A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports

Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Medical Informatics Association : JAMIA Jg. 19; H. 1; S. 79
Hauptverfasser: Tatonetti, Nicholas P, Fernald, Guy Haskin, Altman, Russ B
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.01.2012
Schlagworte:
ISSN:1527-974X, 1527-974X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting. We identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records. We identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates. Our method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events.
AbstractList Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting.OBJECTIVEAdverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting.We identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records.MATERIALS AND METHODSWe identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records.We identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates.RESULTSWe identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates.Our method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events.CONCLUSIONOur method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events.
Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting. We identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records. We identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates. Our method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events.
Author Fernald, Guy Haskin
Altman, Russ B
Tatonetti, Nicholas P
Author_xml – sequence: 1
  givenname: Nicholas P
  surname: Tatonetti
  fullname: Tatonetti, Nicholas P
  organization: Biomedical Informatics Training Program, Stanford University, Stanford, California, USA
– sequence: 2
  givenname: Guy Haskin
  surname: Fernald
  fullname: Fernald, Guy Haskin
– sequence: 3
  givenname: Russ B
  surname: Altman
  fullname: Altman, Russ B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21676938$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtrwzAQhEVJaR7tLygU3Xpyq5VkOT6G0BcEesmhN6NYq0TBllNJDuTf121T6GV3P5gZmJ2Ske88EnIL7AFAqEfdOr33TcYZQMYY4yAvyARyXmRlIT9G_-4xmca4ZwwUF_kVGXNQhSrFfELcgvruiA2Nbut1Qw0mrJPrPNXNtgsu7Vpqu0CdQZ-cPTm_pTtnBqIm9Nvse1DnEwb9Y4sDUG2OGCJSPA4mGvDQhRSvyaXVTcSb856R9fPTevmard5f3paLVVZLoVJWGIbFfKikNoIrkAYBaluz0pbWFmCZhJrVSuRc51garoXKda7FgIWRcz4j97-xh9B99hhT1bpYY9Noj10fqxKgFEoyOSjvzsp-06KpDsG1Opyqv-fwL0uHa88
CitedBy_id crossref_primary_10_1016_j_artmed_2025_103202
crossref_primary_10_1038_srep34318
crossref_primary_10_1016_j_jacc_2016_08_012
crossref_primary_10_1186_s13321_022_00659_8
crossref_primary_10_1016_j_disopt_2021_100670
crossref_primary_10_1109_JBHI_2018_2874533
crossref_primary_10_1136_amiajnl_2012_001603
crossref_primary_10_2196_18417
crossref_primary_10_1016_j_clinthera_2018_10_021
crossref_primary_10_1016_j_knosys_2020_105978
crossref_primary_10_1186_s12859_016_1220_5
crossref_primary_10_1038_sdata_2016_26
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_1371_journal_pcbi_1011989
crossref_primary_10_1371_journal_pone_0058321
crossref_primary_10_1111_jep_12184
crossref_primary_10_1136_amiajnl_2014_002767
crossref_primary_10_1016_j_jbi_2015_12_003
crossref_primary_10_1093_ijnp_pyu078
crossref_primary_10_1111_bcp_14690
crossref_primary_10_1136_amiajnl_2013_001612
crossref_primary_10_1136_amiajnl_2013_002429
crossref_primary_10_1016_j_clinthera_2016_11_009
crossref_primary_10_1371_journal_pone_0173548
crossref_primary_10_1080_17512433_2024_2343875
crossref_primary_10_1002_jcph_151
crossref_primary_10_1093_jamia_ocaa335
crossref_primary_10_1016_j_compbiomed_2024_109496
crossref_primary_10_1016_j_artmed_2024_103029
crossref_primary_10_1136_amiajnl_2012_000935
crossref_primary_10_1002_psp4_12861
crossref_primary_10_1007_s11042_017_5162_3
crossref_primary_10_1371_journal_pone_0144263
crossref_primary_10_1016_j_tips_2013_01_006
crossref_primary_10_1155_2020_1747413
crossref_primary_10_1007_s10729_021_09584_y
crossref_primary_10_1007_s40264_016_0393_1
crossref_primary_10_1109_TCBB_2020_2988018
crossref_primary_10_3389_fphar_2021_814858
crossref_primary_10_1111_cts_70120
crossref_primary_10_1177_1060028014539141
crossref_primary_10_1016_j_imu_2021_100699
crossref_primary_10_1186_s12859_021_04241_1
crossref_primary_10_4018_IJSIR_2020010103
crossref_primary_10_1093_nar_gku433
crossref_primary_10_1007_s10115_016_0980_6
crossref_primary_10_1371_journal_pone_0129974
crossref_primary_10_3389_fphar_2021_794205
crossref_primary_10_1007_s12553_020_00495_6
crossref_primary_10_1038_srep12339
crossref_primary_10_1109_TKDE_2020_2978055
crossref_primary_10_1016_j_tips_2019_07_005
crossref_primary_10_1002_sim_10137
crossref_primary_10_3109_17538157_2015_1064427
crossref_primary_10_1093_bib_bbad235
crossref_primary_10_1177_1074248420984082
crossref_primary_10_1002_psp4_59
crossref_primary_10_1016_j_eswa_2022_119312
crossref_primary_10_1007_s41666_018_0032_y
crossref_primary_10_1007_s40264_015_0352_2
crossref_primary_10_1016_j_jacc_2016_07_761
crossref_primary_10_1186_s12859_017_1546_7
crossref_primary_10_3389_fphar_2024_1322587
crossref_primary_10_1136_amiajnl_2014_NovEditorial
crossref_primary_10_1002_sim_8490
crossref_primary_10_1007_s40264_015_0278_8
crossref_primary_10_1038_nprot_2014_151
crossref_primary_10_1016_j_artmed_2017_01_004
crossref_primary_10_1186_s12859_023_05572_x
crossref_primary_10_1038_psp_2013_52
crossref_primary_10_1007_s40264_015_0314_8
crossref_primary_10_1080_17512433_2016_1232619
crossref_primary_10_1007_s40264_015_0311_y
crossref_primary_10_1002_cpt_3258
crossref_primary_10_1136_amiajnl_2012_001234
crossref_primary_10_1007_s42979_021_00670_0
crossref_primary_10_1016_j_neucom_2019_02_017
crossref_primary_10_1109_JBHI_2020_3048059
crossref_primary_10_1371_journal_pone_0300268
crossref_primary_10_1007_s12539_024_00684_1
crossref_primary_10_1007_s11704_024_31063_0
crossref_primary_10_2196_11016
crossref_primary_10_1007_s40264_013_0018_x
crossref_primary_10_1016_j_compbiolchem_2023_108001
crossref_primary_10_1111_jcpt_12786
crossref_primary_10_1371_journal_pone_0070585
crossref_primary_10_1016_j_jbi_2020_103603
crossref_primary_10_1109_TPAMI_2021_3135841
crossref_primary_10_1016_j_jbi_2017_04_021
crossref_primary_10_1136_amiajnl_2012_001482
crossref_primary_10_1038_s41746_019_0141_x
crossref_primary_10_1038_clpt_2013_168
crossref_primary_10_1136_amiajnl_2013_002512
crossref_primary_10_1186_s12859_019_3013_0
crossref_primary_10_1002_qub2_66
crossref_primary_10_1016_j_jbi_2016_02_009
crossref_primary_10_1111_bcp_12622
crossref_primary_10_1186_s12859_016_1415_9
crossref_primary_10_1016_j_ejps_2016_06_009
crossref_primary_10_1109_JBHI_2019_2932740
crossref_primary_10_1038_msb_2012_26
crossref_primary_10_1186_s12859_018_2123_4
crossref_primary_10_1177_1177932220921350
crossref_primary_10_2174_0115748936278299231213045441
crossref_primary_10_1016_j_ailsci_2021_100005
crossref_primary_10_1186_s12859_018_2520_8
crossref_primary_10_1080_07391102_2016_1138142
crossref_primary_10_1136_amiajnl_2014_002669
crossref_primary_10_1016_j_jsps_2020_09_017
crossref_primary_10_1177_1535370218813974
crossref_primary_10_1186_s12859_023_05212_4
crossref_primary_10_1186_s12859_019_3214_6
crossref_primary_10_1109_TFUZZ_2022_3173379
crossref_primary_10_1016_j_artmed_2018_07_002
crossref_primary_10_1371_journal_pone_0154425
crossref_primary_10_1161_CIRCOUTCOMES_116_003055
crossref_primary_10_1093_bib_bbz157
crossref_primary_10_1093_bib_bbx010
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1136/amiajnl-2011-000214
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
ExternalDocumentID 21676938
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: T15 LM007033
– fundername: NIGMS NIH HHS
  grantid: R24GM61374
– fundername: NIGMS NIH HHS
  grantid: R24 GM061374
– fundername: NLM NIH HHS
  grantid: LM05652
– fundername: NLM NIH HHS
  grantid: R01 LM005652
– fundername: NLM NIH HHS
  grantid: LM007033
– fundername: NIGMS NIH HHS
  grantid: R01 GM102365
GroupedDBID ---
--K
.DC
.GJ
0R~
18M
1B1
1TH
29L
2WC
4.4
48X
53G
5GY
5RE
5WD
6PF
7RV
7X7
7~T
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8FW
AABZA
AACZT
AAEDT
AAJQQ
AALRI
AAMVS
AAOGV
AAPGJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAXUO
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNHQ
ABOCM
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABUWG
ABVGC
ABWST
ABWVN
ABXVV
ACFRR
ACGFO
ACGFS
ACGOD
ACHQT
ACRPL
ACUFI
ACUTJ
ACVCV
ACYHN
ACZBC
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADJOM
ADMTO
ADMUD
ADNBA
ADNMO
ADQBN
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFQV
AFFZL
AFIYH
AFKRA
AFOFC
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AJBYB
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
AQDSO
AQKUS
AQUVI
ARAPS
ATGXG
AVNTJ
AVWKF
AXUDD
AYCSE
AZQEC
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BGLVJ
BHONS
BKEYQ
BPHCQ
BTRTY
BVRKM
BVXVI
BZKNY
C1A
C45
CCPQU
CDBKE
CGR
CS3
CUY
CVF
DAKXR
DIK
DILTD
DU5
DWQXO
E3Z
EBD
EBS
ECM
EIF
EIHJH
EJD
EMOBN
ENERS
EO8
EX3
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
G-Q
GAUVT
GJXCC
GNUQQ
GX1
H13
HAR
HCIFZ
HMCUK
IH2
IHE
J21
JXSIZ
K6V
K7-
KBUDW
KOP
KSI
KSN
LSO
M0T
M1P
M2P
M2Q
M41
MBLQV
MHKGH
NAPCQ
NOMLY
NOYVH
NPM
NQ-
NU-
NVLIB
O9-
OAUYM
OAWHX
OBFPC
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P62
PAFKI
PCD
PEELM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q5Y
R53
RIG
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
S0X
SSZ
SV3
TAE
TEORI
TJX
TMA
UKHRP
WOQ
WOW
YAYTL
YHZ
YKOAZ
YXANX
ZGI
~S-
77I
7X8
ID FETCH-LOGICAL-c436t-7d0e780116b32614de11cfc09f9ff71f041c0c6352a5e9d2a365a5a32a57d482
IEDL.DBID 7X8
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298848100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1527-974X
IngestDate Sun Nov 09 10:16:30 EST 2025
Mon Jul 21 06:06:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-7d0e780116b32614de11cfc09f9ff71f041c0c6352a5e9d2a365a5a32a57d482
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jamia/article-pdf/19/1/79/17374150/19-1-79.pdf
PMID 21676938
PQID 911936404
PQPubID 23479
ParticipantIDs proquest_miscellaneous_911936404
pubmed_primary_21676938
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2012
References 23876381 - J Am Med Inform Assoc. 2013 May;20(3):591. doi: 10.1136/amiajnl-2012-001603.
23268484 - J Am Med Inform Assoc. 2013 May;20(3):590. doi: 10.1136/amiajnl-2012-001234.
References_xml – reference: 23268484 - J Am Med Inform Assoc. 2013 May;20(3):590. doi: 10.1136/amiajnl-2012-001234.
– reference: 23876381 - J Am Med Inform Assoc. 2013 May;20(3):591. doi: 10.1136/amiajnl-2012-001603.
SSID ssj0016235
Score 2.447677
Snippet Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 79
SubjectTerms Adverse Drug Reaction Reporting Systems
Algorithms
Drug Interactions
Drug-Related Side Effects and Adverse Reactions - diagnosis
Drug-Related Side Effects and Adverse Reactions - epidemiology
False Positive Reactions
Humans
Logistic Models
ROC Curve
United States
United States Food and Drug Administration
Title A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports
URI https://www.ncbi.nlm.nih.gov/pubmed/21676938
https://www.proquest.com/docview/911936404
Volume 19
WOSCitedRecordID wos000298848100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAIsTC-1Fe8sBqNXYejidUISoGWnXokC1ybacNKklp0v5-zk4KE2JgsWQpiSL7zv583_k7hB61sMEEqgjVhsMBRURkqlhMpBYSzs88MpnTmX3jo1GcJGLc5uZUbVrldk10C7UulY2R98AphR8FXvC0_CS2aJQlV9sKGruo4wOSsX7Jkx8SAXb20MmlMk4ANiet6BD1o578yOV7sSBNhNAJh_0OMd1WMzj-50-eoKMWY-J-YxSnaMcUZ-hg2LLo5yjv46LcmAW2yRvwoDa1S8gqsFzM4Hv1_AMDlsW5u8TrLkLhuZUaKbBerWfENtjqTKyaWxEVdLC0lZ0rg50iFG6piAs0GbxMnl9JW3KBqMCPasK1Z3hsyZkp4DoaaEOpypQnMhvbpZkXUOUpAClMhkZoJv0olKH0oct1ELNLtFeUhblGWAplpQAD39Vel0wyQAuZ4DrjkaaMdhHeDmEKFm1pClmYcl2l34PYRVfNNKTLRnkjZdTVboxv_n75Fh3C5LImWnKHOhl4s7lH-2pT59XqwVkKtKPx8AuReMkM
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+signal+detection+algorithm+for+identifying+hidden+drug-drug+interactions+in+adverse+event+reports&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Tatonetti%2C+Nicholas+P&rft.au=Fernald%2C+Guy+Haskin&rft.au=Altman%2C+Russ+B&rft.date=2012-01-01&rft.eissn=1527-974X&rft.volume=19&rft.issue=1&rft.spage=79&rft_id=info:doi/10.1136%2Famiajnl-2011-000214&rft_id=info%3Apmid%2F21676938&rft_id=info%3Apmid%2F21676938&rft.externalDocID=21676938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-974X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-974X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-974X&client=summon