Development and Validation of a Non-Invasive, Chairside Oral Cavity Cancer Risk Assessment Prototype Using Machine Learning Approach

Oral cavity cancer (OCC) is associated with high morbidity and mortality rates when diagnosed at late stages. Early detection of increased risk provides an opportunity for implementing prevention strategies surrounding modifiable risk factors and screening to promote early detection and intervention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of personalized medicine Jg. 12; H. 4; S. 614
Hauptverfasser: Shimpi, Neel, Glurich, Ingrid, Rostami, Reihaneh, Hegde, Harshad, Olson, Brent, Acharya, Amit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 11.04.2022
MDPI
Schlagworte:
ISSN:2075-4426, 2075-4426
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Oral cavity cancer (OCC) is associated with high morbidity and mortality rates when diagnosed at late stages. Early detection of increased risk provides an opportunity for implementing prevention strategies surrounding modifiable risk factors and screening to promote early detection and intervention. Historical evidence identified a gap in the training of primary care providers (PCPs) surrounding the examination of the oral cavity. The absence of clinically applicable analytical tools to identify patients with high-risk OCC phenotypes at point-of-care (POC) causes missed opportunities for implementing patient-specific interventional strategies. This study developed an OCC risk assessment tool prototype by applying machine learning (ML) approaches to a rich retrospectively collected data set abstracted from a clinical enterprise data warehouse. We compared the performance of six ML classifiers by applying the 10-fold cross-validation approach. Accuracy, recall, precision, specificity, area under the receiver operating characteristic curve, and recall–precision curves for the derived voting algorithm were: 78%, 64%, 88%, 92%, 0.83, and 0.81, respectively. The performance of two classifiers, multilayer perceptron and AdaBoost, closely mirrored the voting algorithm. Integration of the OCC risk assessment tool developed by clinical informatics application into an electronic health record as a clinical decision support tool can assist PCPs in targeting at-risk patients for personalized interventional care.
AbstractList Oral cavity cancer (OCC) is associated with high morbidity and mortality rates when diagnosed at late stages. Early detection of increased risk provides an opportunity for implementing prevention strategies surrounding modifiable risk factors and screening to promote early detection and intervention. Historical evidence identified a gap in the training of primary care providers (PCPs) surrounding the examination of the oral cavity. The absence of clinically applicable analytical tools to identify patients with high-risk OCC phenotypes at point-of-care (POC) causes missed opportunities for implementing patient-specific interventional strategies. This study developed an OCC risk assessment tool prototype by applying machine learning (ML) approaches to a rich retrospectively collected data set abstracted from a clinical enterprise data warehouse. We compared the performance of six ML classifiers by applying the 10-fold cross-validation approach. Accuracy, recall, precision, specificity, area under the receiver operating characteristic curve, and recall-precision curves for the derived voting algorithm were: 78%, 64%, 88%, 92%, 0.83, and 0.81, respectively. The performance of two classifiers, multilayer perceptron and AdaBoost, closely mirrored the voting algorithm. Integration of the OCC risk assessment tool developed by clinical informatics application into an electronic health record as a clinical decision support tool can assist PCPs in targeting at-risk patients for personalized interventional care.Oral cavity cancer (OCC) is associated with high morbidity and mortality rates when diagnosed at late stages. Early detection of increased risk provides an opportunity for implementing prevention strategies surrounding modifiable risk factors and screening to promote early detection and intervention. Historical evidence identified a gap in the training of primary care providers (PCPs) surrounding the examination of the oral cavity. The absence of clinically applicable analytical tools to identify patients with high-risk OCC phenotypes at point-of-care (POC) causes missed opportunities for implementing patient-specific interventional strategies. This study developed an OCC risk assessment tool prototype by applying machine learning (ML) approaches to a rich retrospectively collected data set abstracted from a clinical enterprise data warehouse. We compared the performance of six ML classifiers by applying the 10-fold cross-validation approach. Accuracy, recall, precision, specificity, area under the receiver operating characteristic curve, and recall-precision curves for the derived voting algorithm were: 78%, 64%, 88%, 92%, 0.83, and 0.81, respectively. The performance of two classifiers, multilayer perceptron and AdaBoost, closely mirrored the voting algorithm. Integration of the OCC risk assessment tool developed by clinical informatics application into an electronic health record as a clinical decision support tool can assist PCPs in targeting at-risk patients for personalized interventional care.
Oral cavity cancer (OCC) is associated with high morbidity and mortality rates when diagnosed at late stages. Early detection of increased risk provides an opportunity for implementing prevention strategies surrounding modifiable risk factors and screening to promote early detection and intervention. Historical evidence identified a gap in the training of primary care providers (PCPs) surrounding the examination of the oral cavity. The absence of clinically applicable analytical tools to identify patients with high-risk OCC phenotypes at point-of-care (POC) causes missed opportunities for implementing patient-specific interventional strategies. This study developed an OCC risk assessment tool prototype by applying machine learning (ML) approaches to a rich retrospectively collected data set abstracted from a clinical enterprise data warehouse. We compared the performance of six ML classifiers by applying the 10-fold cross-validation approach. Accuracy, recall, precision, specificity, area under the receiver operating characteristic curve, and recall–precision curves for the derived voting algorithm were: 78%, 64%, 88%, 92%, 0.83, and 0.81, respectively. The performance of two classifiers, multilayer perceptron and AdaBoost, closely mirrored the voting algorithm. Integration of the OCC risk assessment tool developed by clinical informatics application into an electronic health record as a clinical decision support tool can assist PCPs in targeting at-risk patients for personalized interventional care.
Author Rostami, Reihaneh
Hegde, Harshad
Acharya, Amit
Shimpi, Neel
Glurich, Ingrid
Olson, Brent
AuthorAffiliation 1 Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; shimpi.neel@marshfieldresearch.org (N.S.); glurich.ingrid@marshfieldresearch.org (I.G.)
3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; hegdehb@gmail.com
2 Computer Science Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; reyhane.rostami@gmail.com
5 Advocate Aurora Health, Chicago, IL 60515, USA
4 Office of Research Analytics and Computing, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; olson.brent@marshfieldresearch.org
AuthorAffiliation_xml – name: 4 Office of Research Analytics and Computing, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; olson.brent@marshfieldresearch.org
– name: 5 Advocate Aurora Health, Chicago, IL 60515, USA
– name: 1 Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; shimpi.neel@marshfieldresearch.org (N.S.); glurich.ingrid@marshfieldresearch.org (I.G.)
– name: 2 Computer Science Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA; reyhane.rostami@gmail.com
– name: 3 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; hegdehb@gmail.com
Author_xml – sequence: 1
  givenname: Neel
  surname: Shimpi
  fullname: Shimpi, Neel
– sequence: 2
  givenname: Ingrid
  surname: Glurich
  fullname: Glurich, Ingrid
– sequence: 3
  givenname: Reihaneh
  orcidid: 0000-0002-5825-5407
  surname: Rostami
  fullname: Rostami, Reihaneh
– sequence: 4
  givenname: Harshad
  orcidid: 0000-0002-2411-565X
  surname: Hegde
  fullname: Hegde, Harshad
– sequence: 5
  givenname: Brent
  surname: Olson
  fullname: Olson, Brent
– sequence: 6
  givenname: Amit
  surname: Acharya
  fullname: Acharya, Amit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35455730$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2470759$$D View this record in Osti.gov
BookMark eNptkstvEzEQhy1UREvpiTuy4IIEC37tI5dKUaBQKVCEKFfL8Y4bh117sZ2VcucPr9O0VVrhy1jjb37z8nN04LwDhF5S8oHzCfm4GnrKiCAVFU_QESN1WQjBqoO9-yE6iXFF8mlKxiryDB3yUpRlzckR-vcJRuj80INLWLkW_1adbVWy3mFvsMLfvSvO3aiiHeE9ni2VDdG2gC-C6vBMjTZtsnEaAv5p4x88jRFivJH7EXzyaTMAvozWXeFvSi-tAzwHFdzWMR2G4LPzBXpqVBfh5NYeo8uzz79mX4v5xZfz2XReaMGrVNRm0RJogDIwtGIlI21jGi50Q2BRCc2MhqY1hghmKCxERVgLbQPcEEq5JvwYne50h_Wih1bnInMXcgi2V2EjvbLy4YuzS3nlRzkhnE2aMgu83gn4mKyM2ibQS-2dA50kE3Ue-SRDb2-zBP93DTHJ3kYNXacc-HWUrCoFa2gp6oy-eYSu_Dq4PIMtlVOSuhKZerVf9n29d1vMAN0BOvgYAxiZK7vZYe7CdpISuf0scu-z5Jh3j2LuZP9HXwOAWcDN
CitedBy_id crossref_primary_10_1186_s40537_023_00703_w
crossref_primary_10_3389_fdmed_2022_1005140
Cites_doi 10.1016/0168-9525(93)90209-Z
10.1016/j.imu.2019.100254
10.1016/j.procs.2016.04.224
10.1111/jphd.12392
10.3390/jpm11090832
10.7314/APJCP.2016.17.2.835
10.1002/cam4.84
10.1109/HIBIT.2010.5478895
10.7717/peerj.2482
10.12998/wjcc.v2.i12.866
10.3390/cancers13184600
10.1002/9780470725184
10.4103/0971-6866.132745
10.3233/THC-191642
10.3389/fdata.2020.00006
10.3233/THC-171127
10.3390/diagnostics12010203
10.1007/s10916-015-0241-3
10.3322/caac.21660
10.1007/s13187-016-1084-4
10.1038/sj.bdj.4808932
10.1038/s41746-021-00427-2
10.4103/0971-5851.203510
10.1039/C4MB00659C
10.1155/2015/234191
10.1016/j.adaj.2018.05.030
10.3402/jom.v7.28223
10.1007/978-3-319-98298-4
10.1111/odi.14123
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
OIOZB
OTOTI
5PM
DOI 10.3390/jpm12040614
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4426
ExternalDocumentID PMC9032985
2470759
35455730
10_3390_jpm12040614
Genre Journal Article
GrantInformation_xml – fundername: Family Health Center of Marshfield.Inc
  grantid: Not applicable
– fundername: Marshfield Clinic Research Institute
  grantid: not applicable
– fundername: Clinical and Translational Science Award (CTSA) program, through the NIH National Center for Advancing Translational Sciences (NCATS), grant UL1TR000427
  grantid: UL1TR000427
– fundername: Delta Dental of Wisconsin
  grantid: not applicable
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EMOBN
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
GROUPED_DOAJ
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c436t-7fbd0e8e12ef162520d8f834c80eb64c2fce8dff042f1eb4602ded8e3f0113c03
IEDL.DBID M7P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786311900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-4426
IngestDate Tue Nov 04 02:01:36 EST 2025
Mon Apr 07 02:20:32 EDT 2025
Thu Oct 02 11:25:01 EDT 2025
Fri Jul 25 12:02:00 EDT 2025
Thu Jan 02 22:54:29 EST 2025
Tue Nov 18 20:02:17 EST 2025
Sat Nov 29 07:19:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords risk assessment
precision medicine
machine learning
patient care management
oral cancer
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-7fbd0e8e12ef162520d8f834c80eb64c2fce8dff042f1eb4602ded8e3f0113c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
National Institutes of Health (NIH)
AC02-05CH11231; UL1TR000427
ORCID 0000-0002-5825-5407
0000-0002-2411-565X
000000022411565X
0000000258255407
OpenAccessLink https://www.proquest.com/docview/2652980764?pq-origsite=%requestingapplication%
PMID 35455730
PQID 2652980764
PQPubID 2032376
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9032985
osti_scitechconnect_2470759
proquest_miscellaneous_2654281547
proquest_journals_2652980764
pubmed_primary_35455730
crossref_citationtrail_10_3390_jpm12040614
crossref_primary_10_3390_jpm12040614
PublicationCentury 2000
PublicationDate 20220411
PublicationDateYYYYMMDD 2022-04-11
PublicationDate_xml – month: 4
  year: 2022
  text: 20220411
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
– name: United States
PublicationTitle Journal of personalized medicine
PublicationTitleAlternate J Pers Med
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yardimci (ref_7) 2014; 2
Tseng (ref_38) 2015; 39
ref_36
ref_35
ref_12
Nycz (ref_15) 2020; 80
ref_34
ref_33
ref_32
Shimpi (ref_17) 2020; 28
Rosma (ref_39) 2010; 3
Sharma (ref_29) 2012; 302
Speight (ref_31) 1995; 179
ref_19
Glurich (ref_5) 2015; 7
ref_18
Podolsky (ref_26) 2016; 17
ref_37
Jurel (ref_10) 2014; 20
Asri (ref_22) 2016; 83
Atchison (ref_14) 2018; 149
Hegde (ref_16) 2019; 17
Sharma (ref_30) 2015; 2015
Hegde (ref_42) 2018; 26
Nartowt (ref_25) 2020; 3
Vogelstein (ref_11) 1993; 9
Wulczyn (ref_24) 2021; 4
ref_23
ref_21
Sung (ref_3) 2021; 71
ref_41
ref_1
Tan (ref_40) 2016; 4
ref_2
Cai (ref_27) 2015; 11
ref_28
Chaturvedi (ref_9) 2017; 38
Shimpi (ref_13) 2018; 33
ref_8
Niu (ref_20) 2013; 2
ref_4
ref_6
References_xml – ident: ref_28
– volume: 9
  start-page: 138
  year: 1993
  ident: ref_11
  article-title: The multistep nature of cancer
  publication-title: Trends Genet.
  doi: 10.1016/0168-9525(93)90209-Z
– volume: 17
  start-page: 100254
  year: 2019
  ident: ref_16
  article-title: Development of non-invasive diabetes risk prediction models as decision support tools designed for application in the dental clinical environment
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100254
– volume: 83
  start-page: 1064
  year: 2016
  ident: ref_22
  article-title: Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.04.224
– volume: 3
  start-page: 10
  year: 2010
  ident: ref_39
  article-title: The use of artificial intelligence to identify people at risk of oral cancer: Empirical evidence in Malaysian university
  publication-title: Int. J. Sci. Res. Educ.
– volume: 80
  start-page: S71
  year: 2020
  ident: ref_15
  article-title: Positioning operations in the dental safety net to enhance value-based care delivery in an integrated health-care setting
  publication-title: J. Public Health Dent.
  doi: 10.1111/jphd.12392
– ident: ref_18
  doi: 10.3390/jpm11090832
– volume: 17
  start-page: 835
  year: 2016
  ident: ref_26
  article-title: Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels
  publication-title: Asian Pac. J. Cancer Prev.
  doi: 10.7314/APJCP.2016.17.2.835
– ident: ref_34
– volume: 2
  start-page: 403
  year: 2013
  ident: ref_20
  article-title: Cancer survival disparities by health insurance status
  publication-title: Cancer Med.
  doi: 10.1002/cam4.84
– ident: ref_23
  doi: 10.1109/HIBIT.2010.5478895
– volume: 4
  start-page: e2482
  year: 2016
  ident: ref_40
  article-title: A genetic programming approach to oral cancer prognosis
  publication-title: PeerJ
  doi: 10.7717/peerj.2482
– volume: 2
  start-page: 866
  year: 2014
  ident: ref_7
  article-title: Precancerous lesions of oral mucosa
  publication-title: World J. Clin. Cases
  doi: 10.12998/wjcc.v2.i12.866
– ident: ref_19
  doi: 10.3390/cancers13184600
– ident: ref_35
  doi: 10.1002/9780470725184
– volume: 20
  start-page: 4
  year: 2014
  ident: ref_10
  article-title: Genes and oral cancer
  publication-title: Indian J. Hum. Genet.
  doi: 10.4103/0971-6866.132745
– ident: ref_37
– ident: ref_1
– volume: 28
  start-page: 143
  year: 2020
  ident: ref_17
  article-title: Development of a periodontitis risk assessment model for primary care providers in an interdisciplinary setting
  publication-title: Technol. Health Care
  doi: 10.3233/THC-191642
– volume: 3
  start-page: 6
  year: 2020
  ident: ref_25
  article-title: Robust Machine Learning for Colorectal Cancer Risk Prediction and Stratification
  publication-title: Front. Big Data
  doi: 10.3389/fdata.2020.00006
– volume: 26
  start-page: 445
  year: 2018
  ident: ref_42
  article-title: Tobacco use status from clinical notes using Natural Language Processing and rule based algorithm
  publication-title: Technol. Health Care
  doi: 10.3233/THC-171127
– ident: ref_21
  doi: 10.3390/diagnostics12010203
– volume: 39
  start-page: 59
  year: 2015
  ident: ref_38
  article-title: The Application of Data Mining Techniques to Oral Cancer Prognosis
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0241-3
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_3
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 33
  start-page: 359
  year: 2018
  ident: ref_13
  article-title: Knowledgeability, Attitude and Behavior of Primary Care Providers Towards Oral Cancer: A Pilot Study
  publication-title: J. Cancer Educ.
  doi: 10.1007/s13187-016-1084-4
– ident: ref_6
– ident: ref_4
– ident: ref_33
– ident: ref_2
– volume: 179
  start-page: 382
  year: 1995
  ident: ref_31
  article-title: The use of artificial intelligence to identify people at risk of oral cancer and precancer
  publication-title: Br. Dent. J.
  doi: 10.1038/sj.bdj.4808932
– ident: ref_12
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_24
  article-title: Interpretable survival prediction for colorectal cancer using deep learning
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-021-00427-2
– volume: 38
  start-page: 44
  year: 2017
  ident: ref_9
  article-title: The role of chronic mucosal trauma in oral cancer: A review of literature
  publication-title: Indian J. Med Paediatr. Oncol.
  doi: 10.4103/0971-5851.203510
– volume: 11
  start-page: 791
  year: 2015
  ident: ref_27
  article-title: Classification of lung cancer using ensemble-based feature selection and machine learning methods
  publication-title: Mol. BioSyst.
  doi: 10.1039/C4MB00659C
– ident: ref_41
– volume: 2015
  start-page: 234191
  year: 2015
  ident: ref_30
  article-title: Usage of Probabilistic and General Regression Neural Network for Early Detection and Prevention of Oral Cancer
  publication-title: Sci. World, J.
  doi: 10.1155/2015/234191
– volume: 149
  start-page: 850
  year: 2018
  ident: ref_14
  article-title: Bridging the dental-medical divide: Case studies integrating oral health care and primary care
  publication-title: J. Am. Dent. Assoc.
  doi: 10.1016/j.adaj.2018.05.030
– volume: 7
  start-page: 28223
  year: 2015
  ident: ref_5
  article-title: Progress in oral personalized medicine: Contribution of ‘omics’
  publication-title: J. Oral Microbiol.
  doi: 10.3402/jom.v7.28223
– ident: ref_32
  doi: 10.1007/978-3-319-98298-4
– ident: ref_36
– volume: 302
  start-page: 302
  year: 2012
  ident: ref_29
  article-title: Framework for early detection and prevention of oral cancer using data mining
  publication-title: Int. J. Adv. Eng. Technol.
– ident: ref_8
  doi: 10.1111/odi.14123
SSID ssj0000852260
Score 2.1999016
Snippet Oral cavity cancer (OCC) is associated with high morbidity and mortality rates when diagnosed at late stages. Early detection of increased risk provides an...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 614
SubjectTerms 60 APPLIED LIFE SCIENCES
Alcohol
Algorithms
Cancer therapies
Clinics
Data mining
Data models
Data warehouses
Datasets
Electronic medical records
Head & neck cancer
Hispanic Americans
Informatics
Learning algorithms
Machine learning
Morbidity
Mortality
Oral cancer
Oral carcinoma
Oral cavity
patient care management
Patients
Phenotypes
Precision medicine
Primary care
Risk assessment
Risk factors
Tobacco
Tumors
Title Development and Validation of a Non-Invasive, Chairside Oral Cavity Cancer Risk Assessment Prototype Using Machine Learning Approach
URI https://www.ncbi.nlm.nih.gov/pubmed/35455730
https://www.proquest.com/docview/2652980764
https://www.proquest.com/docview/2654281547
https://www.osti.gov/servlets/purl/2470759
https://pubmed.ncbi.nlm.nih.gov/PMC9032985
Volume 12
WOSCitedRecordID wos000786311900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iHUK8MG6DsFEZaU-IaIntJM4T6qpNTKIlmmAqT1HiCyuXpLTZfgE_nOPEDS2aeOEpiWwplo59znfsz98BOCoY44j6MTsRkfG5KUs_Varw4wKDQajSuGxJNJfvk-lUzGZp5jbcVo5WufaJraNWtbR75Mc0jmgqMOvmbxc_fVs1yp6uuhIaO7BrVRJoS93L-j0WhBOILoLuWh7D7P746-JHSAMbxPhWIBrUuKBuA5l_cyU3gs_Z3v8O-yE8cLCTjLp58gju6Oox3Ju4g_Un8GuDPESKSpFLxOdduSVSG1KQaV3559VNYdnub8j4yh4DzZUmH3C0ZFzYChT4wBm0JBfz1Tcy6hU_Sbasm9pu9ZKWn0AmLX9TEyft-oWMnK75U_h0dvpx_M53BRp8yVnc-IkpVaCFDqk2ISZSNFDCCMalCHQZc0mN1EIZg47BhLrkcUCVVkIzg16FyYDtw6CqK_0cSBEbnpoiUtq-pGWJodUwo2XKGWOl8uD12lq5dOrltojG9xyzGGvafMO0Hhz1nRedaMft3Q6s2XPEGlYwV1pmkWxyyhPEUakHh2uL5m5dr_I_5vTgVd-MK9IesxSVrq_bPpjTITRNPHjWTZ5-FAwBa4RO1YNka1r1Haza93ZLNb9qVb_TgOGvoxf_HtYB3Kf2goZVowwPYdAsr_VLuCtvmvlqOYSdZCaGsHtyOs0uhu1iwa_sfJJ9_g2EmyF8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBQEX3o_QAkYqF9Soie28DgitFqquurusUKl6C44fdHkky25axJ3fw29knBe7qOLWA6dEspVEzjeeb-zPMwDbgjGOrB-jkzgwLjdZ5iZKCTcU6Ax8lYRZJaI5GkWTSXx8nEw34Fd7FsbKKts5sZqoVSHtGvkuDQOaxBh181fzb66tGmV3V9sSGjUsDvSP7xiyLV8OX-P_fU7p3pvDwb7bVBVwJWdh6UYmU56OtU-18ZH9U0_FJmZcxp7OQi6pkTpWxiCaja8zHnpUaRVrZtAUmPQYPvcSXEYaQWklFZx2azpIX5DNePUxQMYSb_fT_KtPPes0-Zrj6xVowOeR2r-1mSvObu_m_zZMt-BGQ6tJv7aD27Ch8ztwddwIB-7CzxVxFBG5IkcYf9TlpEhhiCCTIneH-Zmwav4dMjix21wzpclbHB0yELbCBl7QQhbk3Wz5mfS7jKZkuijKwi5lk0p_QcaVPlWTJnXtR9Jv8rbfg_cXMgb3oZcXuX4IRISGJ0YEStubJMuQOhhmtEw4YyxTDrxo0ZHKJju7LRLyJcUozUIpXYGSA9td53mdlOT8bpsWZilyKZsQWFrllCxTyiPkiYkDWy2C0mbeWqZ_4OPAs64ZZxy7jSRyXZxWfTBmReodOfCgBmv3FQwJeYBOw4FoDcZdB5vNfL0ln51UWc0Tj-Grg0f__qyncG3_cDxKR8PJwSZcp_Ywis286W9Br1yc6sdwRZ6Vs-XiSWWaBD5cNMh_A0PPe_k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBVVceD9CCxipXBDRJrbzOiC02rJi1XZZIah6C44f7RZIlt20iDu_il_HOC92UcWtB06JZCuJnG8839ifZwB2BGMcWT9GJ3FgXG6yzE2UEm4o0Bn4KgmzSkRzuB9NJvHRUTLdgF_tWRgrq2znxGqiVoW0a-R9GgY0iTHq5n3TyCKmu6PX82-urSBld1rbcho1RPb0j-8Yvi1fjXfxXz-ndPTmw_Ct21QYcCVnYelGJlOejrVPtfExEqCeik3MuIw9nYVcUiN1rIxBZBtfZzz0qNIq1sygWTDpMXzuFbgaYQOvZIPTbn0HqQwyG68-EshY4vVP51996lkHytecYK9AY76I4P6t01xxfKOb__OQ3YIbDd0mg9o-bsOGzu_A5kEjKLgLP1dEU0TkihxiXFKXmSKFIYJMitwd5-fCqvxfkuGJ3f6aKU3e4UiRobCVN_CClrMg72fLz2TQZTol00VRFnaJm1S6DHJQ6VY1aVLaHpNBk8_9Hny8lDG4D728yPVDICI0PDEiUNreJFmGlMIwo2XCGWOZcuBFi5RUNlnbbfGQLylGbxZW6QqsHNjpOs_rZCUXd9uykEuRY9lEwdIqqmSZUh4hf0wc2G7RlDbz2TL9AyUHnnXNOBPZ7SWR6-Ks6oOxLFLyyIEHNXC7r2BI1AN0Jg5Ea5DuOtgs5-st-eykynaeeAxfHTz692c9hU3Edro_nuxtwXVqz6jYhJz-NvTKxZl-DNfkeTlbLp5UVkrg02Vj_DcD-YS_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Validation+of+a+Non-Invasive%2C+Chairside+Oral+Cavity+Cancer+Risk+Assessment+Prototype+Using+Machine+Learning+Approach&rft.jtitle=Journal+of+personalized+medicine&rft.au=Shimpi%2C+Neel&rft.au=Glurich%2C+Ingrid&rft.au=Rostami%2C+Reihaneh&rft.au=Hegde%2C+Harshad&rft.date=2022-04-11&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fjpm12040614&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon