Mechanism and optimization of non-thermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma

Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW generated by a DC positive flyback transformer (FBT) underwater plasma jet with delivery of reactive species underwater by cylindrical dielectr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Current applied physics Ročník 19; číslo 9; s. 1006 - 1014
Hlavní autori: Royintarat, Tanitta, Seesuriyachan, Phisit, Boonyawan, Dheerawan, Choi, Eun Ha, Wattanutchariya, Wassanai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.09.2019
한국물리학회
Predmet:
ISSN:1567-1739, 1878-1675, 1567-1739
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW generated by a DC positive flyback transformer (FBT) underwater plasma jet with delivery of reactive species underwater by cylindrical dielectric barrier discharge (C-DBD) with a neon transformer. A Box–Behnken design was adopted as a response surface methodology (RSM) to design the experimental plan and optimize operating parameters including time, gas flow, and gas ratio. The physical responses comprise optical emission spectroscopy (OES), pH, oxidation-reduction potential (ORP), and electrical conductivity (EC). The chemical responses consist of hydrogen peroxide (H2O2) and hydroxyl radicals (OH·). The biological responses include Escherichia coli reduction and Staphylococcus aureus reduction. The optimal condition for underwater plasma jet was found to be Ar gas with a flow rate of 3 slm for 6.5 min of treatment time, which can reduce E. coli and S. aureus to 7.14 ± 0.14 and 3.10 ± 0.26 in log, respectively. Also, the optimal condition for delivery of reactive species underwater by C-DBD plasma was found to be Ar (99%): O2 (1%) gas mixture with an Ar gas flow rate of 4 slm for a treatment time of 11.5 min, which could reduce E. coli and S. aureus to 0.45 ± 0.07 and 2.45 ± 0.23 in log, respectively. [Display omitted] •A comparison of two plasma-activated water (PAW) sources, plasma jet with a DC positive flyback transformer (FBT) and cylindrical dielectric barrier discharge (C-DBD) with neon transformer.•The Box–Behnken design (BBD) was applied for the PAW treatment.•The multiple response desirability function and response surface methodology (RSM) were used to find the optimum conditions.
AbstractList Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW generated by a DC positive flyback transformer (FBT) underwater plasma jet with delivery of reactive species underwater by cylindrical dielectric barrier discharge (CDBD) with a neon transformer. A Box–Behnken design was adopted as a response surface methodology (RSM) to design the experimental plan and optimize operating parameters including time, gas flow, and gas ratio. The physical responses comprise optical emission spectroscopy (OES), pH, oxidation-reduction potential (ORP), and electrical conductivity (EC). The chemical responses consist of hydrogen peroxide (H2O2) and hydroxyl radicals (OH·). The biological responses include Escherichia coli reduction and Staphylococcus aureus reduction. The optimal condition for underwater plasma jet was found to be Ar gas with a flow rate of 3 slm for 6.5 min of treatment time, which can reduce E. coli and S. aureus to 7.14 ± 0.14 and 3.10 ± 0.26 in log, respectively. Also, the optimal condition for delivery of reactive species underwater by C-DBD plasma was found to be Ar (99%): O2 (1%) gas mixture with an Ar gas flow rate of 4 slm for a treatment time of 11.5 min, which could reduce E. coli and S. aureus to 0.45 ± 0.07 and 2.45 ± 0.23 in log, respectively. KCI Citation Count: 0
Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW generated by a DC positive flyback transformer (FBT) underwater plasma jet with delivery of reactive species underwater by cylindrical dielectric barrier discharge (C-DBD) with a neon transformer. A Box–Behnken design was adopted as a response surface methodology (RSM) to design the experimental plan and optimize operating parameters including time, gas flow, and gas ratio. The physical responses comprise optical emission spectroscopy (OES), pH, oxidation-reduction potential (ORP), and electrical conductivity (EC). The chemical responses consist of hydrogen peroxide (H2O2) and hydroxyl radicals (OH·). The biological responses include Escherichia coli reduction and Staphylococcus aureus reduction. The optimal condition for underwater plasma jet was found to be Ar gas with a flow rate of 3 slm for 6.5 min of treatment time, which can reduce E. coli and S. aureus to 7.14 ± 0.14 and 3.10 ± 0.26 in log, respectively. Also, the optimal condition for delivery of reactive species underwater by C-DBD plasma was found to be Ar (99%): O2 (1%) gas mixture with an Ar gas flow rate of 4 slm for a treatment time of 11.5 min, which could reduce E. coli and S. aureus to 0.45 ± 0.07 and 2.45 ± 0.23 in log, respectively. [Display omitted] •A comparison of two plasma-activated water (PAW) sources, plasma jet with a DC positive flyback transformer (FBT) and cylindrical dielectric barrier discharge (C-DBD) with neon transformer.•The Box–Behnken design (BBD) was applied for the PAW treatment.•The multiple response desirability function and response surface methodology (RSM) were used to find the optimum conditions.
Author Wattanutchariya, Wassanai
Choi, Eun Ha
Seesuriyachan, Phisit
Boonyawan, Dheerawan
Royintarat, Tanitta
Author_xml – sequence: 1
  givenname: Tanitta
  surname: Royintarat
  fullname: Royintarat, Tanitta
  email: royintarat@hotmail.com
  organization: Advanced Manufacturing Technology Research Center (AMTech), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, 239 Suthep, Mueang, Chiang Mai, 50200, Thailand
– sequence: 2
  givenname: Phisit
  surname: Seesuriyachan
  fullname: Seesuriyachan, Phisit
  organization: Faculty of Agro-Industry, Chiang Mai University, 155 Moo 2, Mae Hea, Mueang, Chiang Mai, 50100, Thailand
– sequence: 3
  givenname: Dheerawan
  orcidid: 0000-0001-5129-2814
  surname: Boonyawan
  fullname: Boonyawan, Dheerawan
  organization: Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Suthep, Mueang, Chiang Mai, 50200, Thailand
– sequence: 4
  givenname: Eun Ha
  orcidid: 0000-0001-5385-1878
  surname: Choi
  fullname: Choi, Eun Ha
  email: ehchoi@kw.ac.kr
  organization: Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
– sequence: 5
  givenname: Wassanai
  orcidid: 0000-0003-0571-5809
  surname: Wattanutchariya
  fullname: Wattanutchariya, Wassanai
  email: wassanai@eng.cmu.ac.th
  organization: Advanced Manufacturing Technology Research Center (AMTech), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, 239 Suthep, Mueang, Chiang Mai, 50200, Thailand
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002503621$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc1u3CAUha0olfLTPkB3bLuwC7axQV2lSX8ipaoUJWuE4bq5ExssoFNNH61PV2Y8i6qLbLgIzneO4FwUp847KIq3jFaMsu79pjJ6qWrKZEV5RWt6Upwz0YuSdT0_zXve9SXrG3lWXMS4oZlpaXte_PkG5kk7jDPRzhK_JJzxt07oHfEjySlleoIw64ksk46zLrVJuNUJLPmV10BGH8iQDyFgFqE73u8Nhh356SyEVbjyZAPpEGVhwi2E3T4mwIECEhcwCPFfLJuY3YTOBjQ54ObjzdHpdfFq1FOEN8d5WTx-_vRw_bW8-_7l9vrqrjRt06WyF7XU1lDoeKOF0D2TFqRoDQzSDqzpdG3rFgSjULfCcDlIwSTlxgo-DC1tLot3q68Lo3o2qLzGw_zh1XNQV_cPt6qjLRdUZG2_ak3wMQYYlcF0-IwUNE6KUbWvS21Urkvt61KUq1xXJtl_5BJw1mH3IvNhZSA_f4sQVMy_5wxYDGCSsh5foP8CZ6S0ZA
CitedBy_id crossref_primary_10_1016_j_seppur_2021_119672
crossref_primary_10_1140_epjd_s10053_020_00004_4
crossref_primary_10_1002_ppap_201900270
crossref_primary_10_3390_app122312325
crossref_primary_10_1016_j_jfp_2024_100437
crossref_primary_10_1088_2632_2153_acc1c0
crossref_primary_10_1111_jfs_13136
crossref_primary_10_3389_fmicb_2022_1100102
crossref_primary_10_1039_D5MH00945F
crossref_primary_10_1088_1361_6463_ad77de
crossref_primary_10_1016_j_ifset_2025_103978
crossref_primary_10_1007_s11090_023_10380_5
crossref_primary_10_1111_1541_4337_13126
crossref_primary_10_1111_jfpe_14156
crossref_primary_10_1016_j_ifset_2023_103360
crossref_primary_10_1016_j_jiec_2025_07_018
crossref_primary_10_1016_j_chemosphere_2021_130255
crossref_primary_10_1016_j_lwt_2024_116176
crossref_primary_10_1016_j_sjbs_2021_12_023
crossref_primary_10_1002_ppap_202200234
crossref_primary_10_1111_jam_14823
crossref_primary_10_1039_D1RA07774K
crossref_primary_10_1016_j_envres_2024_120467
crossref_primary_10_1038_s41598_020_58199_w
crossref_primary_10_1016_j_ijfoodmicro_2021_109332
crossref_primary_10_1093_jambio_lxae182
crossref_primary_10_1002_ppap_70048
crossref_primary_10_1016_j_eti_2024_103746
crossref_primary_10_1016_j_lwt_2021_111879
crossref_primary_10_1016_j_chemosphere_2022_133808
crossref_primary_10_1088_1742_6596_2312_1_012012
crossref_primary_10_3390_plasma8030027
crossref_primary_10_1016_j_jece_2023_109977
crossref_primary_10_1088_1361_6595_ac4ddd
crossref_primary_10_1002_ppap_202400155
crossref_primary_10_1111_1541_4337_12644
crossref_primary_10_1016_j_jece_2020_103891
crossref_primary_10_1007_s11090_021_10183_6
crossref_primary_10_1016_j_tifs_2023_104282
crossref_primary_10_1088_1361_6463_abb624
crossref_primary_10_1080_19476337_2024_2386417
crossref_primary_10_1111_1541_4337_13250
crossref_primary_10_1002_adfm_202212236
crossref_primary_10_1088_1742_6596_2426_1_012052
crossref_primary_10_26565_2312_4334_2023_2_43
crossref_primary_10_1515_reveh_2022_0114
crossref_primary_10_3389_fnut_2024_1365282
crossref_primary_10_1002_ppap_70050
crossref_primary_10_1016_j_scitotenv_2023_162235
crossref_primary_10_1007_s11090_022_10244_4
crossref_primary_10_1016_j_ijfoodmicro_2023_110419
crossref_primary_10_1016_j_psep_2024_05_009
crossref_primary_10_1016_j_jece_2020_104377
crossref_primary_10_1088_1361_6463_ad5f99
crossref_primary_10_1007_s00253_020_10926_z
crossref_primary_10_1016_j_seppur_2021_119185
crossref_primary_10_3390_ijerph19116630
crossref_primary_10_1080_10408398_2025_2477799
crossref_primary_10_1016_j_lwt_2021_112547
crossref_primary_10_1016_j_fpp_2024_100078
crossref_primary_10_1111_1541_4337_12667
crossref_primary_10_3390_polym15051235
crossref_primary_10_1007_s11090_022_10292_w
crossref_primary_10_1002_btpr_3511
crossref_primary_10_3390_foods12051113
crossref_primary_10_1016_j_bioflm_2025_100308
crossref_primary_10_1088_2058_6272_ac3410
crossref_primary_10_1016_j_surfcoat_2020_126638
crossref_primary_10_1063_5_0039253
crossref_primary_10_1080_10408398_2020_1852173
crossref_primary_10_1016_j_fm_2020_103708
crossref_primary_10_1016_j_ifset_2024_103576
crossref_primary_10_1016_j_cej_2022_138643
crossref_primary_10_1016_j_cej_2025_159667
crossref_primary_10_3390_biomedicines9111700
crossref_primary_10_1002_ppap_202200182
crossref_primary_10_1080_00986445_2023_2172571
crossref_primary_10_1016_j_cofs_2021_04_012
crossref_primary_10_3390_ma16031167
crossref_primary_10_3390_foods9101491
Cites_doi 10.1002/ppap.201400082
10.1038/srep28505
10.1111/1574-6976.12026
10.1088/0022-3727/47/36/362001
10.1016/j.jhazmat.2015.07.061
10.1016/j.ifset.2018.01.007
10.1166/jbt.2018.1817
10.1063/1.4807133
10.1039/C4RA05936K
10.1088/1742-6596/418/1/012102
10.1128/AEM.02660-15
10.1080/00224065.1980.11980968
10.1007/s11356-017-9169-0
10.1016/j.elstat.2004.12.007
10.1016/j.physrep.2014.02.006
10.1016/j.foodcont.2016.12.021
10.1002/ppap.200900077
10.1128/AAC.01002-10
10.1016/j.fpsl.2017.08.007
10.1016/j.numecd.2005.05.003
10.1002/ppap.201100041
10.1063/1.4989735
10.1016/j.watres.2017.12.035
10.1039/C6RA24762H
10.1002/ppap.200900070
10.1128/jb.166.2.519-527.1986
10.1002/ppap.201300072
10.1016/j.foodchem.2015.10.144
ContentType Journal Article
Copyright 2019 Korean Physical Society
Copyright_xml – notice: 2019 Korean Physical Society
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.cap.2019.05.020
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
1567-1739
EndPage 1014
ExternalDocumentID oai_kci_go_kr_ARTI_6045808
10_1016_j_cap_2019_05_020
S1567173919301622
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ACYCR
ID FETCH-LOGICAL-c436t-7829adc0e653a88a719de984ceb9db136a2d24e810e248c59b981905cd85bb403
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472202700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1567-1739
IngestDate Sun Mar 09 07:53:05 EDT 2025
Sat Nov 29 07:03:32 EST 2025
Tue Nov 18 22:40:09 EST 2025
Fri Feb 23 02:30:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Design of experiment (DOE)
Bacteria
Cylindrical dielectric barrier discharge (C-DBD)
Underwater plasma jet
Plasma-activated water (PAW)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-7829adc0e653a88a719de984ceb9db136a2d24e810e248c59b981905cd85bb403
ORCID 0000-0003-0571-5809
0000-0001-5385-1878
0000-0001-5129-2814
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6045808
crossref_citationtrail_10_1016_j_cap_2019_05_020
crossref_primary_10_1016_j_cap_2019_05_020
elsevier_sciencedirect_doi_10_1016_j_cap_2019_05_020
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Current applied physics
PublicationYear 2019
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Rio, Stewart, Pellegrini (bib19) 2005; 15
Shen, Tian, Li, Ma, Zhang, Zhang, Fang (bib8) 2016; 6
Suwal, Coronel-Aguilera, Auer, Applegate, Garner, Huang (bib9) 2019; 53
Royintarat, Boonyawan, Seesuriyachan, Wattanutchariya (bib10) 2018; 8
Chen, Liang, Su (bib25) 2018; 27
Vatansever, de Melo, Avci, Vecchio, Sadasivam, Gupta, Chandran, Karimi, Parizotto, Yin, Tegos, Hamblin (bib30) 2013; 37
Liu, Sun, Bai, Tian, Zhou, Wei, Zhou, Zhang, Zhu, Becker, Fang (bib31) 2010; 7
Burlicaa, Kirkpatrickb (bib24) 2006; 64
Liao, Liu, Xiang, Ahn, Chen, Ye, Ding (bib20) 2017; 75
Ma, Wang, Tian, Wang, Zhang, Fang (bib3) 2015; 300
Lukes, Locke, Brisset (bib23) 2012
Zhang, Liang, Feng, Ma, Tian, Zhang, Fang (bib26) 2013; 102
Lu, Naidis, Laroussi, Ostrikov (bib14) 2014; 540
Hong, Szili, Jenkins, Short (bib18) 2014; 47
Sun, Wu, Bai, Zhou, Wang, Feng, Zhu, Zhang (bib21) 2012; 9
Kanazawa, Furuki, Nakaji, Akamine, Ichiki (bib11) 2013; 418
Tian, Ma, Zhang, Feng, Liang, Zhang, Fang (bib7) 2015; 12
Oehmigen, Hahnel, Brandenburg, Wilke, Weltmann (bib22) 2010; 7
Sivachandiran, Khacef (bib27) 2017; 7
Ranieri, Patel, Mannsberger, Huynh, Suarez, Kovalenko, Fridman, Miller, Fridman (bib5) 2017; 23
Takamatsu, Uehara, Sasaki, Miyahara, Matsumura, Iwasawa, Ito, Azuma, Kohnoc, Okino (bib29) 2014; 4
Derringer, Suich (bib13) 1980; 12
Judée, Simon, Dufour (bib28) 2017; 133
Chu, Lu (bib16) 2014
Andrasch, Stachowiak, Schlüter, Schnabel, Ehlbeck (bib6) 2017; 14
Humad, Abbas, Rauuf (bib15) 2015; 5
Han, Patil, Boehm, Milosavljevic, Cullen, Bourke (bib17) 2015; 82
Xu, Tian, Ma, Liu, Zhang (bib4) 2016; 197
Imlay, Linn (bib32) 1986; 166
Ghimire, Sornsakdanuphap, Hong, Uhm, Weltmann, Choi (bib12) 2017; 24
Schnabel, Andrasch, Weltmann, Ehlbeck (bib2) 2014; 11
Joshi, Cooper, Yost, Paff, Ercan, Fridman, Friedman, Fridman, Brooks (bib1) 2011; 55
Schnabel (10.1016/j.cap.2019.05.020_bib2) 2014; 11
Kanazawa (10.1016/j.cap.2019.05.020_bib11) 2013; 418
Chen (10.1016/j.cap.2019.05.020_bib25) 2018; 27
Burlicaa (10.1016/j.cap.2019.05.020_bib24) 2006; 64
Andrasch (10.1016/j.cap.2019.05.020_bib6) 2017; 14
Vatansever (10.1016/j.cap.2019.05.020_bib30) 2013; 37
Suwal (10.1016/j.cap.2019.05.020_bib9) 2019; 53
Ranieri (10.1016/j.cap.2019.05.020_bib5) 2017; 23
Derringer (10.1016/j.cap.2019.05.020_bib13) 1980; 12
Joshi (10.1016/j.cap.2019.05.020_bib1) 2011; 55
Xu (10.1016/j.cap.2019.05.020_bib4) 2016; 197
Ghimire (10.1016/j.cap.2019.05.020_bib12) 2017; 24
Lukes (10.1016/j.cap.2019.05.020_bib23) 2012
Imlay (10.1016/j.cap.2019.05.020_bib32) 1986; 166
Royintarat (10.1016/j.cap.2019.05.020_bib10) 2018; 8
Chu (10.1016/j.cap.2019.05.020_bib16) 2014
Judée (10.1016/j.cap.2019.05.020_bib28) 2017; 133
Han (10.1016/j.cap.2019.05.020_bib17) 2015; 82
Rio (10.1016/j.cap.2019.05.020_bib19) 2005; 15
Hong (10.1016/j.cap.2019.05.020_bib18) 2014; 47
Takamatsu (10.1016/j.cap.2019.05.020_bib29) 2014; 4
Zhang (10.1016/j.cap.2019.05.020_bib26) 2013; 102
Oehmigen (10.1016/j.cap.2019.05.020_bib22) 2010; 7
Sivachandiran (10.1016/j.cap.2019.05.020_bib27) 2017; 7
Humad (10.1016/j.cap.2019.05.020_bib15) 2015; 5
Lu (10.1016/j.cap.2019.05.020_bib14) 2014; 540
Liu (10.1016/j.cap.2019.05.020_bib31) 2010; 7
Ma (10.1016/j.cap.2019.05.020_bib3) 2015; 300
Sun (10.1016/j.cap.2019.05.020_bib21) 2012; 9
Shen (10.1016/j.cap.2019.05.020_bib8) 2016; 6
Liao (10.1016/j.cap.2019.05.020_bib20) 2017; 75
Tian (10.1016/j.cap.2019.05.020_bib7) 2015; 12
References_xml – volume: 8
  start-page: 887
  year: 2018
  end-page: 891
  ident: bib10
  article-title: A comparison of plasma activated water techniques for bacteria inactivation
  publication-title: J. Biomater. Tissue Eng.
– volume: 24
  year: 2017
  ident: bib12
  article-title: The effect of the gap distance between an atmospheric-pressure plasma jet nozzle and liquid surface on OH and N
  publication-title: Phys. Plasmas
– volume: 9
  start-page: 157
  year: 2012
  end-page: 164
  ident: bib21
  article-title: Inactivation of
  publication-title: Plasma Process. Polym.
– volume: 12
  start-page: 214
  year: 1980
  end-page: 219
  ident: bib13
  article-title: Simultaneous optimization of several response variables
  publication-title: J. Qual. Technol.
– volume: 11
  start-page: 110
  year: 2014
  end-page: 116
  ident: bib2
  article-title: Inactivation of vegetative microorganisms and Bacillus atrophaeus endospores by reactive nitrogen species (RNS)
  publication-title: Plasma Process. Polym.
– volume: 14
  start-page: 40
  year: 2017
  end-page: 45
  ident: bib6
  article-title: Scale-up to pilot plant dimensions of plasma processed water generation for fresh-cut lettuce treatment
  publication-title: J. Food Pack. Shelf Life.
– volume: 15
  start-page: 316
  year: 2005
  end-page: 328
  ident: bib19
  article-title: A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress
  publication-title: Nutr. Metabol. Cardiovasc. Dis.
– volume: 418
  year: 2013
  ident: bib11
  article-title: Application of chemical dosimetry to hydroxyl radical measurement during underwater discharge
  publication-title: J. Phys. Conf. Ser.
– volume: 64
  start-page: 35
  year: 2006
  end-page: 43
  ident: bib24
  article-title: BR. Locke., Formation of reactive species in gliding arc discharges with liquid water
  publication-title: J. Electrost.
– volume: 4
  start-page: 39901
  year: 2014
  end-page: 39905
  ident: bib29
  article-title: Investigation of reactive species using various gas plasmas
  publication-title: RSC Adv.
– volume: 166
  start-page: 519
  year: 1986
  end-page: 527
  ident: bib32
  article-title: Bimodal pattern of killing of DNA repair-defective or anoxically grown Escherichia coli by hydrogen peroxide
  publication-title: J. Bacterial.
– volume: 300
  start-page: 643
  year: 2015
  end-page: 651
  ident: bib3
  article-title: Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce
  publication-title: J. Hazard Mater.
– volume: 6
  start-page: 28505
  year: 2016
  ident: bib8
  article-title: Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures
  publication-title: Sci. Rep.
– volume: 102
  start-page: 203701
  year: 2013
  ident: bib26
  article-title: A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 26699
  year: 2018
  end-page: 26706
  ident: bib25
  article-title: Plasma-activated water: antibacterial activity and artifacts
  publication-title: Environ. Sci. Pollut. Res.
– year: 2014
  ident: bib16
  article-title: Low Temperature Plasma Technology Methods and Applications
– volume: 53
  start-page: 18
  year: 2019
  end-page: 25
  ident: bib9
  article-title: Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology
  publication-title: Innov. Food Sci. Emerg. Technol.
– volume: 540
  start-page: 123
  year: 2014
  ident: bib14
  article-title: Guided ionization waves: theory and experiments
  publication-title: Phys. Rep.
– volume: 7
  start-page: 250
  year: 2010
  end-page: 257
  ident: bib22
  article-title: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids
  publication-title: Plasma Process. Polym.
– volume: 75
  start-page: 83
  year: 2017
  end-page: 91
  ident: bib20
  article-title: Inactivation mechanisms of non-thermal plasma on microbes: a review
  publication-title: Food Control
– year: 2012
  ident: bib23
  article-title: Aqueous-Phase Chemistry of Electrical Discharge Plasma in Water and in Gas-Liquid Environments, Plasma Chemistry and Catalysis in Gases and Liquid
– volume: 82
  start-page: 450
  year: 2015
  end-page: 458
  ident: bib17
  article-title: Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus
  publication-title: Appl. Environ. Microbiol.
– volume: 37
  start-page: 955
  year: 2013
  end-page: 989
  ident: bib30
  article-title: Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond
  publication-title: FEMS Microbiol. Rev.
– volume: 133
  start-page: 47
  year: 2017
  end-page: 59
  ident: bib28
  article-title: Plasma-activation of tap water using DBD for agronomy applications: identification and quantification of long lifetime chemical species and production/consumption mechanisms
  publication-title: Water Res.
– volume: 7
  start-page: 1822
  year: 2017
  end-page: 1832
  ident: bib27
  article-title: Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment
  publication-title: RSC Adv.
– volume: 197
  start-page: 436
  year: 2016
  end-page: 444
  ident: bib4
  article-title: Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus
  publication-title: Food Chem.
– volume: 55
  start-page: 1053
  year: 2011
  end-page: 1062
  ident: bib1
  article-title: Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative dna damage and membrane lipid peroxidation in Escherichia coli
  publication-title: Antimicrob. Agents Chemother.
– volume: 47
  start-page: 362001
  year: 2014
  ident: bib18
  article-title: Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells
  publication-title: J. Phys. D Appl. Phys.
– volume: 12
  start-page: 439
  year: 2015
  end-page: 449
  ident: bib7
  article-title: Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface
  publication-title: Plasma Process. Polym.
– volume: 7
  start-page: 231
  year: 2010
  end-page: 236
  ident: bib31
  article-title: Inactivation of bacteria in an aqueous environment by a direct‐current, cold‐atmospheric‐pressure air plasma microjet
  publication-title: Plasma Process. Polym.
– volume: 5
  year: 2015
  ident: bib15
  article-title: Effect of gas flow rate on the electron temperature, electron density and gas temperature for atmospheric microwave plasma jet
  publication-title: Int. J. Comput. Eng. &Technol. (IJCET)
– volume: 23
  start-page: 1050
  year: 2017
  end-page: 1052
  ident: bib5
  article-title: Plasma agriculture and food safety: fresh produce disinfection by DBD-treated water mist, and scaled-up gliding arc plasmatron treatment of water solutions
  publication-title: Int. Symp. Plasma Chem.
– year: 2012
  ident: 10.1016/j.cap.2019.05.020_bib23
– volume: 12
  start-page: 439
  year: 2015
  ident: 10.1016/j.cap.2019.05.020_bib7
  article-title: Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201400082
– volume: 6
  start-page: 28505
  year: 2016
  ident: 10.1016/j.cap.2019.05.020_bib8
  article-title: Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures
  publication-title: Sci. Rep.
  doi: 10.1038/srep28505
– volume: 37
  start-page: 955
  year: 2013
  ident: 10.1016/j.cap.2019.05.020_bib30
  article-title: Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/1574-6976.12026
– volume: 47
  start-page: 362001
  issue: 36
  year: 2014
  ident: 10.1016/j.cap.2019.05.020_bib18
  article-title: Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/47/36/362001
– volume: 300
  start-page: 643
  year: 2015
  ident: 10.1016/j.cap.2019.05.020_bib3
  article-title: Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2015.07.061
– volume: 53
  start-page: 18
  year: 2019
  ident: 10.1016/j.cap.2019.05.020_bib9
  article-title: Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology
  publication-title: Innov. Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2018.01.007
– volume: 8
  start-page: 887
  year: 2018
  ident: 10.1016/j.cap.2019.05.020_bib10
  article-title: A comparison of plasma activated water techniques for bacteria inactivation
  publication-title: J. Biomater. Tissue Eng.
  doi: 10.1166/jbt.2018.1817
– volume: 102
  start-page: 203701
  year: 2013
  ident: 10.1016/j.cap.2019.05.020_bib26
  article-title: A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4807133
– volume: 4
  start-page: 39901
  year: 2014
  ident: 10.1016/j.cap.2019.05.020_bib29
  article-title: Investigation of reactive species using various gas plasmas
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05936K
– volume: 418
  year: 2013
  ident: 10.1016/j.cap.2019.05.020_bib11
  article-title: Application of chemical dosimetry to hydroxyl radical measurement during underwater discharge
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/418/1/012102
– volume: 82
  start-page: 450
  issue: 2
  year: 2015
  ident: 10.1016/j.cap.2019.05.020_bib17
  article-title: Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02660-15
– volume: 12
  start-page: 214
  year: 1980
  ident: 10.1016/j.cap.2019.05.020_bib13
  article-title: Simultaneous optimization of several response variables
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.1980.11980968
– volume: 27
  start-page: 26699
  year: 2018
  ident: 10.1016/j.cap.2019.05.020_bib25
  article-title: Plasma-activated water: antibacterial activity and artifacts
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9169-0
– volume: 64
  start-page: 35
  year: 2006
  ident: 10.1016/j.cap.2019.05.020_bib24
  article-title: BR. Locke., Formation of reactive species in gliding arc discharges with liquid water
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2004.12.007
– volume: 23
  start-page: 1050
  year: 2017
  ident: 10.1016/j.cap.2019.05.020_bib5
  article-title: Plasma agriculture and food safety: fresh produce disinfection by DBD-treated water mist, and scaled-up gliding arc plasmatron treatment of water solutions
  publication-title: Int. Symp. Plasma Chem.
– volume: 540
  start-page: 123
  year: 2014
  ident: 10.1016/j.cap.2019.05.020_bib14
  article-title: Guided ionization waves: theory and experiments
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2014.02.006
– volume: 75
  start-page: 83
  year: 2017
  ident: 10.1016/j.cap.2019.05.020_bib20
  article-title: Inactivation mechanisms of non-thermal plasma on microbes: a review
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.12.021
– volume: 7
  start-page: 250
  year: 2010
  ident: 10.1016/j.cap.2019.05.020_bib22
  article-title: The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200900077
– volume: 55
  start-page: 1053
  issue: 3
  year: 2011
  ident: 10.1016/j.cap.2019.05.020_bib1
  article-title: Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative dna damage and membrane lipid peroxidation in Escherichia coli
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01002-10
– volume: 14
  start-page: 40
  year: 2017
  ident: 10.1016/j.cap.2019.05.020_bib6
  article-title: Scale-up to pilot plant dimensions of plasma processed water generation for fresh-cut lettuce treatment
  publication-title: J. Food Pack. Shelf Life.
  doi: 10.1016/j.fpsl.2017.08.007
– volume: 15
  start-page: 316
  issue: 4
  year: 2005
  ident: 10.1016/j.cap.2019.05.020_bib19
  article-title: A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress
  publication-title: Nutr. Metabol. Cardiovasc. Dis.
  doi: 10.1016/j.numecd.2005.05.003
– volume: 9
  start-page: 157
  year: 2012
  ident: 10.1016/j.cap.2019.05.020_bib21
  article-title: Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201100041
– volume: 24
  year: 2017
  ident: 10.1016/j.cap.2019.05.020_bib12
  article-title: The effect of the gap distance between an atmospheric-pressure plasma jet nozzle and liquid surface on OH and N2 species concentrations
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4989735
– volume: 133
  start-page: 47
  year: 2017
  ident: 10.1016/j.cap.2019.05.020_bib28
  article-title: Plasma-activation of tap water using DBD for agronomy applications: identification and quantification of long lifetime chemical species and production/consumption mechanisms
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.12.035
– volume: 7
  start-page: 1822
  year: 2017
  ident: 10.1016/j.cap.2019.05.020_bib27
  article-title: Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment
  publication-title: RSC Adv.
  doi: 10.1039/C6RA24762H
– volume: 5
  issue: 6
  year: 2015
  ident: 10.1016/j.cap.2019.05.020_bib15
  article-title: Effect of gas flow rate on the electron temperature, electron density and gas temperature for atmospheric microwave plasma jet
  publication-title: Int. J. Comput. Eng. &Technol. (IJCET)
– volume: 7
  start-page: 231
  year: 2010
  ident: 10.1016/j.cap.2019.05.020_bib31
  article-title: Inactivation of bacteria in an aqueous environment by a direct‐current, cold‐atmospheric‐pressure air plasma microjet
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200900070
– volume: 166
  start-page: 519
  issue: 2
  year: 1986
  ident: 10.1016/j.cap.2019.05.020_bib32
  article-title: Bimodal pattern of killing of DNA repair-defective or anoxically grown Escherichia coli by hydrogen peroxide
  publication-title: J. Bacterial.
  doi: 10.1128/jb.166.2.519-527.1986
– year: 2014
  ident: 10.1016/j.cap.2019.05.020_bib16
– volume: 11
  start-page: 110
  issue: 2
  year: 2014
  ident: 10.1016/j.cap.2019.05.020_bib2
  article-title: Inactivation of vegetative microorganisms and Bacillus atrophaeus endospores by reactive nitrogen species (RNS)
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201300072
– volume: 197
  start-page: 436
  year: 2016
  ident: 10.1016/j.cap.2019.05.020_bib4
  article-title: Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.10.144
SSID ssj0016404
Score 2.515067
Snippet Plasma-activated water (PAW) has been in use for the past decade in sanitization against bacteria and other microorganisms. This research study compared PAW...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1006
SubjectTerms Bacteria
Cylindrical dielectric barrier discharge (C-DBD)
Design of experiment (DOE)
Plasma-activated water (PAW)
Underwater plasma jet
물리학
Title Mechanism and optimization of non-thermal plasma-activated water for bacterial inactivation by underwater plasma jet and delivery of reactive species underwater by cylindrical DBD plasma
URI https://dx.doi.org/10.1016/j.cap.2019.05.020
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002503621
Volume 19
WOSCitedRecordID wos000472202700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2019, 19(9), , pp.1006-1014
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AIEXJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2DgQviKsYN1mIJ6agXJzEftzo0IbENGlD6pvluO5I1yZT2nXrX-PXcU7sXDRgAiRe0jatT5KeL_Zn55zvEPJOqSxh2QR6P8aZxwKVeSLVcLtPEhVHSYybuthEenTERyNxvLF5r8mFWc3SouDX1-Liv7oa9oGzMXX2L9zdGoUd8B6cDltwO2z_yPFfDCbzNrUvSugS5i7Xsg7aKAsPOd8cM7CAOc-Vh6kNK4XM80qhZGIdwGlFnK0ih25KoCFXxaSzyv7Qtt-ZGhulPjYzDPKoH9kDFa070h3M5ITJeL8ZGNFrYLdjq04y3Bs6S32i3OhGKceS7QpMF5hfrvNiibLlNeBQw2PZDjAnxiwuq3yt8I9wq0aLvI3v2SvLYq2u7FfDb8ZU-KGLcyhzmwFU7Byo_qJI0EV9uZW6n7J1bOeeoCCmFU_6YOw-jrPoxFZvaUcE0UO-6HXvge8nPaqAdY5_OQzZFZEpxrBh9KCoxWFDvxtz20jIEzwpPCcg0tAqBDaxFaax4AOytXu4P_rcPhJLWF0Ls72I5hF9Hax440C_I1mbRTXp0afTh-SBm_fQXYvXR2TDFI_J3WPr1Sfke4taClCifdTSckJ7qKU3UUtrVFFALW1RS_uopdmadvBz7Smgtj5Ug1o8TINa6lDbbwZGeqilgFpn6Sn5-mn_9OOB58qKeJpFydIDTizUWPsmiSPFuUoDMTaCM20yMc6CKFHhOGSGB74JGdexyATSZlTRiLOM-dEzMoDLNs8JBYM-z9LU55OIaaEzFoAprf0MDGsebxO_8YPUTnMfS7_MZBNcOZXgOomuk34swXXb5H3b5MIKztz2Y9Y4VzrGbJmwBCTe1uwtAEGe61yiujy-npXyvJIwhz6UCcZO-PzFv9l-Se53N-QrMlhWl-Y1uaNXy3xRvXGg_gEq6_sJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+and+optimization+of+non-thermal+plasma-activated+water+for+bacterial+inactivation+by+underwater+plasma+jet+and+delivery+of+reactive+species+underwater+by+cylindrical+DBD+plasma&rft.jtitle=Current+applied+physics&rft.au=Royintarat%2C+Tanitta&rft.au=Seesuriyachan%2C+Phisit&rft.au=Boonyawan%2C+Dheerawan&rft.au=Choi%2C+Eun+Ha&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=19&rft.issue=9&rft.spage=1006&rft.epage=1014&rft_id=info:doi/10.1016%2Fj.cap.2019.05.020&rft.externalDocID=S1567173919301622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon