Shape My Face: Registering 3D Face Scans by Surface-to-Surface Translation

Standard registration algorithms need to be independently applied to each surface to register, following careful pre-processing and hand-tuning. Recently, learning-based approaches have emerged that reduce the registration of new scans to running inference with a previously-trained model. The potent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer vision Ročník 129; číslo 9; s. 2680 - 2713
Hlavní autori: Bahri, Mehdi, O’ Sullivan, Eimear, Gong, Shunwang, Liu, Feng, Liu, Xiaoming, Bronstein, Michael M., Zafeiriou, Stefanos
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2021
Springer
Springer Nature B.V
Predmet:
ISSN:0920-5691, 1573-1405
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Standard registration algorithms need to be independently applied to each surface to register, following careful pre-processing and hand-tuning. Recently, learning-based approaches have emerged that reduce the registration of new scans to running inference with a previously-trained model. The potential benefits are multifold: inference is typically orders of magnitude faster than solving a new instance of a difficult optimization problem, deep learning models can be made robust to noise and corruption, and the trained model may be re-used for other tasks, e.g. through transfer learning. In this paper, we cast the registration task as a surface-to-surface translation problem, and design a model to reliably capture the latent geometric information directly from raw 3D face scans. We introduce Shape-My-Face (SMF), a powerful encoder-decoder architecture based on an improved point cloud encoder, a novel visual attention mechanism, graph convolutional decoders with skip connections, and a specialized mouth model that we smoothly integrate with the mesh convolutions. Compared to the previous state-of-the-art learning algorithms for non-rigid registration of face scans, SMF only requires the raw data to be rigidly aligned (with scaling) with a pre-defined face template. Additionally, our model provides topologically-sound meshes with minimal supervision, offers faster training time, has orders of magnitude fewer trainable parameters, is more robust to noise, and can generalize to previously unseen datasets. We extensively evaluate the quality of our registrations on diverse data. We demonstrate the robustness and generalizability of our model with in-the-wild face scans across different modalities, sensor types, and resolutions. Finally, we show that, by learning to register scans, SMF produces a hybrid linear and non-linear morphable model. Manipulation of the latent space of SMF allows for shape generation, and morphing applications such as expression transfer in-the-wild. We train SMF on a dataset of human faces comprising 9 large-scale databases on commodity hardware.
AbstractList Standard registration algorithms need to be independently applied to each surface to register, following careful pre-processing and hand-tuning. Recently, learning-based approaches have emerged that reduce the registration of new scans to running inference with a previously-trained model. The potential benefits are multifold: inference is typically orders of magnitude faster than solving a new instance of a difficult optimization problem, deep learning models can be made robust to noise and corruption, and the trained model may be re-used for other tasks, e.g. through transfer learning. In this paper, we cast the registration task as a surface-to-surface translation problem, and design a model to reliably capture the latent geometric information directly from raw 3D face scans. We introduce Shape-My-Face (SMF), a powerful encoder-decoder architecture based on an improved point cloud encoder, a novel visual attention mechanism, graph convolutional decoders with skip connections, and a specialized mouth model that we smoothly integrate with the mesh convolutions. Compared to the previous state-of-the-art learning algorithms for non-rigid registration of face scans, SMF only requires the raw data to be rigidly aligned (with scaling) with a pre-defined face template. Additionally, our model provides topologically-sound meshes with minimal supervision, offers faster training time, has orders of magnitude fewer trainable parameters, is more robust to noise, and can generalize to previously unseen datasets. We extensively evaluate the quality of our registrations on diverse data. We demonstrate the robustness and generalizability of our model with in-the-wild face scans across different modalities, sensor types, and resolutions. Finally, we show that, by learning to register scans, SMF produces a hybrid linear and non-linear morphable model. Manipulation of the latent space of SMF allows for shape generation, and morphing applications such as expression transfer in-the-wild. We train SMF on a dataset of human faces comprising 9 large-scale databases on commodity hardware.
Audience Academic
Author Liu, Xiaoming
O’ Sullivan, Eimear
Bahri, Mehdi
Gong, Shunwang
Liu, Feng
Zafeiriou, Stefanos
Bronstein, Michael M.
Author_xml – sequence: 1
  givenname: Mehdi
  orcidid: 0000-0002-2409-0261
  surname: Bahri
  fullname: Bahri, Mehdi
  email: m.bahri@imperial.ac.uk
  organization: Department of Computing, Imperial College London
– sequence: 2
  givenname: Eimear
  orcidid: 0000-0003-0525-3341
  surname: O’ Sullivan
  fullname: O’ Sullivan, Eimear
  organization: Department of Computing, Imperial College London
– sequence: 3
  givenname: Shunwang
  orcidid: 0000-0001-8717-8722
  surname: Gong
  fullname: Gong, Shunwang
  organization: Department of Computing, Imperial College London
– sequence: 4
  givenname: Feng
  orcidid: 0000-0003-2103-4659
  surname: Liu
  fullname: Liu, Feng
  organization: Department of Computer Science and Engineering, Michigan State University
– sequence: 5
  givenname: Xiaoming
  orcidid: 0000-0003-3215-8753
  surname: Liu
  fullname: Liu, Xiaoming
  organization: Department of Computer Science and Engineering, Michigan State University
– sequence: 6
  givenname: Michael M.
  orcidid: 0000-0002-1262-7252
  surname: Bronstein
  fullname: Bronstein, Michael M.
  organization: Department of Computing, Imperial College London
– sequence: 7
  givenname: Stefanos
  orcidid: 0000-0002-5222-1740
  surname: Zafeiriou
  fullname: Zafeiriou, Stefanos
  organization: Department of Computing, Imperial College London
BookMark eNp9kc1OAjEUhRuDiYC-gKtJXLko9m_awR1BUQzGBHDdlNJiCcxgWxJ5ewtDYnBBumhzer7b23taoFFWpQHgFqMORkg8BIwJpxARDBFmXQbZBWjiXFCIGcoboIm6BMGcd_EVaIWwRAiRgtAmeJt8qY3J3nfZQGnzmI3NwoVovCsXGX06iNlEqzJks1022XqbBBgreDxmU5_uViq6qrwGl1atgrk57m3wOXie9l_h6ONl2O-NoGaUR1gokhvKijmjWghBjMi7Fs_3_VtqLaczXqgZLQzjgs3RLPWvlSgI1xQzSwvaBnd13Y2vvrcmRLmstr5MT0qS5xznmOC9q1O7FmplpCttFb3Sac3N2uk0PeuS3uMC4YRwmoD7EyB5ovmJC7UNQQ4n41Mvqb3aVyF4Y-XGu7XyO4mR3Aci60BkCkQeApEsQcU_SLt4mFzqzK3Oo7RGw2afjPF_Xz5D_QLr1Z1W
CitedBy_id crossref_primary_10_1016_j_cag_2023_06_027
crossref_primary_10_1007_s11263_023_01825_7
crossref_primary_10_1016_j_eswa_2025_126577
crossref_primary_10_1016_j_cad_2023_103483
crossref_primary_10_1016_j_cag_2023_07_014
crossref_primary_10_1109_TPAMI_2024_3480151
crossref_primary_10_1016_j_neucom_2024_127493
crossref_primary_10_1007_s00371_025_04087_1
crossref_primary_10_1146_annurev_biodatasci_122120_111413
crossref_primary_10_1109_ACCESS_2024_3431673
Cites_doi 10.1109/CVPR.2005.268
10.1109/TPAMI.2010.46
10.1109/IJCNN.2018.8489068
10.1109/TVCG.2013.249
10.1145/2072572.2072597
10.1007/978-3-030-11015-4_26
10.1109/ROBOT.1991.132043
10.1109/CVPR.2007.383165
10.1109/CVPR.2018.00408
10.1117/12.966501
10.1109/CVPR42600.2020.01143
10.1109/CVPR.2019.00733
10.1109/MSP.2017.2693418
10.1145/3395208
10.1109/CVPR.2019.01119
10.1016/0004-3702(81)90024-2
10.1109/ICCV.2019.00950
10.1016/j.imavis.2016.10.007
10.1109/CVPR.2018.00537
10.1109/TPAMI.2017.2739743
10.1007/978-3-030-01219-9_43
10.1109/AFGR.2008.4813324
10.1007/s00138-013-0579-9
10.1145/3326362
10.1109/34.24792
10.1109/ICCV.2019.00731
10.1109/CVPR.2018.00097
10.1109/CVPR.2019.00463
10.1007/978-3-319-66182-7_34
10.1007/978-3-642-19318-7_22
10.1109/CVPRW.2009.5206522
10.1109/3DV.2019.00013
10.1016/j.bjoms.2011.02.007
10.1109/ICCV.2017.322
10.1145/2010324.1964971
10.1145/2816795.2818013
10.1109/ICCV.2019.00936
10.1109/ICCV.2019.00234
10.1109/FG.2018.00021
10.1109/CVPR.2018.00868
10.1145/258734.258849
10.1109/ICCV.2019.00362
10.1609/aaai.v32i1.11604
10.1037/h0071325
10.1145/311535.311556
10.1109/TPAMI.2020.2991150
10.1109/CVPR.2019.00482
10.1007/978-3-540-89991-4_6
10.1109/CVPR.2019.00122
10.1038/s41598-019-49506-1
10.1145/3131280
10.1109/ICCV.2019.00169
10.1145/3130800.3130883
10.1007/s11263-017-1009-7
10.1109/CVPR.2018.00552
10.1109/CVPR.2015.7298594
10.1109/ICCV.2015.411
10.1109/TPAMI.2003.1227983
10.1109/WACV.2018.00007
10.1109/AFGR.2008.4813376
10.1109/CVPR.2016.598
10.1145/1073204.1073209
10.1109/CVPR.2017.580
10.1109/CVPR.2019.00986
10.1109/TVCG.2012.310
10.1007/s11263-019-01198-w
10.1109/CVPR.2018.00767
10.1109/SSIAI.2010.5483908
10.1109/34.121791
10.1145/3355089.3356498
10.1109/CVPR.2017.576
10.1109/ICCV.2019.00010
10.1109/CVPR.2018.00275
10.1109/ICCV.2017.335
10.1109/ICCVW.2015.112
10.1109/ICCVW.2019.00509
10.1007/978-3-030-01237-3_6
10.1109/TPAMI.2018.2832138
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-021-01494-4
DatabaseName Springer Nature Open Access Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 2713
ExternalDocumentID A670161563
10_1007_s11263_021_01494_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c436t-8a25e348d43c7772e759f1d1263f3ff63b68ab38e4674d0b405ca7826c314f383
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671637200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Tue Nov 04 22:30:25 EST 2025
Sat Nov 29 10:07:07 EST 2025
Wed Nov 26 09:21:41 EST 2025
Tue Nov 18 21:41:58 EST 2025
Sat Nov 29 06:42:28 EST 2025
Fri Feb 21 02:48:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Generative modeling
Non linear morphable models
Face modeling
Point cloud
Surface registration
Graph neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-8a25e348d43c7772e759f1d1263f3ff63b68ab38e4674d0b405ca7826c314f383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1262-7252
0000-0002-2409-0261
0000-0002-5222-1740
0000-0003-0525-3341
0000-0003-2103-4659
0000-0003-3215-8753
0000-0001-8717-8722
OpenAccessLink https://link.springer.com/10.1007/s11263-021-01494-4
PQID 2556151218
PQPubID 1456341
PageCount 34
ParticipantIDs proquest_journals_2556151218
gale_infotracacademiconefile_A670161563
gale_incontextgauss_ISR_A670161563
crossref_primary_10_1007_s11263_021_01494_4
crossref_citationtrail_10_1007_s11263_021_01494_4
springer_journals_10_1007_s11263_021_01494_4
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Dai, H., Pears, N., Smith, W., & Duncan, C. (2017). A 3D morphable model of craniofacial shape and texture variation. In Proceedings of the IEEE international conference on computer vision.
Amberg, B., Knothe, R., & Vetter, T. (2008). Expression invariant 3D face recognition with a morphable model. In 2008 8th IEEE international conference on automatic face and gesture recognition, FG 2008.
Lu, W., Wan, G., Zhou, Y., Fu, X., Yuan, P., & Song, S. (2019). DeepVCP: An end-to-end deep neural network for point cloud registration. In Proceedings of the IEEE international conference on computer vision (Vol. 2019, pp. 12–21).
BlanzVVetterTFace recognition based on fitting a 3D morphable modelIEEE Transactions on Pattern Analysis and Machine2003251063107410.1109/TPAMI.2003.1227983Intelligence
Ranjan, A., Bolkart, T., Sanyal, S., & Black, M. J. (2018). Generating 3D faces using convolutional mesh autoencoders. In The European conference on computer vision (ECCV).
WangYSunYLiuZSarmaSEBronsteinMMSolomonJMDynamic graph CNN for learning on point cloudsACM Transactions on Graphics2019385146:1146:1210.1145/3326362
WuYHeKGroup normalizationInternational Journal of Computer Vision2020128374275510.1007/s11263-019-01198-w
ChengSMarrasIZafeiriouSPanticMStatistical non-rigid ICP algorithm and its application to 3d face alignmentImage and Vision Computing20175831210.1016/j.imavis.2016.10.007
Masci, J., Boscaini, D., Bronstein, M. M., & Vandergheynst, P. (2015). Geodesic convolutional neural networks on Riemannian manifolds. In Proceedings of the IEEE international conference on computer vision (Vol. 2015, pp. 832–840).
BronsteinMMBrunaJLeCunYSzlamAVandergheynstPGeometric deep learning: Going beyond Euclidean dataIEEE Signal Processing Magazine2017344184210.1109/MSP.2017.2693418
Bagautdinov, T., Wu, C., Saragih, J., Fua, P., & Sheikh, Y. (2018). Modeling facial geometry using compositional VAEs. In The IEEE conference on computer vision and pattern recognition (CVPR).
Tran, L., & Liu, X. (2018). Nonlinear 3D face morphable model. In 2018 IEEE/CVF conference on computer vision and pattern recognition. IEEE (pp. 7346–7355).
KipfTNWellingMSemi-supervised classification with graph convolutional neural networksICLR20172017114
Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). ArcFace: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
VlasicDBrandMPfisterHPopovićJFace transfer with multilinear modelsACM Transactions on Graphics200524342643310.1145/1073204.1073209
Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview of the face recognition grand challenge. In Proceedings—2005 IEEE computer society conference on computer vision and pattern recognition, CVPR 2005.
Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH 1999.
De Smet, M., & Van Gool, L. (2011). Optimal regions for linear model-based 3D face reconstruction. In Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics).
Garland, M., & Heckbert, PS. (1997). Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on computer graphics and interactive techniques. SIGGRAPH ’97 (pp. 209–216). ACM Press/Addison-Wesley Publishing Co.
Cheng, S., Kotsia, I., Pantic, M., & Zafeiriou, S. (2018). 4DFAB: A large scale 4D database for facial expression analysis and biometric applications. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 5117–5126).
Szegedy, C., Wei, L., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE (pp. 1–9).
BooksteinFLPrincipal warps: Thin-plate splines and the decomposition of deformationsIEEE Transactions on Pattern Analysis and Machine Intelligence19891156758510.1109/34.24792
Boscaini, D., Masci, J., Rodolá, E., & Bronstein, M. (2016). Learning shape correspondence with anisotropic convolutional neural networks. In Proceedings of the 30th international conference on neural information processing systems (pp. 3197–3205).
Kolotouros, N., Pavlakos, G., & Daniilidis, K. (2019b). Convolutional mesh regression for single-image human shape reconstruction. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2019, pp. 4496–4505).
Fey, M., Lenssen, J. E., Weichert, F., & Muller, H. (2018). SplineCNN: Fast geometric deep learning with continuous B-spline kernels. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 869–877)
Joo, H., Simon, T., & Sheikh, Y. (2018). Total capture: A 3D deformation model for tracking faces, hands, and bodies. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
Li, J., & Zhang, C. (2019). Iterative matching point. arXiv
Wang, Y., & Solomon, J. M. (2019b). PRNet: Self-supervised learning for partial-to-partial registration. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 32, pp. 8814–8826). Curran Associates Inc.
Lim, I., Dielen, A., Campen, M., & Kobbelt, L. (2018). A simple approach to intrinsic correspondence learning on unstructured 3D meshes. In Computer vision—ECCV 2018 workshops—Munich, Germany, September 8–14, 2018, Proceedings, Part III (pp. 349–362).
Chen, Y., & Medioni, G. (1991). Object modeling by registration of multiple range images. In Proceedings—IEEE international conference on robotics and automation (Vol. 3, pp. 2724–2729).
Xu, Y., Fan, T., Xu, M., Zeng, L., & Qiao, Y. (2018). SpiderCNN: Deep learning on point sets with parameterized convolutional filters. In The European conference on computer vision (ECCV) 11212 LNCS (pp. 90–105).
TamGKChengZQLaiYKLangbeinFCLiuYMarshallDRegistration of 3d point clouds and meshes: A survey from rigid to nonrigidIEEE Transactions on Visualization and Computer Graphics20131971199121710.1109/TVCG.2012.310
MyronenkoASongXCarreira-PerpiñánMÁNon-rigid point set registration: Coherent point driftAdvances in Neural Information Processing Systems2007191009
PloumpisSVerverasEO’SullivanEMoschoglouSWangHPearsNSmithWGecerBZafeiriouSPTowards a complete 3D morphable model of the human headIEEE Transactions on Pattern Analysis and Machine Intelligence202010.1109/TPAMI.2020.2991150
Tena, J. R., De La Torre, F., & Matthews, I. (2011). Interactive region-based linear 3D face models. ACM Transactions on Graphics, 30(4), 1–10.
Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). In 4th international conference on learning representations, ICLR 2016—Conference track proceedings.
Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., & Akarun, L. (2008). Bosphorus database for 3d face analysis. In B. Schouten, N. C. Juul, A. Drygajlo, & M. Tistarelli (Eds.), Biometrics and identity management (pp. 47–56). Springer.
Kolotouros, N., Pavlakos, G., Black, M., & Daniilidis, K. (2019a). Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In Proceedings of the IEEE international conference on computer vision (Vol. 2019, pp. 2252–2261).
Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., & Zafeiriou, S. (2019). Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation. In The IEEE international conference on computer vision (ICCV).
Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition, IEEE (pp. 1–8).
Booth, J., Roussos, A., Zafeiriou, S., Ponniahy, A., & Dunaway, D. (2016). A 3D morphable model learnt from 10,000 faces. In 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE (pp. 5543–5552).
MuellerAPaysanPSchumacherRZeilhoferHFBerg-BoernerBIMaurerJMissing facial parts computed by a morphable model and transferred directly to a polyamide laser-sintered prosthesis: An innovation studyBritish Journal of Oral and Maxillofacial Surgery2011498e67e7110.1016/j.bjoms.2011.02.007
LuthiMGerigTJudCVetterTGaussian process morphable modelsIEEE Transactions on Pattern Analysis and Machine2018401860187310.1109/TPAMI.2017.2739743Intelligence
BaocaiYYanfengSChengzhangWYunGBJUT-3D large scale 3D face database and information processingJournal of Computer Research and Development20094661009
BoothJRoussosAVerverasEAntonakosEPloumpisSPanagakisYZafeiriouS3d reconstruction of “in-the-wild” faces in images and videosIEEE Transactions on Pattern Analysis and Machine Intelligence201840112638265210.1109/TPAMI.2018.2832138
RomeroJTzionasDBlackMJEmbodied hands: Modeling and capturing hands and bodies togetherACM Transactions on Graphics20173611710.1145/3130800.3130883
Gong, S., Bahri, M., Bronstein, MM., & Zafeiriou, S. (2020). Geometrically principled connections in graph neural networks. In IEEE/CVF conference on computer vision and pattern recognition (CVPR).
Patel, A., & Smith, W. A. P. (2009). 3D morphable face models revisited. In 2009 IEEE conference on computer vision and pattern recognition. IEEE (pp. 1327–1334).
Pharr, M., Jakob, W., & Humphreys, G. (2016). Physically based rendering: From theory to implementation (3rd ed.). Morgan Kaufmann Publishers Inc.
Ploumpis, S., Wang, H., Pears, N., Smith, W. A., & Zafeiriou, S. (2019). Combining 3D morphable models: A large scale face-and-head model. In Proceedings of the IEEE computer society conference on comp
1494_CR32
1494_CR31
1494_CR30
M Lefébure (1494_CR54) 2001; 2106
Y Baocai (1494_CR8) 2009; 46
K Crane (1494_CR28) 2017; 60
Y Wu (1494_CR98) 2020; 128
1494_CR39
1494_CR38
1494_CR37
1494_CR36
1494_CR35
MM Bronstein (1494_CR20) 2017; 34
1494_CR33
1494_CR21
M Luthi (1494_CR65) 2018; 40
PG Knoops (1494_CR51) 2019; 9
M Loper (1494_CR62) 2015; 34
O van Kaick (1494_CR48) 2011; 30
1494_CR29
1494_CR27
1494_CR26
A Salazar (1494_CR83) 2014; 25
1494_CR24
1494_CR22
B Egger (1494_CR34) 2020; 39
1494_CR53
C Cao (1494_CR23) 2014; 20
1494_CR52
1494_CR2
1494_CR3
1494_CR1
1494_CR6
1494_CR7
1494_CR4
1494_CR5
1494_CR58
1494_CR57
1494_CR56
1494_CR55
M Lüthi (1494_CR66) 2018; 40
1494_CR43
1494_CR42
1494_CR41
1494_CR40
TN Kipf (1494_CR50) 2017; 2017
1494_CR47
1494_CR44
1494_CR76
1494_CR75
1494_CR73
Y Wang (1494_CR97) 2019; 38
GK Tam (1494_CR87) 2013; 19
FL Bookstein (1494_CR13) 1989; 11
T Li (1494_CR59) 2017; 36
K Pearson (1494_CR74) 1901; 2
1494_CR79
1494_CR77
1494_CR64
1494_CR63
1494_CR61
D Vlasic (1494_CR93) 2005; 24
1494_CR60
J Romero (1494_CR82) 2017; 36
M Nimier-David (1494_CR72) 2019; 38
S Cheng (1494_CR25) 2017; 58
BK Horn (1494_CR45) 1981; 17
1494_CR68
1494_CR67
1494_CR10
1494_CR96
PJ Besl (1494_CR9) 1992; 14
1494_CR95
1494_CR94
1494_CR92
1494_CR91
1494_CR90
A Mueller (1494_CR69) 2011; 49
A Myronenko (1494_CR71) 2007; 19
V Blanz (1494_CR11) 2003; 25
S Ploumpis (1494_CR78) 2020
J Booth (1494_CR16) 2018; 126
1494_CR19
J Booth (1494_CR17) 2018; 40
1494_CR18
1494_CR15
1494_CR14
1494_CR12
H Hotelling (1494_CR46) 1933; 24
1494_CR99
1494_CR86
A Myronenko (1494_CR70) 2010; 32
1494_CR85
1494_CR84
1494_CR81
1494_CR80
1494_CR103
1494_CR101
1494_CR102
1494_CR100
DP Kingma (1494_CR49) 2014; 94
1494_CR89
1494_CR88
References_xml – reference: Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). CosFace: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
– reference: van KaickOZhangHHamarnehGCohen-OrDA survey on shape correspondenceEurographics Symposium on Geometry Processing201130616811707
– reference: Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., & Akarun, L. (2008). Bosphorus database for 3d face analysis. In B. Schouten, N. C. Juul, A. Drygajlo, & M. Tistarelli (Eds.), Biometrics and identity management (pp. 47–56). Springer.
– reference: LoperMMahmoodNRomeroJPons-MollGBlackMJSMPL: A skinned multi-person linear modelACM Transactions on Graphics20153411610.1145/2816795.2818013
– reference: BooksteinFLPrincipal warps: Thin-plate splines and the decomposition of deformationsIEEE Transactions on Pattern Analysis and Machine Intelligence19891156758510.1109/34.24792
– reference: Patel, A., & Smith, W. A. P. (2009). 3D morphable face models revisited. In 2009 IEEE conference on computer vision and pattern recognition. IEEE (pp. 1327–1334).
– reference: Bolkart, T., & Wuhrer, S. (2015). A groupwise multilinear correspondence optimization for 3D faces. In Proceedings of the IEEE international conference on computer vision.
– reference: Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. In 34th international conference on machine learning, ICML 2017 (Vol. 3, pp. 2053–2070).
– reference: Li, J., & Zhang, C. (2019). Iterative matching point. arXiv
– reference: BeslPJMcKayNDA method for registration of 3-D shapesIEEE Transactions on Pattern Analysis and Machine Intelligence199214223925610.1109/34.121791
– reference: Tran, L., Liu, F., & Liu, X. (2019). Towards high-fidelity nonlinear 3D face morphable model. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
– reference: Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH 1999.
– reference: Lei, H., Akhtar, N., & Mian, A. (2019). Octree guided CNN with spherical kernels for 3d point clouds. In 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 9623–9632).
– reference: Yin, L., Chen, X., Sun, Y., Worm, T., & Reale, M. (2008). A high-resolution 3D dynamic facial expression database. In 2008 8th IEEE international conference on automatic face and gesture recognition, FG 2008. IEEE (pp. 1–6).
– reference: He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. In 2017 IEEE international conference on computer vision (ICCV). IEEE (pp. 2980–2988).
– reference: Abrevaya, V. F., Wuhrer, S., & Boyer, E. (2018). Multilinear autoencoder for 3D face model learning. In Proceedings—2018 IEEE winter conference on applications of computer vision, WACV 2018 (Vol. 2018, pp. 1–9).
– reference: Lim, I., Dielen, A., Campen, M., & Kobbelt, L. (2018). A simple approach to intrinsic correspondence learning on unstructured 3D meshes. In Computer vision—ECCV 2018 workshops—Munich, Germany, September 8–14, 2018, Proceedings, Part III (pp. 349–362).
– reference: SalazarAWuhrerSShuCPrietoFFully automatic expression-invariant face correspondenceMachine Vision and Applications20142585987910.1007/s00138-013-0579-9
– reference: Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). ArcFace: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
– reference: Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lió, P., & Bengio, Y. (2018). Graph attention networks. In ICLR.
– reference: BronsteinMMBrunaJLeCunYSzlamAVandergheynstPGeometric deep learning: Going beyond Euclidean dataIEEE Signal Processing Magazine2017344184210.1109/MSP.2017.2693418
– reference: Joo, H., Simon, T., & Sheikh, Y. (2018). Total capture: A 3D deformation model for tracking faces, hands, and bodies. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
– reference: Li, Q., Han, Z., & Wu, X. M. (2018). Deeper insights into graph convolutional networks for semi-supervised learning. In 32nd AAAI conference on artificial intelligence, AAAI 2018.
– reference: Bagdanov, A. D., Masi, I., & Del Bimbo, A. (2011). The florence 2D/3D hybrid face datset. In Proceedings of ACM multimedia internationl workshop on multimedia access to 3D human objects (MA3HO’11). ACM, ACM Press.
– reference: Crane, K., Vaz, C., & Fabri, A. (2020). The heat method. In CGAL user and reference manual (5th ed.). CGAL Editorial Board
– reference: Amberg, B., Knothe, R., & Vetter, T. (2008). Expression invariant 3D face recognition with a morphable model. In 2008 8th IEEE international conference on automatic face and gesture recognition, FG 2008.
– reference: Zhang, Z., Hua, B. S., & Yeung, S. K. (2019). Shellnet: Efficient point cloud convolutional neural networks using concentric shells statistics. In International conference on computer vision (ICCV).
– reference: Boscaini, D., Masci, J., Rodolá, E., & Bronstein, M. (2016). Learning shape correspondence with anisotropic convolutional neural networks. In Proceedings of the 30th international conference on neural information processing systems (pp. 3197–3205).
– reference: Masci, J., Boscaini, D., Bronstein, M. M., & Vandergheynst, P. (2015). Geodesic convolutional neural networks on Riemannian manifolds. In Proceedings of the IEEE international conference on computer vision (Vol. 2015, pp. 832–840).
– reference: VlasicDBrandMPfisterHPopovićJFace transfer with multilinear modelsACM Transactions on Graphics200524342643310.1145/1073204.1073209
– reference: EggerBSmithWAPTewariAWuhrerSZollhoeferMBeelerT3D morphable face models-past, present, and futureACM Transactions on Graphics202039513810.1145/3395208
– reference: KipfTNWellingMSemi-supervised classification with graph convolutional neural networksICLR20172017114
– reference: TamGKChengZQLaiYKLangbeinFCLiuYMarshallDRegistration of 3d point clouds and meshes: A survey from rigid to nonrigidIEEE Transactions on Visualization and Computer Graphics20131971199121710.1109/TVCG.2012.310
– reference: Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., & Worek, W. (2005). Overview of the face recognition grand challenge. In Proceedings—2005 IEEE computer society conference on computer vision and pattern recognition, CVPR 2005.
– reference: Xu, Y., Fan, T., Xu, M., Zeng, L., & Qiao, Y. (2018). SpiderCNN: Deep learning on point sets with parameterized convolutional filters. In The European conference on computer vision (ECCV) 11212 LNCS (pp. 90–105).
– reference: Fey, M., Lenssen, J. E., Weichert, F., & Muller, H. (2018). SplineCNN: Fast geometric deep learning with continuous B-spline kernels. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 869–877)
– reference: BlanzVVetterTFace recognition based on fitting a 3D morphable modelIEEE Transactions on Pattern Analysis and Machine2003251063107410.1109/TPAMI.2003.1227983Intelligence
– reference: Tena, J. R., De La Torre, F., & Matthews, I. (2011). Interactive region-based linear 3D face models. ACM Transactions on Graphics, 30(4), 1–10.
– reference: LüthiMGerigTJudCVetterTGaussian process morphable modelsIEEE Transactions on Pattern Analysis and Machine Intelligence20184081860187310.1109/TPAMI.2017.2739743
– reference: LiTBolkartTBlackMJLiHRomeroJLearning a model of facial shape and expression from 4D scansACM Transactions on Graphics201736194-1
– reference: RomeroJTzionasDBlackMJEmbodied hands: Modeling and capturing hands and bodies togetherACM Transactions on Graphics20173611710.1145/3130800.3130883
– reference: PloumpisSVerverasEO’SullivanEMoschoglouSWangHPearsNSmithWGecerBZafeiriouSPTowards a complete 3D morphable model of the human headIEEE Transactions on Pattern Analysis and Machine Intelligence202010.1109/TPAMI.2020.2991150
– reference: HotellingHAnalysis of a complex of statistical variables into principal componentsJournal of Educational Psychology193324641744110.1037/h0071325
– reference: Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., & Zafeiriou, S. (2019). Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation. In The IEEE international conference on computer vision (ICCV).
– reference: CaoCWengYZhouSTongYZhouKFaceWarehouse: A 3D facial expression database for visual computingIEEE Transactions on Visualization and Computer Graphics20142041342510.1109/TVCG.2013.249
– reference: Gong, S., Chen, L., Bronsteinm M., & Zafeiriou, S. (2019). SpiralNet++: A fast and highly efficient mesh convolution operator. In The IEEE international conference on computer vision (ICCV) workshops.
– reference: Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 29, pp. 3844–3852). Curran Associates Inc.
– reference: Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in neural information processing systems (Vol. 2017, pp. 1025–1035).
– reference: Dai, H., Pears, N., Smith, W., & Duncan, C. (2017). A 3D morphable model of craniofacial shape and texture variation. In Proceedings of the IEEE international conference on computer vision.
– reference: Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). In 4th international conference on learning representations, ICLR 2016—Conference track proceedings.
– reference: Aoki, Y., Goforth, H., Srivatsan, R. A., & Lucey, S. (2019). Pointnetlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2019, pp. 7156–7165).
– reference: Wang, Y., & Solomon, J. M. (2019b). PRNet: Self-supervised learning for partial-to-partial registration. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 32, pp. 8814–8826). Curran Associates Inc.
– reference: Ranjan, A., Bolkart, T., Sanyal, S., & Black, M. J. (2018). Generating 3D faces using convolutional mesh autoencoders. In The European conference on computer vision (ECCV).
– reference: Kolotouros, N., Pavlakos, G., Black, M., & Daniilidis, K. (2019a). Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In Proceedings of the IEEE international conference on computer vision (Vol. 2019, pp. 2252–2261).
– reference: Szegedy, C., Wei, L., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE (pp. 1–9).
– reference: KingmaDPBaJAdam: A method for stochastic optimizationPattern Recognition Letters201494172179
– reference: Cheng, S., Kotsia, I., Pantic, M., & Zafeiriou, S. (2018). 4DFAB: A large scale 4D database for facial expression analysis and biometric applications. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 5117–5126).
– reference: BoothJRoussosAPonniahADunawayDZafeiriouSLarge scale 3D morphable modelsInternational Journal of Computer Vision20181262–4233254376661810.1007/s11263-017-1009-7
– reference: MuellerAPaysanPSchumacherRZeilhoferHFBerg-BoernerBIMaurerJMissing facial parts computed by a morphable model and transferred directly to a polyamide laser-sintered prosthesis: An innovation studyBritish Journal of Oral and Maxillofacial Surgery2011498e67e7110.1016/j.bjoms.2011.02.007
– reference: Ploumpis, S., Wang, H., Pears, N., Smith, W. A., & Zafeiriou, S. (2019). Combining 3D morphable models: A large scale face-and-head model. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
– reference: Qi, C. R., Su, H., Kaichun, M., & Guibas, L. J. (2017a). PointNet: Deep learning on point sets for 3D classification and segmentation. In 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE (pp. 77–85).
– reference: Chen, Y., & Medioni, G. (1991). Object modeling by registration of multiple range images. In Proceedings—IEEE international conference on robotics and automation (Vol. 3, pp. 2724–2729).
– reference: De Smet, M., & Van Gool, L. (2011). Optimal regions for linear model-based 3D face reconstruction. In Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics).
– reference: Gong, S., Bahri, M., Bronstein, MM., & Zafeiriou, S. (2020). Geometrically principled connections in graph neural networks. In IEEE/CVF conference on computer vision and pattern recognition (CVPR).
– reference: LefébureMCohenLDImage registration, optical flow, and local rigidityLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)2001210626380991.68094
– reference: Aytekin, C., Ni, X., Cricri, F., & Aksu, E. (2018). Clustering and unsupervised anomaly detection with l2 normalized deep auto-encoder representations. In Proceedings of the international joint conference on neural networks.
– reference: Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017b). PointNet++: Deep hierarchical feature learning on point sets in a metric space. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 30, pp. 5099–5108). Curran Associates Inc.
– reference: Monti, F., Boscaini, D., Masci, J., Rodolá, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017 (Vol. 2017, pp. 5425–5434).
– reference: Gupta, S., Castleman, K. R., Markey, M. K., & Bovik, A. C. (2010). Texas 3D face recognition database. In Proceedings of the IEEE southwest symposium on image analysis and interpretation. IEEE (pp. 97–100).
– reference: WangYSunYLiuZSarmaSEBronsteinMMSolomonJMDynamic graph CNN for learning on point cloudsACM Transactions on Graphics2019385146:1146:1210.1145/3326362
– reference: WuYHeKGroup normalizationInternational Journal of Computer Vision2020128374275510.1007/s11263-019-01198-w
– reference: Nimier-DavidMViciniDZeltnerTJakobWMitsuba 2: A retargetable forward and inverse rendererTransactions on Graphics (Proceedings of SIGGRAPH Asia)201938611710.1145/3355089.3356498
– reference: CraneKWeischedelCWardetzkyMThe heat method for distance computationCommunications of the ACM20176011909910.1145/3131280
– reference: MyronenkoASongXCarreira-PerpiñánMÁNon-rigid point set registration: Coherent point driftAdvances in Neural Information Processing Systems2007191009
– reference: Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and deep locally connected networks on graphs. In 2nd international conference on learning representations, ICLR 2014—Conference track proceedings (pp. 1–14).
– reference: Burt, P. J., & Adelsonm, E. H., (1985). Merging images through pattern decomposition. In Applications of digital image processing VIII.
– reference: Wang, Y., & Solomon, J. (2019a). Deep closest point: Learning representations for point cloud registration. In Proceedings of the IEEE international conference on computer vision.
– reference: MyronenkoASongXPoint set registration: Coherent point driftsIEEE Transactions on Pattern Analysis and Machine Intelligence2010322262227510.1109/TPAMI.2010.46
– reference: Booth, J., Roussos, A., Zafeiriou, S., Ponniahy, A., & Dunaway, D. (2016). A 3D morphable model learnt from 10,000 faces. In 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE (pp. 5543–5552).
– reference: HornBKSchunckBGDetermining optical flowArtificial Intelligence1981171–318520310.1016/0004-3702(81)90024-2
– reference: Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th international joint conference on artificial intelligence (IJCAI) (Vol. 2, pp. 674–679).
– reference: Yin, L., Wei, X., Sun, Y., Wang, J., & Rosato, M. J. M. (2006). A 3D facial expression database for facial behavior research. In 7th international conference on automatic face and gesture recognition (FGR06). IEEE (pp. 211–216).
– reference: BaocaiYYanfengSChengzhangWYunGBJUT-3D large scale 3D face database and information processingJournal of Computer Research and Development20094661009
– reference: Kolotouros, N., Pavlakos, G., & Daniilidis, K. (2019b). Convolutional mesh regression for single-image human shape reconstruction. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (Vol. 2019, pp. 4496–4505).
– reference: Zhu, X., Lei, Z., Yan, J., Yi, D., & Li, S. Z. (2015). High-fidelity pose and expression normalization for face recognition in the wild. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
– reference: Tran, L., & Liu, X. (2018). Nonlinear 3D face morphable model. In 2018 IEEE/CVF conference on computer vision and pattern recognition. IEEE (pp. 7346–7355).
– reference: Feydy, J., Charlier, B., Vialard, F. X., & Peyré, G. (2017). Optimal transport for diffeomorphic registration. In: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and Lecture notes in bioinformatics).
– reference: KnoopsPGPapaioannouABorghiABreakeyRWWilsonATJeelaniOA machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgeryScientific Reports20199111210.1038/s41598-019-49506-1
– reference: LuthiMGerigTJudCVetterTGaussian process morphable modelsIEEE Transactions on Pattern Analysis and Machine2018401860187310.1109/TPAMI.2017.2739743Intelligence
– reference: PearsonKOn lines and planes of closest fit to systems of points in spacePhilosophical Magazine19012655957232.0710.04
– reference: Pharr, M., Jakob, W., & Humphreys, G. (2016). Physically based rendering: From theory to implementation (3rd ed.). Morgan Kaufmann Publishers Inc.
– reference: Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M., Schoenborn, S., & Vetter, T. (2018). Morphable face models—An open framework. In 2018 13th IEEE international conference on automatic face gesture recognition (FG 2018) (pp. 75–82). https://doi.org/10.1109/FG.2018.00021.
– reference: Liu, F., Tran, L., & Liu, X. (2019). 3D face modeling from diverse raw scan data. In The IEEE international conference on computer vision (ICCV).
– reference: BoothJRoussosAVerverasEAntonakosEPloumpisSPanagakisYZafeiriouS3d reconstruction of “in-the-wild” faces in images and videosIEEE Transactions on Pattern Analysis and Machine Intelligence201840112638265210.1109/TPAMI.2018.2832138
– reference: Garland, M., & Heckbert, PS. (1997). Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on computer graphics and interactive techniques. SIGGRAPH ’97 (pp. 209–216). ACM Press/Addison-Wesley Publishing Co.
– reference: Booth, J., Antonakos, E., Ploumpis, S., Trigeorgis, G., Panagakis, Y., & Zafeiriou, S. (2017). 3D face morphable models “In-the-Wild”. In Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017.
– reference: Shimada, S., Golyanik, V., Tretschk, E., Stricker, D., & Theobalt, C. (2019). DispVoxNets: Non-rigid point set alignment with supervised learning proxies. In Proceedings—2019 international conference on 3D vision, 3DV 2019. https://doi.org/10.1109/3DV.2019.00013.
– reference: ChengSMarrasIZafeiriouSPanticMStatistical non-rigid ICP algorithm and its application to 3d face alignmentImage and Vision Computing20175831210.1016/j.imavis.2016.10.007
– reference: Li, G., Muller, M., Thabet, A., & Ghanem, B. (2019). DeepGCNs: Can GCNs go as deep as CNNs? In The IEEE international conference on computer vision (ICCV).
– reference: Verma, N., Boyer, E., & Verbeek, J. (2018). FeaStNet: Feature-steered graph convolutions for 3D shape analysis. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition.
– reference: Lu, W., Wan, G., Zhou, Y., Fu, X., Yuan, P., & Song, S. (2019). DeepVCP: An end-to-end deep neural network for point cloud registration. In Proceedings of the IEEE international conference on computer vision (Vol. 2019, pp. 12–21).
– reference: Amberg, B., Romdhani, S., & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for surface registration. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition, IEEE (pp. 1–8).
– reference: Bagautdinov, T., Wu, C., Saragih, J., Fua, P., & Sheikh, Y. (2018). Modeling facial geometry using compositional VAEs. In The IEEE conference on computer vision and pattern recognition (CVPR).
– ident: 1494_CR76
  doi: 10.1109/CVPR.2005.268
– ident: 1494_CR103
– volume: 36
  start-page: 194-1
  year: 2017
  ident: 1494_CR59
  publication-title: ACM Transactions on Graphics
– volume: 32
  start-page: 2262
  year: 2010
  ident: 1494_CR70
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.46
– ident: 1494_CR5
  doi: 10.1109/IJCNN.2018.8489068
– volume: 20
  start-page: 413
  year: 2014
  ident: 1494_CR23
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2013.249
– ident: 1494_CR7
  doi: 10.1145/2072572.2072597
– ident: 1494_CR60
  doi: 10.1007/978-3-030-11015-4_26
– ident: 1494_CR24
  doi: 10.1109/ROBOT.1991.132043
– ident: 1494_CR2
  doi: 10.1109/CVPR.2007.383165
– ident: 1494_CR6
  doi: 10.1109/CVPR.2018.00408
– ident: 1494_CR75
– ident: 1494_CR22
  doi: 10.1117/12.966501
– ident: 1494_CR41
  doi: 10.1109/CVPR42600.2020.01143
– ident: 1494_CR4
  doi: 10.1109/CVPR.2019.00733
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 1494_CR20
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2693418
– volume: 39
  start-page: 1
  issue: 5
  year: 2020
  ident: 1494_CR34
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3395208
– ident: 1494_CR77
  doi: 10.1109/CVPR.2019.01119
– volume: 17
  start-page: 185
  issue: 1–3
  year: 1981
  ident: 1494_CR45
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(81)90024-2
– ident: 1494_CR29
– ident: 1494_CR43
– ident: 1494_CR61
  doi: 10.1109/ICCV.2019.00950
– ident: 1494_CR64
– volume: 2
  start-page: 559
  issue: 6
  year: 1901
  ident: 1494_CR74
  publication-title: Philosophical Magazine
– volume: 58
  start-page: 3
  year: 2017
  ident: 1494_CR25
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2016.10.007
– ident: 1494_CR26
  doi: 10.1109/CVPR.2018.00537
– volume: 2017
  start-page: 1
  year: 2017
  ident: 1494_CR50
  publication-title: ICLR
– ident: 1494_CR32
– volume: 40
  start-page: 1860
  year: 2018
  ident: 1494_CR65
  publication-title: IEEE Transactions on Pattern Analysis and Machine
  doi: 10.1109/TPAMI.2017.2739743
– ident: 1494_CR81
  doi: 10.1007/978-3-030-01219-9_43
– ident: 1494_CR101
  doi: 10.1109/AFGR.2008.4813324
– volume: 25
  start-page: 859
  year: 2014
  ident: 1494_CR83
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-013-0579-9
– ident: 1494_CR57
– volume: 38
  start-page: 146:1
  issue: 5
  year: 2019
  ident: 1494_CR97
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3326362
– volume: 11
  start-page: 567
  year: 1989
  ident: 1494_CR13
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.24792
– ident: 1494_CR19
  doi: 10.1109/ICCV.2019.00731
– ident: 1494_CR35
  doi: 10.1109/CVPR.2018.00097
– ident: 1494_CR53
  doi: 10.1109/CVPR.2019.00463
– volume: 19
  start-page: 1009
  year: 2007
  ident: 1494_CR71
  publication-title: Advances in Neural Information Processing Systems
– ident: 1494_CR36
  doi: 10.1007/978-3-319-66182-7_34
– ident: 1494_CR31
  doi: 10.1007/978-3-642-19318-7_22
– ident: 1494_CR73
  doi: 10.1109/CVPRW.2009.5206522
– ident: 1494_CR85
  doi: 10.1109/3DV.2019.00013
– volume: 2106
  start-page: 26
  year: 2001
  ident: 1494_CR54
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– ident: 1494_CR96
– volume: 49
  start-page: e67
  issue: 8
  year: 2011
  ident: 1494_CR69
  publication-title: British Journal of Oral and Maxillofacial Surgery
  doi: 10.1016/j.bjoms.2011.02.007
– volume: 46
  start-page: 1009
  issue: 6
  year: 2009
  ident: 1494_CR8
  publication-title: Journal of Computer Research and Development
– ident: 1494_CR44
  doi: 10.1109/ICCV.2017.322
– ident: 1494_CR88
  doi: 10.1145/2010324.1964971
– volume: 34
  start-page: 1
  year: 2015
  ident: 1494_CR62
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/2816795.2818013
– ident: 1494_CR56
  doi: 10.1109/ICCV.2019.00936
– ident: 1494_CR52
  doi: 10.1109/ICCV.2019.00234
– ident: 1494_CR38
  doi: 10.1109/FG.2018.00021
– ident: 1494_CR47
  doi: 10.1109/CVPR.2018.00868
– ident: 1494_CR80
– ident: 1494_CR37
  doi: 10.1145/258734.258849
– volume: 94
  start-page: 172
  year: 2014
  ident: 1494_CR49
  publication-title: Pattern Recognition Letters
– ident: 1494_CR95
  doi: 10.1109/ICCV.2019.00362
– ident: 1494_CR58
  doi: 10.1609/aaai.v32i1.11604
– ident: 1494_CR27
– volume: 24
  start-page: 417
  issue: 6
  year: 1933
  ident: 1494_CR46
  publication-title: Journal of Educational Psychology
  doi: 10.1037/h0071325
– ident: 1494_CR10
  doi: 10.1145/311535.311556
– year: 2020
  ident: 1494_CR78
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2991150
– ident: 1494_CR33
  doi: 10.1109/CVPR.2019.00482
– ident: 1494_CR79
– ident: 1494_CR84
  doi: 10.1007/978-3-540-89991-4_6
– ident: 1494_CR39
– ident: 1494_CR90
  doi: 10.1109/CVPR.2019.00122
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 1494_CR51
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-49506-1
– volume: 60
  start-page: 90
  issue: 11
  year: 2017
  ident: 1494_CR28
  publication-title: Communications of the ACM
  doi: 10.1145/3131280
– volume: 40
  start-page: 1860
  issue: 8
  year: 2018
  ident: 1494_CR66
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2739743
– ident: 1494_CR102
  doi: 10.1109/ICCV.2019.00169
– volume: 36
  start-page: 1
  year: 2017
  ident: 1494_CR82
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3130800.3130883
– volume: 126
  start-page: 233
  issue: 2–4
  year: 2018
  ident: 1494_CR16
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-017-1009-7
– ident: 1494_CR94
  doi: 10.1109/CVPR.2018.00552
– ident: 1494_CR86
  doi: 10.1109/CVPR.2015.7298594
– ident: 1494_CR12
  doi: 10.1109/ICCV.2015.411
– volume: 25
  start-page: 1063
  year: 2003
  ident: 1494_CR11
  publication-title: IEEE Transactions on Pattern Analysis and Machine
  doi: 10.1109/TPAMI.2003.1227983
– ident: 1494_CR1
  doi: 10.1109/WACV.2018.00007
– ident: 1494_CR3
  doi: 10.1109/AFGR.2008.4813376
– ident: 1494_CR14
  doi: 10.1109/CVPR.2016.598
– ident: 1494_CR91
– volume: 24
  start-page: 426
  issue: 3
  year: 2005
  ident: 1494_CR93
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/1073204.1073209
– ident: 1494_CR15
  doi: 10.1109/CVPR.2017.580
– ident: 1494_CR55
  doi: 10.1109/CVPR.2019.00986
– volume: 19
  start-page: 1199
  issue: 7
  year: 2013
  ident: 1494_CR87
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2012.310
– volume: 128
  start-page: 742
  issue: 3
  year: 2020
  ident: 1494_CR98
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01198-w
– volume: 30
  start-page: 1681
  issue: 6
  year: 2011
  ident: 1494_CR48
  publication-title: Eurographics Symposium on Geometry Processing
– ident: 1494_CR89
  doi: 10.1109/CVPR.2018.00767
– ident: 1494_CR42
  doi: 10.1109/SSIAI.2010.5483908
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 1494_CR9
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.121791
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  ident: 1494_CR72
  publication-title: Transactions on Graphics (Proceedings of SIGGRAPH Asia)
  doi: 10.1145/3355089.3356498
– ident: 1494_CR21
– ident: 1494_CR18
– ident: 1494_CR68
  doi: 10.1109/CVPR.2017.576
– ident: 1494_CR63
  doi: 10.1109/ICCV.2019.00010
– ident: 1494_CR92
  doi: 10.1109/CVPR.2018.00275
– ident: 1494_CR30
  doi: 10.1109/ICCV.2017.335
– ident: 1494_CR100
– ident: 1494_CR67
  doi: 10.1109/ICCVW.2015.112
– ident: 1494_CR40
  doi: 10.1109/ICCVW.2019.00509
– ident: 1494_CR99
  doi: 10.1007/978-3-030-01237-3_6
– volume: 40
  start-page: 2638
  issue: 11
  year: 2018
  ident: 1494_CR17
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2832138
SSID ssj0002823
Score 2.4834323
Snippet Standard registration algorithms need to be independently applied to each surface to register, following careful pre-processing and hand-tuning. Recently,...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2680
SubjectTerms Activities and Shape in 3D
Algorithms
Artificial Intelligence
Biometry
Coders
Computer Imaging
Computer Science
Data mining
Datasets
Deep learning
Encoders-Decoders
Finite element method
Image Processing and Computer Vision
Inference
Machine learning
Morphing
Motion
Optimization
Parameter robustness
Pattern Recognition
Pattern Recognition and Graphics
Registration
Robustness
Special Issue on Human Pose
Vision
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9affDF1qp4tkqQgg8a7F4-NtsXKbWHChbpKdankE9bkLvz9q7Q_74z2WyPKu2Lb8tsdpPdmcxHMpkfITtBul0PnjiLQjomnIhMBxWYDVFL64JPPmSwifroSJ-cNF_Lgltb0ip7nZgVdZh6XCN_h6Wy0DpV-v3sD0PUKNxdLRAad8k9MNQSEQzqHz-vNDGEEx2UPIRIUjVVOTTTHZ2rhnkHE4Np0Qgmrhmmv9XzP_uk2fyM1v934BvkYXE86X4nKY_InTjZJOvFCaVlirdA6nEeetpj8nl8ameRfrmgI-vjHj2OeGoo1zCk_EMmQmOwedRd0PFynoDAFlNWLmm2h13O3RPyfXT47eAjKxgMzAuuFkzboYxc6CC4r8ETj7VsUhXw5yWekuJOaeu4johaEnYd-H_egtehPK9EgvD3KVmbTCfxGaExpCCHHoymdaA2VKNC0HUTGuGkB4EekKpngPGlQDniZPw2q9LK2K8BppnMNCMG5M3VM7OuPMetrV8hXw3WvZhgYs0vu2xb82l8bPZVnZ1fxQfkdWmUptC9t-WcAnwElsq61nK757gpM781K3YPyNteZla3bx7c89vftkUeDLO0YnrbNllbzJfxBbnvzxdn7fxllvtLjrEFLg
  priority: 102
  providerName: ProQuest
Title Shape My Face: Registering 3D Face Scans by Surface-to-Surface Translation
URI https://link.springer.com/article/10.1007/s11263-021-01494-4
https://www.proquest.com/docview/2556151218
Volume 129
WOSCitedRecordID wos000671637200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZattAcGiSPvSlSS_iJDVLKfShXbC8h6S-pUlMD2KM3SPty7JnWwh2sOxA_r6z61VMekH7skijkfbQ7BzsHABPnTA9i5o49VwYyg33tHLSUe18JbRxNliXik2Uw2F1dlaPclBY03q7t0eSiVOvg92KfjpzjOYvrznlG7AlYraZaKNPPl7zXzQiVgXk0TASsi5yqMzvv3FDHP3MlH85HU1CZ7D9f8PdgbtZySSHK6q4B7f89D5sZ4WT5O3cIKit6dDCHsDbyTd94cnpFRlo61-SsY8RQilfIWHHCYjIKN-IuSKT5TwggC5mNF-SJPtW_nUP4cPg5P3Ra5rrLVDLmVzQSveFZ7xynNkStW5fijoULs4jsBAkM7LShlU-VihxPYO6ntWoYUjLCh7Q1H0Em9PZ1O8C8S440bcoILVBFiFr6VxV1q7mRlgk3g4U7bIrm5ORx5oY52qdRjn2q3D9VFo_xTvw_Pqdi1Uqjr9iP4l_U8UcF9PoRPNVL5tGvZmM1aEsk6IrWQeeZaQww-6tzjEJOImYFusG5kFLFSrv8kbF9G1RYyqqDrxoqWD9-M-D2_s39H2400-EFF3bDmBzMV_6x3DbXi6-N_MubJSfPndh69XJcDTGu3clxfa0d4TtSHzppt3xA9_eAFQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3bbtMw9GgMJHhhXEVhgIVAPIDFEjuOg4TQxJhWulVoHdLePN8CSKgtTQvqT_GNHDvOqoHY2x54i05O7Dg-1_hcAJ66wmxZtMSp54Wh3HBPpROOaudloY2ztXWx2UQ5HMrj4-rjGvzqcmFCWGUnE6OgdhMb_pG_CqWygnbK5Nvpdxq6RoXT1a6FRksWA7_8iS5b86a_g_v7LM933x-926OpqwC1nIk5lTovPOPScWZLtC19WVR15rJcsJrVtWBGSG2Y9KEPh9syaNFYjXpUWJbxGh06HPcSXOZMisBRg5KeSn50X9rW9eiSFaLKUpJOm6oXJqAhICI4JZzyM4rwT3Xw17lsVHe7G__bh7oB15NhTbZbTrgJa358CzaSkU2SCGsQ1PWx6GC34cPoi556crAku9r61-TQh6yoWKORsJ0IRGTU6cQsyWgxqxFA5xOaLknU921M4R34dCGLvAvr48nY3wPiXe2K3KJRoA2KRVEJ52RZuYqbwiLD9iDrNlzZVIA99AH5plalo8O8ColERSJRvAcvTp-ZtuVHzsV-EuhIhboe4xA49Fkvmkb1R4dqW5TRuBesB88TUj3B6a1OeRi4iFAK7AzmZkdhKkm2Rq3IqwcvOxpd3f73y90_f7THcHXv6GBf7feHgwdwLY-cEkL5NmF9Plv4h3DF_ph_bWaPIs8ROLlo2v0N8nhfWQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUK8MK6iMMBCIB7A2hI7ToKE0KCrKIOqakHam_EVkFBbmhbUv8av4zhxVg3E3vbAW-Sc2HH8-VzicwF4ZDO9b1ATp45nmnLNHS2ssFRZV2RKW-ONrYtN5MNhcXxcjrbgVxsLE9wqW55YM2o7M-Ef-V5IlRWkU1Ls-egWMer1X86_01BBKpy0tuU0GogcufVPNN-qF4MervXjNO0ffnj9hsYKA9RwJpa0UGnmGC8sZyZHPdPlWekTm6SCeea9YFoUSrPChZocdl-jdmMUylRhWMI9GnfY7wXYzhkaPR3YfnU4HI1P5AAaM00hezTQMlEmMWSnCdwLQ9DgHhFMFE75KbH4p3D465S2Fn79nf_5s12FK1HlJgfNHrkGW256HXai-k0ic6uwqa1w0bbdgLeTL2ruyPs16SvjnpOxC_FSdfZGwnp1IxKjtCd6TSarhccGupzReElqTaDxNrwJH89lkregM51N3W0gznqbpQbVBaWRYYpSWFvkpS25zgxu5S4k7eJLE1Ozhwoh3-QmqXQYVyJgZA0Yybvw9OSZeZOY5EzqhwFTMmT8mAYQfFarqpKDyVgeiLxW-wXrwpNI5Gc4vFExQgMnEZKEnaLcbdEmI8-r5AZqXXjW4nVz-98vd-fs3h7AJYSsfDcYHt2Fy2m9aYKP3y50louVuwcXzY_l12pxP25AAp_OG7y_Acbwaas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+My+Face%3A+Registering+3D+Face+Scans+by+Surface-to-Surface+Translation&rft.jtitle=International+journal+of+computer+vision&rft.au=Bahri%2C+Mehdi&rft.au=O%E2%80%99+Sullivan%2C+Eimear&rft.au=Gong%2C+Shunwang&rft.au=Liu%2C+Feng&rft.date=2021-09-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=129&rft.issue=9&rft.spage=2680&rft.epage=2713&rft_id=info:doi/10.1007%2Fs11263-021-01494-4&rft.externalDocID=10_1007_s11263_021_01494_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon