A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports
Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover...
Gespeichert in:
| Veröffentlicht in: | Journal of the American Medical Informatics Association : JAMIA Jg. 19; H. 1; S. 79 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
01.01.2012
|
| Schlagworte: | |
| ISSN: | 1527-974X, 1527-974X |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting.
We identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records.
We identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates.
Our method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events. |
|---|---|
| AbstractList | Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting.OBJECTIVEAdverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting.We identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records.MATERIALS AND METHODSWe identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records.We identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates.RESULTSWe identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates.Our method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events.CONCLUSIONOur method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events. Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting. We identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records. We identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates. Our method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events. |
| Author | Fernald, Guy Haskin Altman, Russ B Tatonetti, Nicholas P |
| Author_xml | – sequence: 1 givenname: Nicholas P surname: Tatonetti fullname: Tatonetti, Nicholas P organization: Biomedical Informatics Training Program, Stanford University, Stanford, California, USA – sequence: 2 givenname: Guy Haskin surname: Fernald fullname: Fernald, Guy Haskin – sequence: 3 givenname: Russ B surname: Altman fullname: Altman, Russ B |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21676938$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtrwzAQhEVJaR7tLygU3Xpyq5VkOT6G0BcEesmhN6NYq0TBllNJDuTf121T6GV3P5gZmJ2Ske88EnIL7AFAqEfdOr33TcYZQMYY4yAvyARyXmRlIT9G_-4xmca4ZwwUF_kVGXNQhSrFfELcgvruiA2Nbut1Qw0mrJPrPNXNtgsu7Vpqu0CdQZ-cPTm_pTtnBqIm9Nvse1DnEwb9Y4sDUG2OGCJSPA4mGvDQhRSvyaXVTcSb856R9fPTevmard5f3paLVVZLoVJWGIbFfKikNoIrkAYBaluz0pbWFmCZhJrVSuRc51garoXKda7FgIWRcz4j97-xh9B99hhT1bpYY9Noj10fqxKgFEoyOSjvzsp-06KpDsG1Opyqv-fwL0uHa88 |
| CitedBy_id | crossref_primary_10_1016_j_artmed_2025_103202 crossref_primary_10_1038_srep34318 crossref_primary_10_1016_j_jacc_2016_08_012 crossref_primary_10_1186_s13321_022_00659_8 crossref_primary_10_1016_j_disopt_2021_100670 crossref_primary_10_1109_JBHI_2018_2874533 crossref_primary_10_1136_amiajnl_2012_001603 crossref_primary_10_2196_18417 crossref_primary_10_1016_j_clinthera_2018_10_021 crossref_primary_10_1016_j_knosys_2020_105978 crossref_primary_10_1186_s12859_016_1220_5 crossref_primary_10_1038_sdata_2016_26 crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_1371_journal_pcbi_1011989 crossref_primary_10_1371_journal_pone_0058321 crossref_primary_10_1111_jep_12184 crossref_primary_10_1136_amiajnl_2014_002767 crossref_primary_10_1016_j_jbi_2015_12_003 crossref_primary_10_1093_ijnp_pyu078 crossref_primary_10_1111_bcp_14690 crossref_primary_10_1136_amiajnl_2013_001612 crossref_primary_10_1136_amiajnl_2013_002429 crossref_primary_10_1016_j_clinthera_2016_11_009 crossref_primary_10_1371_journal_pone_0173548 crossref_primary_10_1080_17512433_2024_2343875 crossref_primary_10_1002_jcph_151 crossref_primary_10_1093_jamia_ocaa335 crossref_primary_10_1016_j_compbiomed_2024_109496 crossref_primary_10_1016_j_artmed_2024_103029 crossref_primary_10_1136_amiajnl_2012_000935 crossref_primary_10_1002_psp4_12861 crossref_primary_10_1007_s11042_017_5162_3 crossref_primary_10_1371_journal_pone_0144263 crossref_primary_10_1016_j_tips_2013_01_006 crossref_primary_10_1155_2020_1747413 crossref_primary_10_1007_s10729_021_09584_y crossref_primary_10_1007_s40264_016_0393_1 crossref_primary_10_1109_TCBB_2020_2988018 crossref_primary_10_3389_fphar_2021_814858 crossref_primary_10_1111_cts_70120 crossref_primary_10_1177_1060028014539141 crossref_primary_10_1016_j_imu_2021_100699 crossref_primary_10_1186_s12859_021_04241_1 crossref_primary_10_4018_IJSIR_2020010103 crossref_primary_10_1093_nar_gku433 crossref_primary_10_1007_s10115_016_0980_6 crossref_primary_10_1371_journal_pone_0129974 crossref_primary_10_3389_fphar_2021_794205 crossref_primary_10_1007_s12553_020_00495_6 crossref_primary_10_1038_srep12339 crossref_primary_10_1109_TKDE_2020_2978055 crossref_primary_10_1016_j_tips_2019_07_005 crossref_primary_10_1002_sim_10137 crossref_primary_10_3109_17538157_2015_1064427 crossref_primary_10_1093_bib_bbad235 crossref_primary_10_1177_1074248420984082 crossref_primary_10_1002_psp4_59 crossref_primary_10_1016_j_eswa_2022_119312 crossref_primary_10_1007_s41666_018_0032_y crossref_primary_10_1007_s40264_015_0352_2 crossref_primary_10_1016_j_jacc_2016_07_761 crossref_primary_10_1186_s12859_017_1546_7 crossref_primary_10_3389_fphar_2024_1322587 crossref_primary_10_1136_amiajnl_2014_NovEditorial crossref_primary_10_1002_sim_8490 crossref_primary_10_1007_s40264_015_0278_8 crossref_primary_10_1038_nprot_2014_151 crossref_primary_10_1016_j_artmed_2017_01_004 crossref_primary_10_1186_s12859_023_05572_x crossref_primary_10_1038_psp_2013_52 crossref_primary_10_1007_s40264_015_0314_8 crossref_primary_10_1080_17512433_2016_1232619 crossref_primary_10_1007_s40264_015_0311_y crossref_primary_10_1002_cpt_3258 crossref_primary_10_1136_amiajnl_2012_001234 crossref_primary_10_1007_s42979_021_00670_0 crossref_primary_10_1016_j_neucom_2019_02_017 crossref_primary_10_1109_JBHI_2020_3048059 crossref_primary_10_1371_journal_pone_0300268 crossref_primary_10_1007_s12539_024_00684_1 crossref_primary_10_1007_s11704_024_31063_0 crossref_primary_10_2196_11016 crossref_primary_10_1007_s40264_013_0018_x crossref_primary_10_1016_j_compbiolchem_2023_108001 crossref_primary_10_1111_jcpt_12786 crossref_primary_10_1371_journal_pone_0070585 crossref_primary_10_1016_j_jbi_2020_103603 crossref_primary_10_1109_TPAMI_2021_3135841 crossref_primary_10_1016_j_jbi_2017_04_021 crossref_primary_10_1136_amiajnl_2012_001482 crossref_primary_10_1038_s41746_019_0141_x crossref_primary_10_1038_clpt_2013_168 crossref_primary_10_1136_amiajnl_2013_002512 crossref_primary_10_1186_s12859_019_3013_0 crossref_primary_10_1002_qub2_66 crossref_primary_10_1016_j_jbi_2016_02_009 crossref_primary_10_1111_bcp_12622 crossref_primary_10_1186_s12859_016_1415_9 crossref_primary_10_1016_j_ejps_2016_06_009 crossref_primary_10_1109_JBHI_2019_2932740 crossref_primary_10_1038_msb_2012_26 crossref_primary_10_1186_s12859_018_2123_4 crossref_primary_10_1177_1177932220921350 crossref_primary_10_2174_0115748936278299231213045441 crossref_primary_10_1016_j_ailsci_2021_100005 crossref_primary_10_1186_s12859_018_2520_8 crossref_primary_10_1080_07391102_2016_1138142 crossref_primary_10_1136_amiajnl_2014_002669 crossref_primary_10_1016_j_jsps_2020_09_017 crossref_primary_10_1177_1535370218813974 crossref_primary_10_1186_s12859_023_05212_4 crossref_primary_10_1186_s12859_019_3214_6 crossref_primary_10_1109_TFUZZ_2022_3173379 crossref_primary_10_1016_j_artmed_2018_07_002 crossref_primary_10_1371_journal_pone_0154425 crossref_primary_10_1161_CIRCOUTCOMES_116_003055 crossref_primary_10_1093_bib_bbz157 crossref_primary_10_1093_bib_bbx010 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1136/amiajnl-2011-000214 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1527-974X |
| ExternalDocumentID | 21676938 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NLM NIH HHS grantid: T15 LM007033 – fundername: NIGMS NIH HHS grantid: R24GM61374 – fundername: NIGMS NIH HHS grantid: R24 GM061374 – fundername: NLM NIH HHS grantid: LM05652 – fundername: NLM NIH HHS grantid: R01 LM005652 – fundername: NLM NIH HHS grantid: LM007033 – fundername: NIGMS NIH HHS grantid: R01 GM102365 |
| GroupedDBID | --- --K .DC .GJ 0R~ 18M 1B1 1TH 29L 2WC 4.4 48X 53G 5GY 5RE 5WD 6PF 7RV 7X7 7~T 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8FW AABZA AACZT AAEDT AAJQQ AALRI AAMVS AAOGV AAPGJ AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAWTL AAXUO ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABNHQ ABOCM ABPQP ABPTD ABQLI ABQNK ABSMQ ABUWG ABVGC ABWST ABWVN ABXVV ACFRR ACGFO ACGFS ACGOD ACHQT ACRPL ACUFI ACUTJ ACVCV ACYHN ACZBC ADBBV ADGZP ADHKW ADHZD ADIPN ADJOM ADMTO ADMUD ADNBA ADNMO ADQBN ADRTK ADVEK ADYVW AEGPL AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFQV AFFZL AFIYH AFKRA AFOFC AFXAL AFYAG AGINJ AGKRT AGMDO AGORE AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AJBYB AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APJGH AQDSO AQKUS AQUVI ARAPS ATGXG AVNTJ AVWKF AXUDD AYCSE AZQEC BAWUL BAYMD BCRHZ BENPR BEYMZ BGLVJ BHONS BKEYQ BPHCQ BTRTY BVRKM BVXVI BZKNY C1A C45 CCPQU CDBKE CGR CS3 CUY CVF DAKXR DIK DILTD DU5 DWQXO E3Z EBD EBS ECM EIF EIHJH EJD EMOBN ENERS EO8 EX3 F5P FDB FECEO FLUFQ FOEOM FOTVD FQBLK FYUFA G-Q GAUVT GJXCC GNUQQ GX1 H13 HAR HCIFZ HMCUK IH2 IHE J21 JXSIZ K6V K7- KBUDW KOP KSI KSN LSO M0T M1P M2P M2Q M41 MBLQV MHKGH NAPCQ NOMLY NOYVH NPM NQ- NU- NVLIB O9- OAUYM OAWHX OBFPC OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P62 PAFKI PCD PEELM PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q5Y R53 RIG ROL ROX ROZ RPM RPZ RUSNO RWL RXO S0X SSZ SV3 TAE TEORI TJX TMA UKHRP WOQ WOW YAYTL YHZ YKOAZ YXANX ZGI ~S- 77I 7X8 |
| ID | FETCH-LOGICAL-c436t-7d0e780116b32614de11cfc09f9ff71f041c0c6352a5e9d2a365a5a32a57d482 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 159 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298848100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1527-974X |
| IngestDate | Sun Nov 09 10:16:30 EST 2025 Mon Jul 21 06:06:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-7d0e780116b32614de11cfc09f9ff71f041c0c6352a5e9d2a365a5a32a57d482 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/jamia/article-pdf/19/1/79/17374150/19-1-79.pdf |
| PMID | 21676938 |
| PQID | 911936404 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_911936404 pubmed_primary_21676938 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-01-01 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of the American Medical Informatics Association : JAMIA |
| PublicationTitleAlternate | J Am Med Inform Assoc |
| PublicationYear | 2012 |
| References | 23876381 - J Am Med Inform Assoc. 2013 May;20(3):591. doi: 10.1136/amiajnl-2012-001603. 23268484 - J Am Med Inform Assoc. 2013 May;20(3):590. doi: 10.1136/amiajnl-2012-001234. |
| References_xml | – reference: 23268484 - J Am Med Inform Assoc. 2013 May;20(3):590. doi: 10.1136/amiajnl-2012-001234. – reference: 23876381 - J Am Med Inform Assoc. 2013 May;20(3):591. doi: 10.1136/amiajnl-2012-001603. |
| SSID | ssj0016235 |
| Score | 2.447677 |
| Snippet | Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 79 |
| SubjectTerms | Adverse Drug Reaction Reporting Systems Algorithms Drug Interactions Drug-Related Side Effects and Adverse Reactions - diagnosis Drug-Related Side Effects and Adverse Reactions - epidemiology False Positive Reactions Humans Logistic Models ROC Curve United States United States Food and Drug Administration |
| Title | A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21676938 https://www.proquest.com/docview/911936404 |
| Volume | 19 |
| WOSCitedRecordID | wos000298848100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAIsTC-1Fe8sBqNXYejidUISoGWnXokC1ybacNKklp0v5-zk4KE2JgsWQpiSL7zv583_k7hB61sMEEqgjVhsMBRURkqlhMpBYSzs88MpnTmX3jo1GcJGLc5uZUbVrldk10C7UulY2R98AphR8FXvC0_CS2aJQlV9sKGruo4wOSsX7Jkx8SAXb20MmlMk4ANiet6BD1o578yOV7sSBNhNAJh_0OMd1WMzj-50-eoKMWY-J-YxSnaMcUZ-hg2LLo5yjv46LcmAW2yRvwoDa1S8gqsFzM4Hv1_AMDlsW5u8TrLkLhuZUaKbBerWfENtjqTKyaWxEVdLC0lZ0rg50iFG6piAs0GbxMnl9JW3KBqMCPasK1Z3hsyZkp4DoaaEOpypQnMhvbpZkXUOUpAClMhkZoJv0olKH0oct1ELNLtFeUhblGWAplpQAD39Vel0wyQAuZ4DrjkaaMdhHeDmEKFm1pClmYcl2l34PYRVfNNKTLRnkjZdTVboxv_n75Fh3C5LImWnKHOhl4s7lH-2pT59XqwVkKtKPx8AuReMkM |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+signal+detection+algorithm+for+identifying+hidden+drug-drug+interactions+in+adverse+event+reports&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Tatonetti%2C+Nicholas+P&rft.au=Fernald%2C+Guy+Haskin&rft.au=Altman%2C+Russ+B&rft.date=2012-01-01&rft.eissn=1527-974X&rft.volume=19&rft.issue=1&rft.spage=79&rft_id=info:doi/10.1136%2Famiajnl-2011-000214&rft_id=info%3Apmid%2F21676938&rft_id=info%3Apmid%2F21676938&rft.externalDocID=21676938 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon |