Mechanism and optimization of non-thermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma
Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW generated by a DC positive flyback transformer (FBT) underwater plasma jet with delivery of reactive species underwater by cylindrical dielectr...
Saved in:
| Published in: | Current applied physics Vol. 19; no. 9; pp. 1006 - 1014 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.09.2019
한국물리학회 |
| Subjects: | |
| ISSN: | 1567-1739, 1878-1675, 1567-1739 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW generated by a DC positive flyback transformer (FBT) underwater plasma jet with delivery of reactive species underwater by cylindrical dielectric barrier discharge (C-DBD) with a neon transformer. A Box–Behnken design was adopted as a response surface methodology (RSM) to design the experimental plan and optimize operating parameters including time, gas flow, and gas ratio. The physical responses comprise optical emission spectroscopy (OES), pH, oxidation-reduction potential (ORP), and electrical conductivity (EC). The chemical responses consist of hydrogen peroxide (H2O2) and hydroxyl radicals (OH·). The biological responses include Escherichia coli reduction and Staphylococcus aureus reduction. The optimal condition for underwater plasma jet was found to be Ar gas with a flow rate of 3 slm for 6.5 min of treatment time, which can reduce E. coli and S. aureus to 7.14 ± 0.14 and 3.10 ± 0.26 in log, respectively. Also, the optimal condition for delivery of reactive species underwater by C-DBD plasma was found to be Ar (99%): O2 (1%) gas mixture with an Ar gas flow rate of 4 slm for a treatment time of 11.5 min, which could reduce E. coli and S. aureus to 0.45 ± 0.07 and 2.45 ± 0.23 in log, respectively.
[Display omitted]
•A comparison of two plasma-activated water (PAW) sources, plasma jet with a DC positive flyback transformer (FBT) and cylindrical dielectric barrier discharge (C-DBD) with neon transformer.•The Box–Behnken design (BBD) was applied for the PAW treatment.•The multiple response desirability function and response surface methodology (RSM) were used to find the optimum conditions. |
|---|---|
| AbstractList | Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW generated by a DC positive flyback transformer (FBT) underwater plasma jet with delivery of reactive species underwater by cylindrical dielectric barrier discharge (CDBD) with a neon transformer. A Box–Behnken design was adopted as a response surface methodology (RSM) to design the experimental plan and optimize operating parameters including time, gas flow, and gas ratio. The physical responses comprise optical emission spectroscopy (OES), pH, oxidation-reduction potential (ORP), and electrical conductivity (EC). The chemical responses consist of hydrogen peroxide (H2O2) and hydroxyl radicals (OH·). The biological responses include Escherichia coli reduction and Staphylococcus aureus reduction. The optimal condition for underwater plasma jet was found to be Ar gas with a flow rate of 3 slm for 6.5 min of treatment time, which can reduce E. coli and S. aureus to 7.14 ± 0.14 and 3.10 ± 0.26 in log, respectively.
Also, the optimal condition for delivery of reactive species underwater by C-DBD plasma was found to be Ar (99%): O2 (1%) gas mixture with an Ar gas flow rate of 4 slm for a treatment time of 11.5 min, which could reduce E. coli and S. aureus to 0.45 ± 0.07 and 2.45 ± 0.23 in log, respectively. KCI Citation Count: 0 Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW generated by a DC positive flyback transformer (FBT) underwater plasma jet with delivery of reactive species underwater by cylindrical dielectric barrier discharge (C-DBD) with a neon transformer. A Box–Behnken design was adopted as a response surface methodology (RSM) to design the experimental plan and optimize operating parameters including time, gas flow, and gas ratio. The physical responses comprise optical emission spectroscopy (OES), pH, oxidation-reduction potential (ORP), and electrical conductivity (EC). The chemical responses consist of hydrogen peroxide (H2O2) and hydroxyl radicals (OH·). The biological responses include Escherichia coli reduction and Staphylococcus aureus reduction. The optimal condition for underwater plasma jet was found to be Ar gas with a flow rate of 3 slm for 6.5 min of treatment time, which can reduce E. coli and S. aureus to 7.14 ± 0.14 and 3.10 ± 0.26 in log, respectively. Also, the optimal condition for delivery of reactive species underwater by C-DBD plasma was found to be Ar (99%): O2 (1%) gas mixture with an Ar gas flow rate of 4 slm for a treatment time of 11.5 min, which could reduce E. coli and S. aureus to 0.45 ± 0.07 and 2.45 ± 0.23 in log, respectively. [Display omitted] •A comparison of two plasma-activated water (PAW) sources, plasma jet with a DC positive flyback transformer (FBT) and cylindrical dielectric barrier discharge (C-DBD) with neon transformer.•The Box–Behnken design (BBD) was applied for the PAW treatment.•The multiple response desirability function and response surface methodology (RSM) were used to find the optimum conditions. |
| Author | Wattanutchariya, Wassanai Choi, Eun Ha Seesuriyachan, Phisit Boonyawan, Dheerawan Royintarat, Tanitta |
| Author_xml | – sequence: 1 givenname: Tanitta surname: Royintarat fullname: Royintarat, Tanitta email: royintarat@hotmail.com organization: Advanced Manufacturing Technology Research Center (AMTech), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, 239 Suthep, Mueang, Chiang Mai, 50200, Thailand – sequence: 2 givenname: Phisit surname: Seesuriyachan fullname: Seesuriyachan, Phisit organization: Faculty of Agro-Industry, Chiang Mai University, 155 Moo 2, Mae Hea, Mueang, Chiang Mai, 50100, Thailand – sequence: 3 givenname: Dheerawan orcidid: 0000-0001-5129-2814 surname: Boonyawan fullname: Boonyawan, Dheerawan organization: Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Suthep, Mueang, Chiang Mai, 50200, Thailand – sequence: 4 givenname: Eun Ha orcidid: 0000-0001-5385-1878 surname: Choi fullname: Choi, Eun Ha email: ehchoi@kw.ac.kr organization: Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea – sequence: 5 givenname: Wassanai orcidid: 0000-0003-0571-5809 surname: Wattanutchariya fullname: Wattanutchariya, Wassanai email: wassanai@eng.cmu.ac.th organization: Advanced Manufacturing Technology Research Center (AMTech), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, 239 Suthep, Mueang, Chiang Mai, 50200, Thailand |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002503621$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kc1u3CAUha0olfLTPkB3bLuwC7axQV2lSX8ipaoUJWuE4bq5ExssoFNNH61PV2Y8i6qLbLgIzneO4FwUp847KIq3jFaMsu79pjJ6qWrKZEV5RWt6Upwz0YuSdT0_zXve9SXrG3lWXMS4oZlpaXte_PkG5kk7jDPRzhK_JJzxt07oHfEjySlleoIw64ksk46zLrVJuNUJLPmV10BGH8iQDyFgFqE73u8Nhh356SyEVbjyZAPpEGVhwi2E3T4mwIECEhcwCPFfLJuY3YTOBjQ54ObjzdHpdfFq1FOEN8d5WTx-_vRw_bW8-_7l9vrqrjRt06WyF7XU1lDoeKOF0D2TFqRoDQzSDqzpdG3rFgSjULfCcDlIwSTlxgo-DC1tLot3q68Lo3o2qLzGw_zh1XNQV_cPt6qjLRdUZG2_ak3wMQYYlcF0-IwUNE6KUbWvS21Urkvt61KUq1xXJtl_5BJw1mH3IvNhZSA_f4sQVMy_5wxYDGCSsh5foP8CZ6S0ZA |
| CitedBy_id | crossref_primary_10_1016_j_seppur_2021_119672 crossref_primary_10_1140_epjd_s10053_020_00004_4 crossref_primary_10_1002_ppap_201900270 crossref_primary_10_3390_app122312325 crossref_primary_10_1016_j_jfp_2024_100437 crossref_primary_10_1088_2632_2153_acc1c0 crossref_primary_10_1111_jfs_13136 crossref_primary_10_3389_fmicb_2022_1100102 crossref_primary_10_1039_D5MH00945F crossref_primary_10_1088_1361_6463_ad77de crossref_primary_10_1016_j_ifset_2025_103978 crossref_primary_10_1007_s11090_023_10380_5 crossref_primary_10_1111_1541_4337_13126 crossref_primary_10_1111_jfpe_14156 crossref_primary_10_1016_j_ifset_2023_103360 crossref_primary_10_1016_j_jiec_2025_07_018 crossref_primary_10_1016_j_chemosphere_2021_130255 crossref_primary_10_1016_j_lwt_2024_116176 crossref_primary_10_1016_j_sjbs_2021_12_023 crossref_primary_10_1002_ppap_202200234 crossref_primary_10_1111_jam_14823 crossref_primary_10_1039_D1RA07774K crossref_primary_10_1016_j_envres_2024_120467 crossref_primary_10_1038_s41598_020_58199_w crossref_primary_10_1016_j_ijfoodmicro_2021_109332 crossref_primary_10_1093_jambio_lxae182 crossref_primary_10_1002_ppap_70048 crossref_primary_10_1016_j_eti_2024_103746 crossref_primary_10_1016_j_lwt_2021_111879 crossref_primary_10_1016_j_chemosphere_2022_133808 crossref_primary_10_1088_1742_6596_2312_1_012012 crossref_primary_10_3390_plasma8030027 crossref_primary_10_1016_j_jece_2023_109977 crossref_primary_10_1088_1361_6595_ac4ddd crossref_primary_10_1002_ppap_202400155 crossref_primary_10_1111_1541_4337_12644 crossref_primary_10_1016_j_jece_2020_103891 crossref_primary_10_1007_s11090_021_10183_6 crossref_primary_10_1016_j_tifs_2023_104282 crossref_primary_10_1088_1361_6463_abb624 crossref_primary_10_1080_19476337_2024_2386417 crossref_primary_10_1111_1541_4337_13250 crossref_primary_10_1002_adfm_202212236 crossref_primary_10_1088_1742_6596_2426_1_012052 crossref_primary_10_26565_2312_4334_2023_2_43 crossref_primary_10_1515_reveh_2022_0114 crossref_primary_10_3389_fnut_2024_1365282 crossref_primary_10_1002_ppap_70050 crossref_primary_10_1016_j_scitotenv_2023_162235 crossref_primary_10_1007_s11090_022_10244_4 crossref_primary_10_1016_j_ijfoodmicro_2023_110419 crossref_primary_10_1016_j_psep_2024_05_009 crossref_primary_10_1016_j_jece_2020_104377 crossref_primary_10_1088_1361_6463_ad5f99 crossref_primary_10_1007_s00253_020_10926_z crossref_primary_10_1016_j_seppur_2021_119185 crossref_primary_10_3390_ijerph19116630 crossref_primary_10_1080_10408398_2025_2477799 crossref_primary_10_1016_j_lwt_2021_112547 crossref_primary_10_1016_j_fpp_2024_100078 crossref_primary_10_1111_1541_4337_12667 crossref_primary_10_3390_polym15051235 crossref_primary_10_1007_s11090_022_10292_w crossref_primary_10_1002_btpr_3511 crossref_primary_10_3390_foods12051113 crossref_primary_10_1016_j_bioflm_2025_100308 crossref_primary_10_1088_2058_6272_ac3410 crossref_primary_10_1016_j_surfcoat_2020_126638 crossref_primary_10_1063_5_0039253 crossref_primary_10_1080_10408398_2020_1852173 crossref_primary_10_1016_j_fm_2020_103708 crossref_primary_10_1016_j_ifset_2024_103576 crossref_primary_10_1016_j_cej_2022_138643 crossref_primary_10_1016_j_cej_2025_159667 crossref_primary_10_3390_biomedicines9111700 crossref_primary_10_1002_ppap_202200182 crossref_primary_10_1080_00986445_2023_2172571 crossref_primary_10_1016_j_cofs_2021_04_012 crossref_primary_10_3390_ma16031167 crossref_primary_10_3390_foods9101491 |
| Cites_doi | 10.1002/ppap.201400082 10.1038/srep28505 10.1111/1574-6976.12026 10.1088/0022-3727/47/36/362001 10.1016/j.jhazmat.2015.07.061 10.1016/j.ifset.2018.01.007 10.1166/jbt.2018.1817 10.1063/1.4807133 10.1039/C4RA05936K 10.1088/1742-6596/418/1/012102 10.1128/AEM.02660-15 10.1080/00224065.1980.11980968 10.1007/s11356-017-9169-0 10.1016/j.elstat.2004.12.007 10.1016/j.physrep.2014.02.006 10.1016/j.foodcont.2016.12.021 10.1002/ppap.200900077 10.1128/AAC.01002-10 10.1016/j.fpsl.2017.08.007 10.1016/j.numecd.2005.05.003 10.1002/ppap.201100041 10.1063/1.4989735 10.1016/j.watres.2017.12.035 10.1039/C6RA24762H 10.1002/ppap.200900070 10.1128/jb.166.2.519-527.1986 10.1002/ppap.201300072 10.1016/j.foodchem.2015.10.144 |
| ContentType | Journal Article |
| Copyright | 2019 Korean Physical Society |
| Copyright_xml | – notice: 2019 Korean Physical Society |
| DBID | AAYXX CITATION ACYCR |
| DOI | 10.1016/j.cap.2019.05.020 |
| DatabaseName | CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1878-1675 1567-1739 |
| EndPage | 1014 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_6045808 10_1016_j_cap_2019_05_020 S1567173919301622 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ACYCR |
| ID | FETCH-LOGICAL-c436t-7829adc0e653a88a719de984ceb9db136a2d24e810e248c59b981905cd85bb403 |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472202700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1567-1739 |
| IngestDate | Sun Mar 09 07:53:05 EDT 2025 Sat Nov 29 07:03:32 EST 2025 Tue Nov 18 22:40:09 EST 2025 Fri Feb 23 02:30:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Design of experiment (DOE) Bacteria Cylindrical dielectric barrier discharge (C-DBD) Underwater plasma jet Plasma-activated water (PAW) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c436t-7829adc0e653a88a719de984ceb9db136a2d24e810e248c59b981905cd85bb403 |
| ORCID | 0000-0003-0571-5809 0000-0001-5385-1878 0000-0001-5129-2814 |
| PageCount | 9 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6045808 crossref_citationtrail_10_1016_j_cap_2019_05_020 crossref_primary_10_1016_j_cap_2019_05_020 elsevier_sciencedirect_doi_10_1016_j_cap_2019_05_020 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Current applied physics |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V 한국물리학회 |
| Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
| References | Rio, Stewart, Pellegrini (bib19) 2005; 15 Shen, Tian, Li, Ma, Zhang, Zhang, Fang (bib8) 2016; 6 Suwal, Coronel-Aguilera, Auer, Applegate, Garner, Huang (bib9) 2019; 53 Royintarat, Boonyawan, Seesuriyachan, Wattanutchariya (bib10) 2018; 8 Chen, Liang, Su (bib25) 2018; 27 Vatansever, de Melo, Avci, Vecchio, Sadasivam, Gupta, Chandran, Karimi, Parizotto, Yin, Tegos, Hamblin (bib30) 2013; 37 Liu, Sun, Bai, Tian, Zhou, Wei, Zhou, Zhang, Zhu, Becker, Fang (bib31) 2010; 7 Burlicaa, Kirkpatrickb (bib24) 2006; 64 Liao, Liu, Xiang, Ahn, Chen, Ye, Ding (bib20) 2017; 75 Ma, Wang, Tian, Wang, Zhang, Fang (bib3) 2015; 300 Lukes, Locke, Brisset (bib23) 2012 Zhang, Liang, Feng, Ma, Tian, Zhang, Fang (bib26) 2013; 102 Lu, Naidis, Laroussi, Ostrikov (bib14) 2014; 540 Hong, Szili, Jenkins, Short (bib18) 2014; 47 Sun, Wu, Bai, Zhou, Wang, Feng, Zhu, Zhang (bib21) 2012; 9 Kanazawa, Furuki, Nakaji, Akamine, Ichiki (bib11) 2013; 418 Tian, Ma, Zhang, Feng, Liang, Zhang, Fang (bib7) 2015; 12 Oehmigen, Hahnel, Brandenburg, Wilke, Weltmann (bib22) 2010; 7 Sivachandiran, Khacef (bib27) 2017; 7 Ranieri, Patel, Mannsberger, Huynh, Suarez, Kovalenko, Fridman, Miller, Fridman (bib5) 2017; 23 Takamatsu, Uehara, Sasaki, Miyahara, Matsumura, Iwasawa, Ito, Azuma, Kohnoc, Okino (bib29) 2014; 4 Derringer, Suich (bib13) 1980; 12 Judée, Simon, Dufour (bib28) 2017; 133 Chu, Lu (bib16) 2014 Andrasch, Stachowiak, Schlüter, Schnabel, Ehlbeck (bib6) 2017; 14 Humad, Abbas, Rauuf (bib15) 2015; 5 Han, Patil, Boehm, Milosavljevic, Cullen, Bourke (bib17) 2015; 82 Xu, Tian, Ma, Liu, Zhang (bib4) 2016; 197 Imlay, Linn (bib32) 1986; 166 Ghimire, Sornsakdanuphap, Hong, Uhm, Weltmann, Choi (bib12) 2017; 24 Schnabel, Andrasch, Weltmann, Ehlbeck (bib2) 2014; 11 Joshi, Cooper, Yost, Paff, Ercan, Fridman, Friedman, Fridman, Brooks (bib1) 2011; 55 Schnabel (10.1016/j.cap.2019.05.020_bib2) 2014; 11 Kanazawa (10.1016/j.cap.2019.05.020_bib11) 2013; 418 Chen (10.1016/j.cap.2019.05.020_bib25) 2018; 27 Burlicaa (10.1016/j.cap.2019.05.020_bib24) 2006; 64 Andrasch (10.1016/j.cap.2019.05.020_bib6) 2017; 14 Vatansever (10.1016/j.cap.2019.05.020_bib30) 2013; 37 Suwal (10.1016/j.cap.2019.05.020_bib9) 2019; 53 Ranieri (10.1016/j.cap.2019.05.020_bib5) 2017; 23 Derringer (10.1016/j.cap.2019.05.020_bib13) 1980; 12 Joshi (10.1016/j.cap.2019.05.020_bib1) 2011; 55 Xu (10.1016/j.cap.2019.05.020_bib4) 2016; 197 Ghimire (10.1016/j.cap.2019.05.020_bib12) 2017; 24 Lukes (10.1016/j.cap.2019.05.020_bib23) 2012 Imlay (10.1016/j.cap.2019.05.020_bib32) 1986; 166 Royintarat (10.1016/j.cap.2019.05.020_bib10) 2018; 8 Chu (10.1016/j.cap.2019.05.020_bib16) 2014 Judée (10.1016/j.cap.2019.05.020_bib28) 2017; 133 Han (10.1016/j.cap.2019.05.020_bib17) 2015; 82 Rio (10.1016/j.cap.2019.05.020_bib19) 2005; 15 Hong (10.1016/j.cap.2019.05.020_bib18) 2014; 47 Takamatsu (10.1016/j.cap.2019.05.020_bib29) 2014; 4 Zhang (10.1016/j.cap.2019.05.020_bib26) 2013; 102 Oehmigen (10.1016/j.cap.2019.05.020_bib22) 2010; 7 Sivachandiran (10.1016/j.cap.2019.05.020_bib27) 2017; 7 Humad (10.1016/j.cap.2019.05.020_bib15) 2015; 5 Lu (10.1016/j.cap.2019.05.020_bib14) 2014; 540 Liu (10.1016/j.cap.2019.05.020_bib31) 2010; 7 Ma (10.1016/j.cap.2019.05.020_bib3) 2015; 300 Sun (10.1016/j.cap.2019.05.020_bib21) 2012; 9 Shen (10.1016/j.cap.2019.05.020_bib8) 2016; 6 Liao (10.1016/j.cap.2019.05.020_bib20) 2017; 75 Tian (10.1016/j.cap.2019.05.020_bib7) 2015; 12 |
| References_xml | – volume: 8 start-page: 887 year: 2018 end-page: 891 ident: bib10 article-title: A comparison of plasma activated water techniques for bacteria inactivation publication-title: J. Biomater. Tissue Eng. – volume: 24 year: 2017 ident: bib12 article-title: The effect of the gap distance between an atmospheric-pressure plasma jet nozzle and liquid surface on OH and N publication-title: Phys. Plasmas – volume: 9 start-page: 157 year: 2012 end-page: 164 ident: bib21 article-title: Inactivation of publication-title: Plasma Process. Polym. – volume: 12 start-page: 214 year: 1980 end-page: 219 ident: bib13 article-title: Simultaneous optimization of several response variables publication-title: J. Qual. Technol. – volume: 11 start-page: 110 year: 2014 end-page: 116 ident: bib2 article-title: Inactivation of vegetative microorganisms and Bacillus atrophaeus endospores by reactive nitrogen species (RNS) publication-title: Plasma Process. Polym. – volume: 14 start-page: 40 year: 2017 end-page: 45 ident: bib6 article-title: Scale-up to pilot plant dimensions of plasma processed water generation for fresh-cut lettuce treatment publication-title: J. Food Pack. Shelf Life. – volume: 15 start-page: 316 year: 2005 end-page: 328 ident: bib19 article-title: A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress publication-title: Nutr. Metabol. Cardiovasc. Dis. – volume: 418 year: 2013 ident: bib11 article-title: Application of chemical dosimetry to hydroxyl radical measurement during underwater discharge publication-title: J. Phys. Conf. Ser. – volume: 64 start-page: 35 year: 2006 end-page: 43 ident: bib24 article-title: BR. Locke., Formation of reactive species in gliding arc discharges with liquid water publication-title: J. Electrost. – volume: 4 start-page: 39901 year: 2014 end-page: 39905 ident: bib29 article-title: Investigation of reactive species using various gas plasmas publication-title: RSC Adv. – volume: 166 start-page: 519 year: 1986 end-page: 527 ident: bib32 article-title: Bimodal pattern of killing of DNA repair-defective or anoxically grown Escherichia coli by hydrogen peroxide publication-title: J. Bacterial. – volume: 300 start-page: 643 year: 2015 end-page: 651 ident: bib3 article-title: Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce publication-title: J. Hazard Mater. – volume: 6 start-page: 28505 year: 2016 ident: bib8 article-title: Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures publication-title: Sci. Rep. – volume: 102 start-page: 203701 year: 2013 ident: bib26 article-title: A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage publication-title: Appl. Phys. Lett. – volume: 27 start-page: 26699 year: 2018 end-page: 26706 ident: bib25 article-title: Plasma-activated water: antibacterial activity and artifacts publication-title: Environ. Sci. Pollut. Res. – year: 2014 ident: bib16 article-title: Low Temperature Plasma Technology Methods and Applications – volume: 53 start-page: 18 year: 2019 end-page: 25 ident: bib9 article-title: Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology publication-title: Innov. Food Sci. Emerg. Technol. – volume: 540 start-page: 123 year: 2014 ident: bib14 article-title: Guided ionization waves: theory and experiments publication-title: Phys. Rep. – volume: 7 start-page: 250 year: 2010 end-page: 257 ident: bib22 article-title: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids publication-title: Plasma Process. Polym. – volume: 75 start-page: 83 year: 2017 end-page: 91 ident: bib20 article-title: Inactivation mechanisms of non-thermal plasma on microbes: a review publication-title: Food Control – year: 2012 ident: bib23 article-title: Aqueous-Phase Chemistry of Electrical Discharge Plasma in Water and in Gas-Liquid Environments, Plasma Chemistry and Catalysis in Gases and Liquid – volume: 82 start-page: 450 year: 2015 end-page: 458 ident: bib17 article-title: Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus publication-title: Appl. Environ. Microbiol. – volume: 37 start-page: 955 year: 2013 end-page: 989 ident: bib30 article-title: Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond publication-title: FEMS Microbiol. Rev. – volume: 133 start-page: 47 year: 2017 end-page: 59 ident: bib28 article-title: Plasma-activation of tap water using DBD for agronomy applications: identification and quantification of long lifetime chemical species and production/consumption mechanisms publication-title: Water Res. – volume: 7 start-page: 1822 year: 2017 end-page: 1832 ident: bib27 article-title: Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment publication-title: RSC Adv. – volume: 197 start-page: 436 year: 2016 end-page: 444 ident: bib4 article-title: Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus publication-title: Food Chem. – volume: 55 start-page: 1053 year: 2011 end-page: 1062 ident: bib1 article-title: Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative dna damage and membrane lipid peroxidation in Escherichia coli publication-title: Antimicrob. Agents Chemother. – volume: 47 start-page: 362001 year: 2014 ident: bib18 article-title: Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells publication-title: J. Phys. D Appl. Phys. – volume: 12 start-page: 439 year: 2015 end-page: 449 ident: bib7 article-title: Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface publication-title: Plasma Process. Polym. – volume: 7 start-page: 231 year: 2010 end-page: 236 ident: bib31 article-title: Inactivation of bacteria in an aqueous environment by a direct‐current, cold‐atmospheric‐pressure air plasma microjet publication-title: Plasma Process. Polym. – volume: 5 year: 2015 ident: bib15 article-title: Effect of gas flow rate on the electron temperature, electron density and gas temperature for atmospheric microwave plasma jet publication-title: Int. J. Comput. Eng. &Technol. (IJCET) – volume: 23 start-page: 1050 year: 2017 end-page: 1052 ident: bib5 article-title: Plasma agriculture and food safety: fresh produce disinfection by DBD-treated water mist, and scaled-up gliding arc plasmatron treatment of water solutions publication-title: Int. Symp. Plasma Chem. – year: 2012 ident: 10.1016/j.cap.2019.05.020_bib23 – volume: 12 start-page: 439 year: 2015 ident: 10.1016/j.cap.2019.05.020_bib7 article-title: Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201400082 – volume: 6 start-page: 28505 year: 2016 ident: 10.1016/j.cap.2019.05.020_bib8 article-title: Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures publication-title: Sci. Rep. doi: 10.1038/srep28505 – volume: 37 start-page: 955 year: 2013 ident: 10.1016/j.cap.2019.05.020_bib30 article-title: Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond publication-title: FEMS Microbiol. Rev. doi: 10.1111/1574-6976.12026 – volume: 47 start-page: 362001 issue: 36 year: 2014 ident: 10.1016/j.cap.2019.05.020_bib18 article-title: Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/36/362001 – volume: 300 start-page: 643 year: 2015 ident: 10.1016/j.cap.2019.05.020_bib3 article-title: Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.07.061 – volume: 53 start-page: 18 year: 2019 ident: 10.1016/j.cap.2019.05.020_bib9 article-title: Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology publication-title: Innov. Food Sci. Emerg. Technol. doi: 10.1016/j.ifset.2018.01.007 – volume: 8 start-page: 887 year: 2018 ident: 10.1016/j.cap.2019.05.020_bib10 article-title: A comparison of plasma activated water techniques for bacteria inactivation publication-title: J. Biomater. Tissue Eng. doi: 10.1166/jbt.2018.1817 – volume: 102 start-page: 203701 year: 2013 ident: 10.1016/j.cap.2019.05.020_bib26 article-title: A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage publication-title: Appl. Phys. Lett. doi: 10.1063/1.4807133 – volume: 4 start-page: 39901 year: 2014 ident: 10.1016/j.cap.2019.05.020_bib29 article-title: Investigation of reactive species using various gas plasmas publication-title: RSC Adv. doi: 10.1039/C4RA05936K – volume: 418 year: 2013 ident: 10.1016/j.cap.2019.05.020_bib11 article-title: Application of chemical dosimetry to hydroxyl radical measurement during underwater discharge publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/418/1/012102 – volume: 82 start-page: 450 issue: 2 year: 2015 ident: 10.1016/j.cap.2019.05.020_bib17 article-title: Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02660-15 – volume: 12 start-page: 214 year: 1980 ident: 10.1016/j.cap.2019.05.020_bib13 article-title: Simultaneous optimization of several response variables publication-title: J. Qual. Technol. doi: 10.1080/00224065.1980.11980968 – volume: 27 start-page: 26699 year: 2018 ident: 10.1016/j.cap.2019.05.020_bib25 article-title: Plasma-activated water: antibacterial activity and artifacts publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9169-0 – volume: 64 start-page: 35 year: 2006 ident: 10.1016/j.cap.2019.05.020_bib24 article-title: BR. Locke., Formation of reactive species in gliding arc discharges with liquid water publication-title: J. Electrost. doi: 10.1016/j.elstat.2004.12.007 – volume: 23 start-page: 1050 year: 2017 ident: 10.1016/j.cap.2019.05.020_bib5 article-title: Plasma agriculture and food safety: fresh produce disinfection by DBD-treated water mist, and scaled-up gliding arc plasmatron treatment of water solutions publication-title: Int. Symp. Plasma Chem. – volume: 540 start-page: 123 year: 2014 ident: 10.1016/j.cap.2019.05.020_bib14 article-title: Guided ionization waves: theory and experiments publication-title: Phys. Rep. doi: 10.1016/j.physrep.2014.02.006 – volume: 75 start-page: 83 year: 2017 ident: 10.1016/j.cap.2019.05.020_bib20 article-title: Inactivation mechanisms of non-thermal plasma on microbes: a review publication-title: Food Control doi: 10.1016/j.foodcont.2016.12.021 – volume: 7 start-page: 250 year: 2010 ident: 10.1016/j.cap.2019.05.020_bib22 article-title: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200900077 – volume: 55 start-page: 1053 issue: 3 year: 2011 ident: 10.1016/j.cap.2019.05.020_bib1 article-title: Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative dna damage and membrane lipid peroxidation in Escherichia coli publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01002-10 – volume: 14 start-page: 40 year: 2017 ident: 10.1016/j.cap.2019.05.020_bib6 article-title: Scale-up to pilot plant dimensions of plasma processed water generation for fresh-cut lettuce treatment publication-title: J. Food Pack. Shelf Life. doi: 10.1016/j.fpsl.2017.08.007 – volume: 15 start-page: 316 issue: 4 year: 2005 ident: 10.1016/j.cap.2019.05.020_bib19 article-title: A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress publication-title: Nutr. Metabol. Cardiovasc. Dis. doi: 10.1016/j.numecd.2005.05.003 – volume: 9 start-page: 157 year: 2012 ident: 10.1016/j.cap.2019.05.020_bib21 article-title: Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201100041 – volume: 24 year: 2017 ident: 10.1016/j.cap.2019.05.020_bib12 article-title: The effect of the gap distance between an atmospheric-pressure plasma jet nozzle and liquid surface on OH and N2 species concentrations publication-title: Phys. Plasmas doi: 10.1063/1.4989735 – volume: 133 start-page: 47 year: 2017 ident: 10.1016/j.cap.2019.05.020_bib28 article-title: Plasma-activation of tap water using DBD for agronomy applications: identification and quantification of long lifetime chemical species and production/consumption mechanisms publication-title: Water Res. doi: 10.1016/j.watres.2017.12.035 – volume: 7 start-page: 1822 year: 2017 ident: 10.1016/j.cap.2019.05.020_bib27 article-title: Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment publication-title: RSC Adv. doi: 10.1039/C6RA24762H – volume: 5 issue: 6 year: 2015 ident: 10.1016/j.cap.2019.05.020_bib15 article-title: Effect of gas flow rate on the electron temperature, electron density and gas temperature for atmospheric microwave plasma jet publication-title: Int. J. Comput. Eng. &Technol. (IJCET) – volume: 7 start-page: 231 year: 2010 ident: 10.1016/j.cap.2019.05.020_bib31 article-title: Inactivation of bacteria in an aqueous environment by a direct‐current, cold‐atmospheric‐pressure air plasma microjet publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200900070 – volume: 166 start-page: 519 issue: 2 year: 1986 ident: 10.1016/j.cap.2019.05.020_bib32 article-title: Bimodal pattern of killing of DNA repair-defective or anoxically grown Escherichia coli by hydrogen peroxide publication-title: J. Bacterial. doi: 10.1128/jb.166.2.519-527.1986 – year: 2014 ident: 10.1016/j.cap.2019.05.020_bib16 – volume: 11 start-page: 110 issue: 2 year: 2014 ident: 10.1016/j.cap.2019.05.020_bib2 article-title: Inactivation of vegetative microorganisms and Bacillus atrophaeus endospores by reactive nitrogen species (RNS) publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201300072 – volume: 197 start-page: 436 year: 2016 ident: 10.1016/j.cap.2019.05.020_bib4 article-title: Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.10.144 |
| SSID | ssj0016404 |
| Score | 2.515067 |
| Snippet | Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW... |
| SourceID | nrf crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1006 |
| SubjectTerms | Bacteria Cylindrical dielectric barrier discharge (C-DBD) Design of experiment (DOE) Plasma-activated water (PAW) Underwater plasma jet 물리학 |
| Title | Mechanism and optimization of non-thermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma |
| URI | https://dx.doi.org/10.1016/j.cap.2019.05.020 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002503621 |
| Volume | 19 |
| WOSCitedRecordID | wos000472202700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Current Applied Physics, 2019, 19(9), , pp.1006-1014 |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AIEXJ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2DiReEFcxbrIQeaEKStI0tR946A0xBNOEitS3yHHc0a5NprTr1r_Gr-McO05DtU3jgZfIcn2ctOer_Tk-5zMh7_1ERBLmHZelMnVDJYTL-US6kYS5iSd-NBFaMv9b5_iYjcf8ZG__k82FWc87Wcaurvj5f3U11IGzMXX2H9xddQoVUAanwxXcDtc7Of67wmRee_ZFDkPCosy11EEbeeYi51tgBhYw54VwMbVhLZB5XgqUTNQBnEbE2ShySHsEGnJVTDorTENj35wpE6WeqjkGeegte6CieiBtYiYnLMbrZtCJ3AC7TY06yaA3KHuqE2WrGyVKlmzewFQLgBGqdqxE80e-mWYrlC-vbW8spysYA9XyophuBP4YFVv_pVQhLmFI6-V5tsGS_cgZ9p1e2-F9LPABBoAMBw6HGlZ_MeJvI78MlG0rsOtiB92BM-w5XeisrwsRlss2XBe6DuvXp4II5TON1NJHdU2dGfJ9z4tq9AHPPr52ajJvSWYY14YRhVwLxgbedh62sQc70_NfQuBnchqf5vFZEcNy5yiOcJsbU90Pgk6bswY56B4Nx1-rbbQo1OdnVo9tt_V1gOPOg9xEzPazYlKjXKNH5GG5VqJdg_HHZE9lT8j9E4OEp-R3hXQK8KN1pNN8QmtIp7tIpxqJFJBOK6TTOtJpsqFbyJb2FJCub2WRjrexSKcl0utm0EkN6RSQXvb0jPz8PBz1v7jlUSSuDFvRygUezUUqPRW1W4Ix0fF5qjgLpUp4mvitSARpECrmeyoImWzzhCPVRuWNdpKEXus5acDXVi8IlZ6cgGHIEiZCmTCeolB4AOsmBhM-Dw6JZ_0Qy1KnH4-Lmcc2IHMWg-tidF3stWNw3SH5UJmcG5Ga2xqH1rlxybINe44BqbeZvQMgaADeDMSXd2n0ijzY_l1fk8aquFBvyD25Xk2XxdsSwn8A8sT_yg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+and+optimization+of+non-thermal+plasma-activated+water+for+bacterial+inactivation+by+underwater+plasma+jet+and+delivery+of+reactive+species+underwater+by+cylindrical+DBD+plasma&rft.jtitle=Current+applied+physics&rft.au=Tanitta+Royintarat&rft.au=Phisit+Seesuriyachan&rft.au=Dheerawan+Boonyawan&rft.au=%EC%B5%9C%EC%9D%80%ED%95%98&rft.date=2019-09-01&rft.pub=%ED%95%9C%EA%B5%AD%EB%AC%BC%EB%A6%AC%ED%95%99%ED%9A%8C&rft.issn=1567-1739&rft.eissn=1567-1739&rft.spage=1006&rft.epage=1014&rft_id=info:doi/10.1016%2Fj.cap.2019.05.020&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_6045808 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |