbXLkRnstnaWrPKb7x7t012p43TdTZo3KuOrm2yDxdX2WjwEE7RUaXrYM9-3z56vrt9Gt7nk8fReDiY5KagLOaSzIVYYI3nHKDgBS-BcWOEJLZgXGLJF0IYqhkzXBtiKy4EWKs1NYYBBdpHF92_a9--bWyI6qXd-Ca1VIRKiUsmQKbUVZda6toq11Rt9Nqks7CvziRLlUv1ASNEUkE4S8DlDpAy0X7Gpd6EoMaz6W6WdFnj2xC8rdTaJx_-SwFWP-JVJ14l8WorXokEiX-QcXHrME3m6v0o7dCQ-jRL6_9W3kN9A1NRlZQ
CitedBy_id crossref_primary_10_1002_cav_2110
crossref_primary_10_1007_s00530_025_01980_6
crossref_primary_10_1002_cav_2076
crossref_primary_10_1145_3478513_3480484
crossref_primary_10_1145_3742790
crossref_primary_10_1109_TVCG_2024_3476275
crossref_primary_10_3390_electronics12010218
crossref_primary_10_1109_TPAMI_2024_3376710
crossref_primary_10_1145_3522615
crossref_primary_10_1109_TPAMI_2020_3002500
crossref_primary_10_1007_s00371_021_02074_w
crossref_primary_10_1016_j_livsci_2021_104700
crossref_primary_10_1109_TIP_2023_3323452
crossref_primary_10_1007_s00371_020_01982_7
crossref_primary_10_1007_s10489_022_03766_z
crossref_primary_10_1109_ACCESS_2024_3390182
crossref_primary_10_1587_transinf_2020MUI0002
crossref_primary_10_1007_s11263_025_02481_9
crossref_primary_10_1109_TVCG_2021_3117484
crossref_primary_10_1587_transinf_2020MUI0001
crossref_primary_10_3390_info15110675
crossref_primary_10_1016_j_inffus_2023_102103
crossref_primary_10_1109_TCSVT_2024_3436029
crossref_primary_10_3145_epi_2021_mar_16
crossref_primary_10_1109_TVCG_2022_3199412
crossref_primary_10_1007_s40593_024_00419_9
crossref_primary_10_1109_TCSVT_2023_3311039
crossref_primary_10_1109_TVCG_2024_3409568
crossref_primary_10_1016_j_neucom_2022_09_025
crossref_primary_10_1109_TVCG_2020_3023573
crossref_primary_10_1016_j_patrec_2025_07_021
crossref_primary_10_3389_fnins_2021_781196
crossref_primary_10_1109_TCSVT_2024_3414412
crossref_primary_10_1109_TVCG_2025_3566382
crossref_primary_10_1109_TCSVT_2024_3394850
crossref_primary_10_1007_s13735_022_00241_w
crossref_primary_10_1145_3635154
crossref_primary_10_1007_s42979_020_00263_3
crossref_primary_10_1109_TCSVT_2024_3351601
crossref_primary_10_1016_j_jsr_2024_10_002
crossref_primary_10_1177_23312165221136934
crossref_primary_10_1109_JSTSP_2023_3333552
crossref_primary_10_1109_TCE_2023_3323684
crossref_primary_10_1016_j_imavis_2024_104911
crossref_primary_10_1038_s42256_021_00417_9
crossref_primary_10_1016_j_dsp_2024_104462
crossref_primary_10_1109_TCE_2024_3516387
crossref_primary_10_1109_TCSVT_2023_3330920
crossref_primary_10_1145_3449063
crossref_primary_10_3390_electronics12234788
crossref_primary_10_1007_s11042_024_20156_4
crossref_primary_10_1007_s11704_020_0133_7
crossref_primary_10_1109_TAFFC_2020_3008456
crossref_primary_10_1109_ACCESS_2022_3231137
crossref_primary_10_1109_ACCESS_2024_3404056
crossref_primary_10_1007_s10489_024_05769_4
crossref_primary_10_1016_j_displa_2023_102558
crossref_primary_10_1109_TAFFC_2023_3334511
crossref_primary_10_1016_j_neucom_2024_128168
crossref_primary_10_1016_j_knosys_2025_113193
crossref_primary_10_3390_electronics14173487
crossref_primary_10_1007_s11063_023_11272_7
crossref_primary_10_1016_j_neunet_2025_107122
crossref_primary_10_1145_3414685_3417836
crossref_primary_10_1109_TCYB_2022_3162495
crossref_primary_10_3390_electronics13122398
crossref_primary_10_1109_TPAMI_2024_3357808
crossref_primary_10_1007_s11633_021_1293_0
crossref_primary_10_1007_s11042_023_17728_1
crossref_primary_10_1109_TAFFC_2020_3022017
crossref_primary_10_3389_frvir_2022_827312
crossref_primary_10_1007_s11042_025_20936_6
crossref_primary_10_1145_3487891
crossref_primary_10_1109_ACCESS_2020_3042328
crossref_primary_10_1109_TPAMI_2024_3420239
crossref_primary_10_1109_ACCESS_2023_3311461
crossref_primary_10_1109_TPAMI_2023_3253243
crossref_primary_10_1109_TMM_2022_3142387
crossref_primary_10_1007_s00371_024_03768_7
crossref_primary_10_1109_TAFFC_2021_3062406
crossref_primary_10_1109_ACCESS_2024_3430835
crossref_primary_10_1109_TMM_2021_3087020
crossref_primary_10_1109_TVCG_2025_3549168
crossref_primary_10_1109_TNNLS_2023_3274676
Cites_doi 10.1145/258734.258880
10.1109/CVPRW.2017.287
10.1007/978-3-030-01249-6_50
10.1016/S0167-6393(98)00048-X
10.1145/1095878.1095881
10.1002/mds.870120629
10.1145/3072959.3073699
10.1109/CVPR.2018.00165
10.1109/ICCV.2017.308
10.1016/j.patcog.2006.12.001
10.1007/978-3-030-01234-2_32
10.1145/3072959.3073658
10.1016/S0167-6393(98)00054-5
10.1145/3072959.3073640
10.1609/aaai.v33i01.33019299
10.1109/WIFS.2018.8630787
10.1145/3126686.3126723
10.1109/ICASSP.2017.7952190
10.1109/TAFFC.2014.2336244
10.1007/978-3-319-24574-4_28
10.1121/1.2229005
10.1109/TMM.2015.2407694
10.1109/ICASSP.2015.7178899
10.1109/CVPR.2019.00802
10.1006/jpho.2002.0165
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2020 Springer
The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2020 Springer
– notice: The Author(s) 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYYUZ
Q9U
DOI 10.1007/s11263-019-01251-8
DatabaseName Springer Nature Link
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1413
ExternalDocumentID A622938276
10_1007_s11263_019_01251_8
GrantInformation_xml – fundername: Imperial College London
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c436t-92b88d0a0b71147475167cc892e4679097d88c3a66c7ac2ef7881eeaa3cc61313
IEDL.DBID RSV
ISICitedReferencesCount 204
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490090600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Tue Nov 04 23:32:44 EST 2025
Sat Nov 29 10:04:42 EST 2025
Wed Nov 26 10:38:43 EST 2025
Sat Nov 29 06:42:27 EST 2025
Tue Nov 18 21:26:48 EST 2025
Fri Feb 21 02:35:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Face generation
Generative modelling
Speech-driven animation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-92b88d0a0b71147475167cc892e4679097d88c3a66c7ac2ef7881eeaa3cc61313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8552-5559
OpenAccessLink https://link.springer.com/10.1007/s11263-019-01251-8
PQID 2399056819
PQPubID 1456341
PageCount 16
ParticipantIDs proquest_journals_2399056819
gale_infotracacademiconefile_A622938276
gale_incontextgauss_ISR_A622938276
crossref_primary_10_1007_s11263_019_01251_8
crossref_citationtrail_10_1007_s11263_019_01251_8
springer_journals_10_1007_s11263_019_01251_8
PublicationCentury 2000
PublicationDate 20200500
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Pham, H. X., Wang, Y., & Pavlovic, V. (2018). Generative adversarial talking head: Bringing portraits to life with a weakly supervised neural network (pp. 1–18).
Saito, M., Matsumoto, E., & Saito, S. (2017). Temporal generative adversarial nets with singular value clipping. In ICCV (pp. 2830–2839).
SimonsADCoxSJGeneration of mouthshapes for a synthetic talking headProceedings of the Institute of Acoustics, Autumn Meeting199012January475482
Jianzhu Guo, X. Z., & Lei, Z. (2018). 3DDFA. https://github.com/cleardusk/3DDFA. Accessed 17 Feb 2019.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241).
YehiaHRubinPVatikiotis-BatesonEQuantitative association of vocal-tract and facial behaviorSpeech Communication1998261–2234310.1016/S0167-6393(98)00048-X
Tulyakov, S., Liu, M., Yang, X., & Kautz, J. (2018). MoCoGAN: Decomposing motion and content for video generation. In CVPR (pp. 1526–1535).
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Chen, L., Li, Z., Maddox, R. K., Duan, Z., & Xu, C. (2018). Lip movements generation at a glance. In ECCV (pp. 1–15).
TaylorSKimTYueYMahlerMKraheJRodriguezAGA deep learning approach for generalized speech animationACM TOG201736411310.1145/3072959.3073699
Fan, B., Wang, L., Soong, F., & Xie, L. (2015). Photo-real talking head with deep bidirectional LSTM. In ICASSP (pp. 4884–4888).
Chen, L., Maddox, R. K., Duan, Z., & Xu, C. (2019). Hierarchical cross-modal talking face generation with dynamic pixel-wise loss. In CVPR.
Chung, J. S., Jamaludin, A., & Zisserman, A. (2017) You said that? In BMVC.
Pham, H. X., Cheung, S., & Pavlovic, V. (2017). Speech-driven 3D facial animation with implicit emotional awareness: a deep learning approach. In CVPR-Workshop (pp. 2328–2336).
BentivoglioARBressmanSBCassettaECarrettaDTonaliPAlbaneseAAnalysis of blink rate patterns in normal subjectsMovement Disorders19971261028103410.1002/mds.870120629
Vondrick, C., Pirsiavash, H., & Torralba, A. (2016). Generating videos with scene dynamics. In NIPS (pp. 613–621).
Chen, L., Srivastava, S., Duan, Z., & Xu, C. (2017). Deep cross-modal audio-visual generation. In Thematic workshops of ACM multimedia (pp. 349–357).
XieLLiuZQA coupled HMM approach to video-realistic speech animationPattern Recognition20074082325234010.1016/j.patcog.2006.12.001
YamamotoENakamuraSShikanoKLip movement synthesis from speech based on hidden Markov ModelsSpeech Communication1998261–210511510.1016/S0167-6393(98)00054-5
KarrasTAilaTLaineSHervaALehtinenJAudio-driven facial animation by joint end-to-end learning of pose and emotionACM TOG201736411210.1145/3072959.3073658
Van Der MaatenLJPHintonGEVisualizing high-dimensional data using t-SNEJMLR20089257926051225.68219
Li, Y., Chang, M., & Lyu, S. (2018). In Ictu Oculi: Exposing AI created fake videos by detecting eye blinking. In WIFS.
NarvekarNDKaramLJA no-reference perceptual image sharpness metric based on a cumulative probability of blur detectionInternational Workshop on Quality of Multimedia Experience (QoMEx)20092098791
Chung, J. S., & Zisserman, A. (2016a). Lip reading in the wild. In ACCV.
Soukupova, T., & Cech, J. (2016). Real-time eye blink detection using facial landmarks. In Computer vision winter workshop.
Bregler, C., Covell, M., & Slaney, M. (1997). Video rewrite. In Proceedings of the 24th annual conference on computer graphics and interactive techniques (pp. 353–360).
Assael, Y. M., Shillingford, B., Whiteson, S., & de Freitas, N. (2016). LipNet: End-to-end sentence-level Lipreading. arXiv preprint arXiv:1611.01599.
Vougioukas, K., Petridis, S., & Pantic, M. (2018). End-to-end speech-driven facial animation with temporal GANs. In BMVC.
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
SuwajanakornSSeitzSKemelmacher-ShlizermanISynthesizing Obama: Learning lip sync from audio output Obama videoACM TOG201736411310.1145/3072959.3073640
Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). OpenFace: A general-purpose face recognition library with mobile applications. Technical Report, 118.
CaoHCooperDGKeutmannMKGurRCNenkovaAVermaRCREMA-D: Crowd-sourced emotional multimodal actors datasetIEEE Transactions on Affective Computing20145437739010.1109/TAFFC.2014.2336244
CookeMBarkerJCunninghamSShaoXAn audio-visual corpus for speech perception and automatic speech recognitionThe Journal of the Acoustical Society of America200612052421242410.1121/1.2229005
Zhu, X., Lei, Z., Li, S. Z., et al. (2017). Face alignment in full pose range: A 3D total solution. In IEEE TPAMI.
HarteNGillenETCD-TIMIT: An audio-visual corpus of continuous speechIEEE Transactions on Multimedia201517560361510.1109/TMM.2015.2407694
Li, Y., Min, M. R., Shen, D., Carlson, D., & Carin, L. (2017). Video generation from text. arXiv preprint arXiv:1710.00421
YehiaHCKuratateTVatikiotis-BatesonELinking facial animation, head motion and speech acousticsJournal of Phonetics200230355556810.1006/jpho.2002.0165
Dai, W., Dai, C., Qu, S., Li, J., & Das, S. (2017) Very deep convolutional neural networks for raw waveforms. In ICASSP (pp. 421–425).
Zhou, H., Liu, Y., Liu, Z., Luo, P., & Wang, X. (2019). Talking face generation by adversarially disentangled audio-visual representation. In AAAI.
Mathieu, M., Couprie, C., & LeCun, Y. (2015). Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440.
ZhouYXuZLandrethCKalogerakisEMajiSSinghKVisemeNet: Audio-driven animator-centric speech animationACM TOG2018374161:1161:10
CaoYTienWCFaloutsosPPighinFExpressive speech-driven facial animationACM TOG20052441283130210.1145/1095878.1095881
Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. In ICLR.
Pumarola, A., Agudo, A., Martinez, A., Sanfeliu, A., & Moreno-Noguer, F. (2018). GANimation: Anatomically-aware facial animation from a single image. In ECCV.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial networks. In NIPS (pp. 2672–2680).
Chung, J. S., & Zisserman, A. (2016b). Out of time: Automated lip sync in the wild. In Workshop on Multi-view Lip-reading, ACCV.
1251_CR1
T Karras (1251_CR20) 2017; 36
1251_CR27
1251_CR2
1251_CR28
1251_CR3
1251_CR26
1251_CR5
N Harte (1251_CR18) 2015; 17
1251_CR23
AR Bentivoglio (1251_CR4) 1997; 12
1251_CR24
1251_CR46
1251_CR21
1251_CR8
1251_CR22
1251_CR44
Y Zhou (1251_CR45) 2018; 37
1251_CR9
H Yehia (1251_CR42) 1998; 26
M Cooke (1251_CR14) 2006; 120
AD Simons (1251_CR32) 1990; 12
1251_CR29
S Suwajanakorn (1251_CR34) 2017; 36
L Xie (1251_CR40) 2007; 40
Y Cao (1251_CR7) 2005; 24
ND Narvekar (1251_CR25) 2009; 20
E Yamamoto (1251_CR41) 1998; 26
1251_CR16
1251_CR38
1251_CR17
1251_CR39
1251_CR36
1251_CR15
1251_CR12
1251_CR13
1251_CR10
1251_CR11
1251_CR33
HC Yehia (1251_CR43) 2002; 30
1251_CR19
H Cao (1251_CR6) 2014; 5
1251_CR30
1251_CR31
S Taylor (1251_CR35) 2017; 36
LJP Van Der Maaten (1251_CR37) 2008; 9
References_xml – reference: Assael, Y. M., Shillingford, B., Whiteson, S., & de Freitas, N. (2016). LipNet: End-to-end sentence-level Lipreading. arXiv preprint arXiv:1611.01599.
– reference: Vougioukas, K., Petridis, S., & Pantic, M. (2018). End-to-end speech-driven facial animation with temporal GANs. In BMVC.
– reference: SuwajanakornSSeitzSKemelmacher-ShlizermanISynthesizing Obama: Learning lip sync from audio output Obama videoACM TOG201736411310.1145/3072959.3073640
– reference: Chung, J. S., & Zisserman, A. (2016a). Lip reading in the wild. In ACCV.
– reference: Jianzhu Guo, X. Z., & Lei, Z. (2018). 3DDFA. https://github.com/cleardusk/3DDFA. Accessed 17 Feb 2019.
– reference: Chung, J. S., & Zisserman, A. (2016b). Out of time: Automated lip sync in the wild. In Workshop on Multi-view Lip-reading, ACCV.
– reference: Pumarola, A., Agudo, A., Martinez, A., Sanfeliu, A., & Moreno-Noguer, F. (2018). GANimation: Anatomically-aware facial animation from a single image. In ECCV.
– reference: Saito, M., Matsumoto, E., & Saito, S. (2017). Temporal generative adversarial nets with singular value clipping. In ICCV (pp. 2830–2839).
– reference: Soukupova, T., & Cech, J. (2016). Real-time eye blink detection using facial landmarks. In Computer vision winter workshop.
– reference: Van Der MaatenLJPHintonGEVisualizing high-dimensional data using t-SNEJMLR20089257926051225.68219
– reference: Li, Y., Chang, M., & Lyu, S. (2018). In Ictu Oculi: Exposing AI created fake videos by detecting eye blinking. In WIFS.
– reference: Li, Y., Min, M. R., Shen, D., Carlson, D., & Carin, L. (2017). Video generation from text. arXiv preprint arXiv:1710.00421
– reference: BentivoglioARBressmanSBCassettaECarrettaDTonaliPAlbaneseAAnalysis of blink rate patterns in normal subjectsMovement Disorders19971261028103410.1002/mds.870120629
– reference: Mathieu, M., Couprie, C., & LeCun, Y. (2015). Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440.
– reference: Pham, H. X., Wang, Y., & Pavlovic, V. (2018). Generative adversarial talking head: Bringing portraits to life with a weakly supervised neural network (pp. 1–18).
– reference: YamamotoENakamuraSShikanoKLip movement synthesis from speech based on hidden Markov ModelsSpeech Communication1998261–210511510.1016/S0167-6393(98)00054-5
– reference: Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. In ICLR.
– reference: Chen, L., Li, Z., Maddox, R. K., Duan, Z., & Xu, C. (2018). Lip movements generation at a glance. In ECCV (pp. 1–15).
– reference: CaoYTienWCFaloutsosPPighinFExpressive speech-driven facial animationACM TOG20052441283130210.1145/1095878.1095881
– reference: CaoHCooperDGKeutmannMKGurRCNenkovaAVermaRCREMA-D: Crowd-sourced emotional multimodal actors datasetIEEE Transactions on Affective Computing20145437739010.1109/TAFFC.2014.2336244
– reference: Chung, J. S., Jamaludin, A., & Zisserman, A. (2017) You said that? In BMVC.
– reference: Dai, W., Dai, C., Qu, S., Li, J., & Das, S. (2017) Very deep convolutional neural networks for raw waveforms. In ICASSP (pp. 421–425).
– reference: XieLLiuZQA coupled HMM approach to video-realistic speech animationPattern Recognition20074082325234010.1016/j.patcog.2006.12.001
– reference: Chen, L., Maddox, R. K., Duan, Z., & Xu, C. (2019). Hierarchical cross-modal talking face generation with dynamic pixel-wise loss. In CVPR.
– reference: NarvekarNDKaramLJA no-reference perceptual image sharpness metric based on a cumulative probability of blur detectionInternational Workshop on Quality of Multimedia Experience (QoMEx)20092098791
– reference: HarteNGillenETCD-TIMIT: An audio-visual corpus of continuous speechIEEE Transactions on Multimedia201517560361510.1109/TMM.2015.2407694
– reference: TaylorSKimTYueYMahlerMKraheJRodriguezAGA deep learning approach for generalized speech animationACM TOG201736411310.1145/3072959.3073699
– reference: Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial networks. In NIPS (pp. 2672–2680).
– reference: Pham, H. X., Cheung, S., & Pavlovic, V. (2017). Speech-driven 3D facial animation with implicit emotional awareness: a deep learning approach. In CVPR-Workshop (pp. 2328–2336).
– reference: CookeMBarkerJCunninghamSShaoXAn audio-visual corpus for speech perception and automatic speech recognitionThe Journal of the Acoustical Society of America200612052421242410.1121/1.2229005
– reference: Fan, B., Wang, L., Soong, F., & Xie, L. (2015). Photo-real talking head with deep bidirectional LSTM. In ICASSP (pp. 4884–4888).
– reference: Zhu, X., Lei, Z., Li, S. Z., et al. (2017). Face alignment in full pose range: A 3D total solution. In IEEE TPAMI.
– reference: Vondrick, C., Pirsiavash, H., & Torralba, A. (2016). Generating videos with scene dynamics. In NIPS (pp. 613–621).
– reference: Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). OpenFace: A general-purpose face recognition library with mobile applications. Technical Report, 118.
– reference: Bregler, C., Covell, M., & Slaney, M. (1997). Video rewrite. In Proceedings of the 24th annual conference on computer graphics and interactive techniques (pp. 353–360).
– reference: Chen, L., Srivastava, S., Duan, Z., & Xu, C. (2017). Deep cross-modal audio-visual generation. In Thematic workshops of ACM multimedia (pp. 349–357).
– reference: YehiaHRubinPVatikiotis-BatesonEQuantitative association of vocal-tract and facial behaviorSpeech Communication1998261–2234310.1016/S0167-6393(98)00048-X
– reference: KarrasTAilaTLaineSHervaALehtinenJAudio-driven facial animation by joint end-to-end learning of pose and emotionACM TOG201736411210.1145/3072959.3073658
– reference: SimonsADCoxSJGeneration of mouthshapes for a synthetic talking headProceedings of the Institute of Acoustics, Autumn Meeting199012January475482
– reference: Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
– reference: Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– reference: ZhouYXuZLandrethCKalogerakisEMajiSSinghKVisemeNet: Audio-driven animator-centric speech animationACM TOG2018374161:1161:10
– reference: Zhou, H., Liu, Y., Liu, Z., Luo, P., & Wang, X. (2019). Talking face generation by adversarially disentangled audio-visual representation. In AAAI.
– reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241).
– reference: YehiaHCKuratateTVatikiotis-BatesonELinking facial animation, head motion and speech acousticsJournal of Phonetics200230355556810.1006/jpho.2002.0165
– reference: Tulyakov, S., Liu, M., Yang, X., & Kautz, J. (2018). MoCoGAN: Decomposing motion and content for video generation. In CVPR (pp. 1526–1535).
– ident: 1251_CR5
  doi: 10.1145/258734.258880
– ident: 1251_CR1
– ident: 1251_CR26
  doi: 10.1109/CVPRW.2017.287
– ident: 1251_CR28
  doi: 10.1007/978-3-030-01249-6_50
– ident: 1251_CR11
– volume: 26
  start-page: 23
  issue: 1–2
  year: 1998
  ident: 1251_CR42
  publication-title: Speech Communication
  doi: 10.1016/S0167-6393(98)00048-X
– ident: 1251_CR13
– ident: 1251_CR3
– volume: 24
  start-page: 1283
  issue: 4
  year: 2005
  ident: 1251_CR7
  publication-title: ACM TOG
  doi: 10.1145/1095878.1095881
– volume: 12
  start-page: 1028
  issue: 6
  year: 1997
  ident: 1251_CR4
  publication-title: Movement Disorders
  doi: 10.1002/mds.870120629
– volume: 12
  start-page: 475
  issue: January
  year: 1990
  ident: 1251_CR32
  publication-title: Proceedings of the Institute of Acoustics, Autumn Meeting
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: 1251_CR35
  publication-title: ACM TOG
  doi: 10.1145/3072959.3073699
– ident: 1251_CR36
  doi: 10.1109/CVPR.2018.00165
– ident: 1251_CR31
  doi: 10.1109/ICCV.2017.308
– ident: 1251_CR46
– ident: 1251_CR21
– ident: 1251_CR23
– volume: 40
  start-page: 2325
  issue: 8
  year: 2007
  ident: 1251_CR40
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.12.001
– volume: 37
  start-page: 161:1
  issue: 4
  year: 2018
  ident: 1251_CR45
  publication-title: ACM TOG
– ident: 1251_CR8
  doi: 10.1007/978-3-030-01234-2_32
– ident: 1251_CR39
– ident: 1251_CR2
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: 1251_CR20
  publication-title: ACM TOG
  doi: 10.1145/3072959.3073658
– volume: 26
  start-page: 105
  issue: 1–2
  year: 1998
  ident: 1251_CR41
  publication-title: Speech Communication
  doi: 10.1016/S0167-6393(98)00054-5
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: 1251_CR34
  publication-title: ACM TOG
  doi: 10.1145/3072959.3073640
– ident: 1251_CR12
– ident: 1251_CR44
  doi: 10.1609/aaai.v33i01.33019299
– ident: 1251_CR22
  doi: 10.1109/WIFS.2018.8630787
– ident: 1251_CR33
– ident: 1251_CR10
  doi: 10.1145/3126686.3126723
– ident: 1251_CR27
– volume: 20
  start-page: 87
  issue: 9
  year: 2009
  ident: 1251_CR25
  publication-title: International Workshop on Quality of Multimedia Experience (QoMEx)
– ident: 1251_CR29
– ident: 1251_CR15
  doi: 10.1109/ICASSP.2017.7952190
– volume: 5
  start-page: 377
  issue: 4
  year: 2014
  ident: 1251_CR6
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2014.2336244
– ident: 1251_CR30
  doi: 10.1007/978-3-319-24574-4_28
– volume: 120
  start-page: 2421
  issue: 5
  year: 2006
  ident: 1251_CR14
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.2229005
– ident: 1251_CR19
– ident: 1251_CR17
– volume: 17
  start-page: 603
  issue: 5
  year: 2015
  ident: 1251_CR18
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2015.2407694
– ident: 1251_CR24
– volume: 9
  start-page: 2579
  year: 2008
  ident: 1251_CR37
  publication-title: JMLR
– ident: 1251_CR16
  doi: 10.1109/ICASSP.2015.7178899
– ident: 1251_CR38
– ident: 1251_CR9
  doi: 10.1109/CVPR.2019.00802
– volume: 30
  start-page: 555
  issue: 3
  year: 2002
  ident: 1251_CR43
  publication-title: Journal of Phonetics
  doi: 10.1006/jpho.2002.0165
SSID ssj0002823
Score 2.6787446
Snippet Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1398
SubjectTerms Ablation
Animation
Artificial Intelligence
Computer graphics
Computer Imaging
Computer Science
Discriminators
Graphics software
Image Processing and Computer Vision
Image reconstruction
Logistics
Mapping
Pattern Recognition
Pattern Recognition and Graphics
Post-production processing
Sharpness
Signal processing
Special Issue on Generating Realistic Visual Data of Human Behavior
Speech
Synchronism
Vision
Visual discrimination
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HbjwRoyXKoTEASLadM3jhCZggEAT4iFxi9I0BSTUjXXw-4nblAkQXLi2SevWju049meA3Tym3JkdTCsXOWlnjBJpqCCc5kJYlmQJqwqFr3ivJx4e5LUPuJU-rbLRiZWizvoGY-SHWIMZIlqWPBq8EuwahaervoXGJExHlEYo55ecfGpit52oW8k7WhImI180U5fORRRPMLGEB208EV8M03f1_OOctDI_3fn_Er4Ac97xDDq1pCzChC2WYN47oYFf4qW71PR5aK4tA72xCJPoJga3A2vNEzkZopIMuhoD7kGneK4LIAOM6gZnnV65Avfd07vjc-J7LRDTjtmISJoKkYU6TLnbIbk9RhIxboyQ1DpVKkPJMyFMrBkzXBtqc4Sht1br2BjnEUTxKkwV_cKuQSBlymVqtTUsbedRLjLn01CbCYrKIQlbEDU_WhkPRI79MF7UGEIZmaMcc1TFHCVasP85Z1DDcPw5egf5pxDfosAEmkf9Vpbq4vZGdRh1Do4jhbVgzw_K--71Rvt6BPcRCIn1ZeRmw1nlV3ipxmxtwUEjG-PbvxO3_vfTNmCW4pa-yqnchKnR8M1uwYx5Hz2Xw-1Kvj8AgVD6kA
  priority: 102
  providerName: ProQuest
Title Realistic Speech-Driven Facial Animation with GANs
URI https://link.springer.com/article/10.1007/s11263-019-01251-8
https://www.proquest.com/docview/2399056819
Volume 128
WOSCitedRecordID wos000490090600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtswjOixh7302IGmR2AMA_awCbDlWMdjeqQtugVBsqPbiyDL8lagcIs47feXdOQG3doB24sAy5RNU-YlkRTA2zLlEtUOhZWrkvUKwZl2XDHJS6W8yIpMNInCH-VwqM7P9SgkhdVttHu7JdlI6kWyW8Jpz5GSbkgrM7UMq6juFLHjePL1Xv6iEzE_QB4xyIROQqrM4894oI5-F8p_7I42Smew_n_obsBaMDKj_vyv2IQlX72A9WBwRoGda-xqz3Ro-14CH3sqiYgDo8m19-4XO5ySQIwGlhbXo351MU92jGgFNzruD-tX8GVw9PnghIVzFZjrpWLGNM-VKmIb5xK9IfQnskRI55TmHsWmjrUslHKpFcJJ67gvqeS899amzqH2T9LXsFJdVX4LIq1zqXNvvRN5r0xKVaD9wn2hOAmCLO5A0pLXuFB0nM6-uDSLcslEJ4N0Mg2djOrA-_sx1_OSG3-FfkOzZqiWRUXBMj_tTV2b08nY9AVHYwZRER14F4DKK3y9syH3AD-Cyl89gNxtZ98Ebq4N5f_GVKlNd-BDO9uL208jt_1v4DvwnJM738RT7sLKbHrj9-CZu51d1NMuLMtv37uwun80HI3x6kwybD_FB9iOsh_dhgvuAMrq9gE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXyqdYKGAhEAewSJzEsQ8IrVqWrrqsUFuk3ozjOLRSlV02WxB_it_ITOJ0VRC99cA1sR07fp4Z2zNvAJ5XichR7ZBbuap4WkrBtROK56JSysuszGQbKDzJp1N1eKg_rcGvPhaG3Cp7mdgK6nLm6Iz8DcVgRsSWpd_Nv3HKGkW3q30KjQ4Wu_7nD9yyNW_H2zi_L4QYvT_Y2uEhqwB3aSKXXItCqTKyUZHjXgCt6SyWuXNKC49CQ0c6L5VyiZXS5dYJXxHhuvfWJs6h7osTbPcKXE1TXA7kKhhtnUl-3L50qetx7JnUcQjS6UL1YkE3phQyRDYFV-cU4Z_q4K972VbdjTb-tx91C24Gw5oNu5VwG9Z8fQc2gpHNgghr8FGfx6J_dhfEnicaSKzI9ufeuyO-vSAlwEaWLhTYsD7uAjwZnVqzD8Npcw8-X8pg7sN6Pav9A2BaF7kuvPVOFmkVV6pEm034UgkSflk0gLifWOMC0Trl-zgxK4poAoNBMJgWDEYN4NVZnXlHM3Jh6WeEF0P8HTU5CH21p01jxvt7ZigFGnDYFTmAl6FQNcPPOxviLXAQRPl1ruRmjyQTJFhjVjAawOsei6vX_-7cw4tbewrXdw4-TsxkPN19BDcEHV-0_qObsL5cnPrHcM19Xx43iyft2mLw5bIx-hvnPFXp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvLU91S4EIgTiA1cTZ-HFAaMWysNpqVbUg9WYcx2kroeyy2YL4a_w6ZhKnq4LorQeuju348Xlm7HkBPC9TLpHtkFm5Klm_EJxpxxWTvFTKi6zIROMovC-nU3V8rA_W4FfnC0NmlR1NbAh1MXP0Rr5HPpgxRcvSe2UwizgYjt7OvzHKIEWa1i6dRguRif_5A69v9ZvxEPf6Beej95_efWQhwwBz_VQsmea5UkVs41zivQAl6ywR0jmluUcComMtC6VcaoVw0jruSwq-7r21qXPIB5MU-70BN5ELZ3TGJpJdcAG8yrRp7HEdMqGT4LDTuu0lnLSn5D5E8gVTl5jin6zhLx1tw_pGW__zot2BzSBwR4P2hNyFNV_dg60gfEeBtNVY1OW36MruAz_0FB4SG0ZHc-_dKRsuiDlEI0uKhmhQnbWOnxG9ZkcfBtP6AXy-lsk8hPVqVvltiLTOpc699U7k_TIpVYGyHPeF4kQUs7gHSbfJxoUA7JQH5KtZhY4mYBgEhmmAYVQPXl20mbfhR66s_YywYyiuR0WbfWLP69qMjw7NQHAU7HAoogcvQ6Vyhr93Nvhh4CQoFNilmrsdqkygbLVZQaoHrztcrj7_e3A7V_f2FG4jNM3-eDp5BBucXjUas9JdWF8uzv1juOW-L8_qxZPmmEXw5boh-hsK6V6P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+Speech-Driven+Facial+Animation+with+GANs&rft.jtitle=International+journal+of+computer+vision&rft.au=Vougioukas%2C+Konstantinos&rft.au=Petridis%2C+Stavros&rft.au=Pantic%2C+Maja&rft.date=2020-05-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=128&rft.issue=5&rft.spage=1398&rft.epage=1413&rft_id=info:doi/10.1007%2Fs11263-019-01251-8&rft.externalDocID=10_1007_s11263_019_01251_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon