fSDE: efficient evolutionary optimisation for many-objective aero-engine calibration
Engine calibration aims at simultaneously adjusting a set of parameters to ensure the performance of an engine under various working conditions using an engine simulator. Due to the large number of engine parameters to be calibrated, the performance measurements to be considered, and the working con...
Saved in:
| Published in: | Complex & intelligent systems Vol. 8; no. 4; pp. 2731 - 2747 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.08.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2199-4536, 2198-6053 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Engine calibration aims at simultaneously adjusting a set of parameters to ensure the performance of an engine under various working conditions using an engine simulator. Due to the large number of engine parameters to be calibrated, the performance measurements to be considered, and the working conditions to be tested, the calibration process is very time-consuming and relies on the human knowledge. In this paper, we consider non-convex constrained search space and model a real aero-engine calibration problem as a many-objective optimisation problem. A fast many-objective evolutionary optimisation algorithm with shift-based density estimation, called fSDE, is designed to search for parameters with an acceptable performance accuracy and improve the calibration efficiency. Our approach is compared to several state-of-the-art many- and multi-objective optimisation algorithms on the well-known many-objective optimisation benchmark test suite and a real aero-engine calibration problem, and achieves superior performance. To further validate our approach, the studied aero-engine calibration is also modelled as a single-objective optimisation problem and optimised by some classic and state-of-the-art evolutionary algorithms, compared to which fSDE not only provides more diverse solutions but also finds solutions of high-quality faster. |
|---|---|
| AbstractList | Engine calibration aims at simultaneously adjusting a set of parameters to ensure the performance of an engine under various working conditions using an engine simulator. Due to the large number of engine parameters to be calibrated, the performance measurements to be considered, and the working conditions to be tested, the calibration process is very time-consuming and relies on the human knowledge. In this paper, we consider non-convex constrained search space and model a real aero-engine calibration problem as a many-objective optimisation problem. A fast many-objective evolutionary optimisation algorithm with shift-based density estimation, called fSDE, is designed to search for parameters with an acceptable performance accuracy and improve the calibration efficiency. Our approach is compared to several state-of-the-art many- and multi-objective optimisation algorithms on the well-known many-objective optimisation benchmark test suite and a real aero-engine calibration problem, and achieves superior performance. To further validate our approach, the studied aero-engine calibration is also modelled as a single-objective optimisation problem and optimised by some classic and state-of-the-art evolutionary algorithms, compared to which fSDE not only provides more diverse solutions but also finds solutions of high-quality faster. |
| Author | Liu, Jialin Wu, Feng Pei, Jiyuan Tong, Hao Zhang, Qingquan Feng, Xudong |
| Author_xml | – sequence: 1 givenname: Jialin orcidid: 0000-0001-7047-8454 surname: Liu fullname: Liu, Jialin organization: Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology – sequence: 2 givenname: Qingquan surname: Zhang fullname: Zhang, Qingquan organization: Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology – sequence: 3 givenname: Jiyuan surname: Pei fullname: Pei, Jiyuan organization: Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology – sequence: 4 givenname: Hao surname: Tong fullname: Tong, Hao organization: Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology – sequence: 5 givenname: Xudong surname: Feng fullname: Feng, Xudong organization: Xidian University, AECC – sequence: 6 givenname: Feng surname: Wu fullname: Wu, Feng email: wufeng_my@mail.nwpu.edu.cn organization: School of Power and Energy Northwestern Polytechnical University, AECC |
| BookMark | eNp9kMtKAzEUhoNUsNa-gKsB19GTyWQycSe1XqDgwroOmUxSUtqkJtNC397pjCC46Opc-L9z-a_RyAdvELolcE8A-EMqgBccQ04wAOUFJhdonBNR4RIYHfW5wAWj5RWaprQGAMJ5RSEfo6X9fJ4_ZsZap53xbWYOYbNvXfAqHrOwa93WJXWqMxtitlX-iEO9Nrp1B5MpEwM2fuW8ybTauDr20ht0adUmmelvnKCvl_ly9oYXH6_vs6cF1gUtW8y10jUXgupcNKTObQlKQNcEQqFqGiqYpRqgopRq1eiC0IrxpiCsVIopQSfobpi7i-F7b1Ir12EffbdS5qXgLGeiKjpVPqh0DClFY-Uuum33niQgTwbKwUDZGSh7AyXpoOofpF3bP9dG5TbnUTqgqdvjVyb-XXWG-gHvUoc4 |
| CitedBy_id | crossref_primary_10_3390_aerospace11020140 crossref_primary_10_1016_j_swevo_2023_101405 crossref_primary_10_1109_JIOT_2023_3292369 crossref_primary_10_1007_s40747_022_00714_9 |
| Cites_doi | 10.1109/TEVC.2016.2549267 10.1145/2792984 10.1109/TEVC.2007.892759 10.1109/TEVC.2013.2281535 10.1109/MCI.2017.2742868 10.1162/106365602760234108 10.1109/TEVC.2014.2350987 10.1177/0954407018776743 10.1016/j.energy.2013.03.057 10.1145/3300148 10.1109/TEVC.2013.2262178 10.1162/EVCO_a_00009 10.1007/s00158-003-0368-6 10.1007/s40747-017-0039-7 10.1109/TEVC.2017.2749619 10.1023/A:1008202821328 10.1109/TEVC.2012.2227145 10.1109/TEVC.2016.2519378 10.1007/s11081-011-9140-8 10.1109/4235.996017 10.1109/TEVC.2014.2355174 10.1137/S1052623496307510 10.1109/ICEC.1996.542381 10.1007/978-3-642-17298-4_72 10.1109/ICNN.1995.488968 10.1115/1.4037835 10.1007/978-3-540-30217-9_84 10.1109/UKSIM.2008.13 10.1007/978-3-319-75979-1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s40747-021-00374-1 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 2198-6053 |
| EndPage | 2747 |
| ExternalDocumentID | 10_1007_s40747_021_00374_1 |
| GrantInformation_xml | – fundername: Science and Technology Innovation Committee Foundation of Shenzhen grantid: JCYJ20190809121403553 – fundername: Shenzhen Science and Technology Program grantid: KQTD2016112514355531 – fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams grantid: 2017ZT07X386 – fundername: Program for University Key Laboratory of Guangdong Province grantid: 2017KSYS008 – fundername: National Natural Science Foundation of China grantid: 61906083 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Guangdong Provincial Key Laboratory grantid: 2020B121201001 |
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c436t-7cacb7993c29d1b2f60a90cac01308dd395f3c008333cadc413857d4156aa5a93 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650060700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-4536 |
| IngestDate | Wed Oct 08 14:21:56 EDT 2025 Sat Nov 29 05:48:56 EST 2025 Tue Nov 18 22:39:02 EST 2025 Fri Feb 21 02:45:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Constrained optimisation Engine calibration Evolutionary algorithm Many-objective optimisation Multi-objective optimisation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-7cacb7993c29d1b2f60a90cac01308dd395f3c008333cadc413857d4156aa5a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7047-8454 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2697525984?pq-origsite=%requestingapplication% |
| PQID | 2697525984 |
| PQPubID | 2044308 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2697525984 crossref_primary_10_1007_s40747_021_00374_1 crossref_citationtrail_10_1007_s40747_021_00374_1 springer_journals_10_1007_s40747_021_00374_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20220800 2022-08-00 20220801 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 8 year: 2022 text: 20220800 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Complex & intelligent systems |
| PublicationTitleAbbrev | Complex Intell. Syst |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Deb, Goyal (CR8) 1996; 26 Ma, Li, Tayarani, Lu, Xu, Yao (CR23) 2019; 233 Deb (CR7) 2001 Tian, Cheng, Zhang, Jin (CR30) 2017; 12 CR14 CR36 CR13 CR35 CR12 CR11 Li, Tang, Li, Yao (CR18) 2016; 20 Tian, Cheng, Zhang, Cheng, Jin (CR29) 2017; 22 Li, Yang, Liu (CR20) 2013; 18 Yang, Li, Liu, Zheng (CR33) 2013; 17 Zhang, Li (CR34) 2007; 11 Deb, Jain (CR9) 2013; 18 Das, Dennis (CR6) 1998; 8 Conover (CR4) 1998 Li, Yao (CR19) 2019; 52 Cheng, Li, Tian, Zhang, Yang, Jin, Yao (CR3) 2017; 3 CR5 Deb, Pratap, Agarwal, Meyarivan (CR10) 2002; 6 Cheng, Jin, Olhofer, Sendhoff (CR2) 2016; 20 Langouët, Métivier, Sinoquet, Tran (CR15) 2011; 12 CR25 Storn, Price (CR27) 1997; 11 CR22 CR21 Laumanns, Thiele, Deb, Zitzler (CR16) 2002; 10 Tayarani-N, Yao, Xu (CR28) 2014; 19 Wong, Wong, Cheung, Vong (CR32) 2013; 55 Samadani, Shamekhi, Behroozi, Chini (CR26) 2009; 28 Bader, Zitzler (CR1) 2011; 19 Li, Li, Tang, Yao (CR17) 2015; 48 Wang, Jiao, Yao (CR31) 2014; 19 Marler, Arora (CR24) 2004; 26 374_CR14 374_CR36 374_CR13 M Li (374_CR19) 2019; 52 374_CR35 K Deb (374_CR7) 2001 I Das (374_CR6) 1998; 8 M Li (374_CR20) 2013; 18 Y Tian (374_CR29) 2017; 22 B Li (374_CR18) 2016; 20 RT Marler (374_CR24) 2004; 26 E Samadani (374_CR26) 2009; 28 374_CR21 S Yang (374_CR33) 2013; 17 K Deb (374_CR8) 1996; 26 374_CR22 K Deb (374_CR10) 2002; 6 Y Tian (374_CR30) 2017; 12 J Bader (374_CR1) 2011; 19 MH Tayarani-N (374_CR28) 2014; 19 R Storn (374_CR27) 1997; 11 M Laumanns (374_CR16) 2002; 10 R Cheng (374_CR2) 2016; 20 KI Wong (374_CR32) 2013; 55 R Cheng (374_CR3) 2017; 3 B Li (374_CR17) 2015; 48 374_CR25 H Wang (374_CR31) 2014; 19 Q Zhang (374_CR34) 2007; 11 H Ma (374_CR23) 2019; 233 WJ Conover (374_CR4) 1998 K Deb (374_CR9) 2013; 18 374_CR5 374_CR12 374_CR11 H Langouët (374_CR15) 2011; 12 |
| References_xml | – volume: 20 start-page: 924 issue: 6 year: 2016 end-page: 938 ident: CR18 article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2549267 – ident: CR22 – volume: 48 start-page: 1 issue: 1 year: 2015 end-page: 35 ident: CR17 article-title: Many-objective evolutionary algorithms: a survey publication-title: ACM Comput Surv (CSUR) doi: 10.1145/2792984 – volume: 11 start-page: 712 issue: 6 year: 2007 end-page: 731 ident: CR34 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 18 start-page: 577 issue: 4 year: 2013 end-page: 601 ident: CR9 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281535 – volume: 12 start-page: 73 issue: 4 year: 2017 end-page: 87 ident: CR30 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – ident: CR14 – ident: CR12 – volume: 10 start-page: 263 issue: 3 year: 2002 end-page: 282 ident: CR16 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evol Comput doi: 10.1162/106365602760234108 – volume: 19 start-page: 524 issue: 4 year: 2014 end-page: 541 ident: CR31 article-title: Two\_arch2: an improved two-archive algorithm for many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2014.2350987 – volume: 233 start-page: 1391 issue: 6 year: 2019 end-page: 1402 ident: CR23 article-title: Model-based computational intelligence multi-objective optimization for gasoline direct injection engine calibration publication-title: Proc Inst Mech Eng Part D: J Automob Eng doi: 10.1177/0954407018776743 – volume: 55 start-page: 519 year: 2013 end-page: 528 ident: CR32 article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods publication-title: Energy doi: 10.1016/j.energy.2013.03.057 – ident: CR35 – year: 1998 ident: CR4 publication-title: Practical nonparametric statistics, – volume: 52 start-page: 1 issue: 2 year: 2019 end-page: 38 ident: CR19 article-title: Quality evaluation of solution sets in multiobjective optimisation: a survey publication-title: ACM Compu Surv (CSUR) doi: 10.1145/3300148 – volume: 18 start-page: 348 issue: 3 year: 2013 end-page: 365 ident: CR20 article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2262178 – ident: CR25 – volume: 19 start-page: 45 issue: 1 year: 2011 end-page: 76 ident: CR1 article-title: HypE: an algorithm for fast hypervolume-based many-objective optimization publication-title: Evol Comput doi: 10.1162/EVCO_a_00009 – volume: 26 start-page: 369 issue: 6 year: 2004 end-page: 395 ident: CR24 article-title: Survey of multi-objective optimization methods for engineering publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-003-0368-6 – volume: 3 start-page: 67 issue: 1 year: 2017 end-page: 81 ident: CR3 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex Intell Syst doi: 10.1007/s40747-017-0039-7 – volume: 22 start-page: 609 issue: 4 year: 2017 end-page: 622 ident: CR29 article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2749619 – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 ident: CR27 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Global Optim doi: 10.1023/A:1008202821328 – ident: CR21 – volume: 26 start-page: 30 year: 1996 end-page: 45 ident: CR8 article-title: A combined genetic adaptive search (geneas) for engineering design publication-title: Comput Sci Inf – volume: 17 start-page: 721 issue: 5 year: 2013 end-page: 736 ident: CR33 article-title: A grid-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2012.2227145 – volume: 28 start-page: 61 issue: 4 year: 2009 end-page: 70 ident: CR26 article-title: A method for pre-calibration of di diesel engine emissions and performance using neural network and multi-objective genetic algorithm publication-title: IJCCE – ident: CR13 – ident: CR11 – year: 2001 ident: CR7 publication-title: Multi-objective optimization using evolutionary algorithms, – ident: CR36 – volume: 20 start-page: 773 issue: 5 year: 2016 end-page: 791 ident: CR2 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2519378 – volume: 12 start-page: 407 issue: 3 year: 2011 end-page: 424 ident: CR15 article-title: Engine calibration: multi-objective constrained optimization of engine maps publication-title: Optim Eng doi: 10.1007/s11081-011-9140-8 – ident: CR5 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 19 start-page: 609 issue: 5 year: 2014 end-page: 629 ident: CR28 article-title: Meta-heuristic algorithms in car engine design: a literature survey publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2014.2355174 – volume: 8 start-page: 631 issue: 3 year: 1998 end-page: 657 ident: CR6 article-title: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J Optim doi: 10.1137/S1052623496307510 – volume: 18 start-page: 577 issue: 4 year: 2013 ident: 374_CR9 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281535 – volume: 55 start-page: 519 year: 2013 ident: 374_CR32 publication-title: Energy doi: 10.1016/j.energy.2013.03.057 – ident: 374_CR11 doi: 10.1109/ICEC.1996.542381 – ident: 374_CR36 – ident: 374_CR5 – volume-title: Multi-objective optimization using evolutionary algorithms, year: 2001 ident: 374_CR7 – volume: 10 start-page: 263 issue: 3 year: 2002 ident: 374_CR16 publication-title: Evol Comput doi: 10.1162/106365602760234108 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 374_CR34 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 233 start-page: 1391 issue: 6 year: 2019 ident: 374_CR23 publication-title: Proc Inst Mech Eng Part D: J Automob Eng doi: 10.1177/0954407018776743 – ident: 374_CR21 doi: 10.1007/978-3-642-17298-4_72 – ident: 374_CR25 – volume: 26 start-page: 30 year: 1996 ident: 374_CR8 publication-title: Comput Sci Inf – volume: 17 start-page: 721 issue: 5 year: 2013 ident: 374_CR33 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2012.2227145 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 374_CR10 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 374_CR27 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 374_CR30 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – volume: 26 start-page: 369 issue: 6 year: 2004 ident: 374_CR24 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-003-0368-6 – volume: 20 start-page: 924 issue: 6 year: 2016 ident: 374_CR18 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2549267 – volume: 52 start-page: 1 issue: 2 year: 2019 ident: 374_CR19 publication-title: ACM Compu Surv (CSUR) doi: 10.1145/3300148 – ident: 374_CR13 doi: 10.1109/ICNN.1995.488968 – volume: 8 start-page: 631 issue: 3 year: 1998 ident: 374_CR6 publication-title: SIAM J Optim doi: 10.1137/S1052623496307510 – volume: 48 start-page: 1 issue: 1 year: 2015 ident: 374_CR17 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/2792984 – ident: 374_CR22 doi: 10.1115/1.4037835 – volume: 3 start-page: 67 issue: 1 year: 2017 ident: 374_CR3 publication-title: Complex Intell Syst doi: 10.1007/s40747-017-0039-7 – volume: 28 start-page: 61 issue: 4 year: 2009 ident: 374_CR26 publication-title: IJCCE – ident: 374_CR35 doi: 10.1007/978-3-540-30217-9_84 – volume: 18 start-page: 348 issue: 3 year: 2013 ident: 374_CR20 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2262178 – volume: 19 start-page: 524 issue: 4 year: 2014 ident: 374_CR31 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2014.2350987 – volume: 19 start-page: 609 issue: 5 year: 2014 ident: 374_CR28 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2014.2355174 – volume-title: Practical nonparametric statistics, year: 1998 ident: 374_CR4 – volume: 12 start-page: 407 issue: 3 year: 2011 ident: 374_CR15 publication-title: Optim Eng doi: 10.1007/s11081-011-9140-8 – volume: 22 start-page: 609 issue: 4 year: 2017 ident: 374_CR29 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2749619 – volume: 19 start-page: 45 issue: 1 year: 2011 ident: 374_CR1 publication-title: Evol Comput doi: 10.1162/EVCO_a_00009 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 374_CR2 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2519378 – ident: 374_CR12 doi: 10.1109/UKSIM.2008.13 – ident: 374_CR14 doi: 10.1007/978-3-319-75979-1 |
| SSID | ssj0001778302 ssib044733412 ssib045327741 |
| Score | 2.2384183 |
| Snippet | Engine calibration aims at simultaneously adjusting a set of parameters to ensure the performance of an engine under various working conditions using an engine... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2731 |
| SubjectTerms | Aerospace engines Algorithms Calibration Complexity Computational Intelligence Data Structures and Information Theory Engineering Evolutionary algorithms Mathematical models Multiple objective analysis Optimization Original Article Parameters Working conditions |
| SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yfdAHv8XNKXnwTQNdkzaNbzI3fNAhOGFvJV8Fxa2yzYH_vZcs3VSYoI9tr0e5S-6jd_kdQuepUlRQDftbSEhQDONE2cgSJYygaUJlgMy_471eNhiIh3AobFJ1u1clSW-pF4fdmMN6J66lwIOmEMh51h2cmGvkai8xxxnjlLLgtP2fFs4dyJWbMtcSgjBfr2ysZvvdQy3Dzh-VUu-Aujv_-_RdtB0CTnw9XyF7aM2O9tHWFxhCuLpfYLdODlC_eLzpXGHrsSXAJWE7C8tTjj9wCSZmGFqAMAS8eAjWhJTqZW44sbTjkljPHYP6XTLuSA_RU7fTb9-SMHuBaEbTKeFaasUheNGxMC0VF2kkRQQ3XaUzM4aKpAAVQwBHqZZGgy_MEm5cOihlIgU9QrVRObLHCEMGBgpJsyS2BaNGZlwlmUqKOEozKY2oo1Yl71wHYHI3H-M1X0Aqe_nlIL_cyy9v1dHF4p23OSzHr9TNSo152KKTPE4FTyD5y1gdXVZqWz5eza3xN_ITtBm7IxO-abCJatPxuz1FG3o2fZ6Mz_zS_QSBEeQB priority: 102 providerName: Springer Nature |
| Title | fSDE: efficient evolutionary optimisation for many-objective aero-engine calibration |
| URI | https://link.springer.com/article/10.1007/s40747-021-00374-1 https://www.proquest.com/docview/2697525984 |
| Volume | 8 |
| WOSCitedRecordID | wos000650060700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RXQ5woDzFlnblAzewmsR2HHNB0G7VSnQVQZEKl8ivSCC6KbtLJf49Y6-zKyq1p15ySBxLyTeeh2f8DcDr0himmMX1rTQGKI5LanzmqVFOsVIwnSjzP8nptDo_V3U6Hr1IZZW9ToyKesX2HOq2UQnvu86GHfP9olRSoOde8feXv2noIRVyramhxhYMA_FWNoBhfXJaf-vli3PJGN-Ycy5YIfvOM3FPRspAhxX60eVKUR4zmzvr03Y8kM3TUNMQWVto_r8t2zio13Kq0VQdbd_tRz6GR8llJR9WMvYE7vnZU3h4uuZ7XTyDs_bL4eQd8ZGPAicn_iqJtJ7_JR2qpYtUNkTQSSYXqIFoZ36ulC3Rft5RH4kRCYpMCODD0Ofw9WhydnBMU78Gajkrl1RabY1Eh8cWyuWmaMtMqwxvhuxo5RxTokWxQKePMaudRftZCelCCKm10Iq9gMGsm_mXQDBqQ6jKShS-5czpShpRGdEWWVlp7dQI8v7PNzaRmYeeGr-aNQ1zRKtBtJqIVpOP4M36ncsVlceto3d7iJq0rBfNBpERvO1B3jy-ebad22d7BQ-KcKwiFhbuwmA5_-P34L69Wv5YzMcw_DiZ1p_HsHVQ8HHcNcBrLb6Pk4D_AyfA_ys |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJw4F2RUmAPcIIV9j68XiSEEG3VqEkUiSCVk9mXJRCNSxKK-qf4jcxu7EQg0VsPXO31yvZ-89qZ_QbgWWEt19yhfGuDAYoXitqQBWq117yQ3LSU-UM1HpcnJ3qyBb-6szCxrLLTiUlR-8bFPfJXrNBKoq9eirdn32nsGhWzq10LjRUsjsPFTwzZFm8G-7i-zxk7PJi-P6JtVwHqBC-WVDnjrEKz7Jj2uWV1kRmd4cWYwyu951rW-PLomnDujHeo5UupfAx0jJEmki-hyt8WCPasB9uTwWjyqUOwEIpzsXEYhORMdb1t0q6PUpFwK3a8y7WmIuVOd9fn-USks6exaiLxwtD8T2u5cYH_ytomY3h4-3_7jXfgVut2k3crObkLW2F2D26O1py1i_swrT_sH7wmIXFqoCkm4bwVSzO_IA2q1tO29Imgo09OUYvSxn5dGQxiwryhIZE7EoR93ISIQx_Axyv5rB3ozZpZeAgEI08EQ1FKFmrBvSmVlaWVNcuK0hiv-5B3a1u5lpA99gX5Vq2ppBMeKsRDlfBQ5X14sX7mbEVHcunovQ4EVauaFtUGAX142cFoc_vfs-1ePttTuH40HQ2r4WB8_AhusHhMJBVK7kFvOf8RHsM1d778spg_aYWGwOerBthvvp1Lyg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iInrwLbZWzcGbhrab7GbjTfpAsZaCFXpb8lpQ7IO2Fvz3TtLtQ6GCeNzsbJadmWRmdma-IHQVKUUF1bC-hYQAxTBOlC1ZooQRNAqpzCDzG7zZjDsd0Vrq4vfV7rOU5LSnwaE09cbFgUmL88Y35nDfiSsv8AAqBOKfDRjjTq8rC_xxxjilLDPg_q8L5w7wyp04VxaCMJ-7zK-e9ru1WrigP7Km3hjV9_7_GftoN3NE8d1Ucw7Qmu0dop0leEK4eppjuo6OUDt9rtZusfWYE_AObCeZ2srhJ-7D1tPNSoMwOMK4C7sM6au36YaKpR32ifWzY1ALF6Q70mP0Uq-1K_ckO5OBaEajMeFaasXBqdGBMGUVpFFJihIMugxobAwVYQqiB8eOUi2NBhsZh9y4MFHKUAp6gtZ7_Z49RRgiMxBOFIeBTRk1MuYqjFWYBqUoltKIHCrPeJ_oDLDcnZvxnsyhlj3_EuBf4vmXlHPoev7MYArX8St1YSbSJFu6oySIBA8hKIxZDt3MRLi4vXq2_N_IL9FWq1pPGg_NxzO0HbiuCl9XWEDr4-GHPUebejJ-HQ0vvEZ_AaHc78o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=fSDE%3A+efficient+evolutionary+optimisation+for+many-objective+aero-engine+calibration&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Liu%2C+Jialin&rft.au=Zhang%2C+Qingquan&rft.au=Pei%2C+Jiyuan&rft.au=Tong%2C+Hao&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=8&rft.issue=4&rft.spage=2731&rft.epage=2747&rft_id=info:doi/10.1007%2Fs40747-021-00374-1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |