Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage
Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expecte...
Uloženo v:
| Vydáno v: | Free radical biology & medicine Ročník 177; s. 370 - 380 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
01.12.2021
|
| Témata: | |
| ISSN: | 0891-5849, 1873-4596, 1873-4596 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.
[Display omitted]
•TMLHE gene deletion is associated with lower acylcarnitine concentrations in plasma and tissues.•Accumulated long-chain acylcarnitines induce ROS production during reperfusion.•I/R-induced mitochondrial ROS production was lower in TMLHE KO mouse hearts.•TMLD is a novel drug target for cardioprotection. |
|---|---|
| AbstractList | Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion. Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N -trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion. Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion. [Display omitted] •TMLHE gene deletion is associated with lower acylcarnitine concentrations in plasma and tissues.•Accumulated long-chain acylcarnitines induce ROS production during reperfusion.•I/R-induced mitochondrial ROS production was lower in TMLHE KO mouse hearts.•TMLD is a novel drug target for cardioprotection. |
| Author | Vilks, Karlis Svalbe, Baiba Stelfa, Gundega Makrecka-Kuka, Marina Kuka, Janis Groma, Valerija Liepinsh, Edgars Grinberga, Solveiga Vilskersts, Reinis Plaas, Mario Sevostjanovs, Eduards Goldins, Niks Ricards Dambrova, Maija |
| Author_xml | – sequence: 1 givenname: Edgars orcidid: 0000-0003-2213-8337 surname: Liepinsh fullname: Liepinsh, Edgars email: ledgars@farm.osi.lv organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 2 givenname: Janis orcidid: 0000-0002-0411-0229 surname: Kuka fullname: Kuka, Janis organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 3 givenname: Karlis orcidid: 0000-0002-4203-2129 surname: Vilks fullname: Vilks, Karlis organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 4 givenname: Baiba orcidid: 0000-0001-8390-773X surname: Svalbe fullname: Svalbe, Baiba organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 5 givenname: Gundega orcidid: 0000-0001-7520-142X surname: Stelfa fullname: Stelfa, Gundega organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 6 givenname: Reinis orcidid: 0000-0001-9174-4985 surname: Vilskersts fullname: Vilskersts, Reinis organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 7 givenname: Eduards surname: Sevostjanovs fullname: Sevostjanovs, Eduards organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 8 givenname: Niks Ricards surname: Goldins fullname: Goldins, Niks Ricards organization: Riga Stradins University, Dzirciema Str 16, Riga, LV1007, Latvia – sequence: 9 givenname: Valerija surname: Groma fullname: Groma, Valerija organization: Riga Stradins University, Dzirciema Str 16, Riga, LV1007, Latvia – sequence: 10 givenname: Solveiga surname: Grinberga fullname: Grinberga, Solveiga organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 11 givenname: Mario surname: Plaas fullname: Plaas, Mario organization: Laboratory Animal Center, University of Tartu, Ravila 14b, Tartu, 50411, Estonia – sequence: 12 givenname: Marina surname: Makrecka-Kuka fullname: Makrecka-Kuka, Marina organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia – sequence: 13 givenname: Maija orcidid: 0000-0002-1739-0928 surname: Dambrova fullname: Dambrova, Maija organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34728372$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1URH_gFVAkNmwy-CeJHbGqqoEiDWJT1pZ7fd16mtiD7bTqU_DKeDSlEqy6suT7nePrc07JUYgBCfnA6IpRNnzarlxCTMZe-zijXXHKWZ2sqOhfkROmpGi7fhyOyAlVI2t71Y3H5DTnLaW064V6Q45FJ7kSkp-Q35v40IBJ1htoIIaCoTTRNVMMNy3cGh8aA49TJYIvPmBu6s3V983lurkLEe7iUprZAza7hPdVW-e5ynD2pk24w-SW7GNofbALoK1siXAbg03eTI0J9vlxa2Zzg2_Ja2emjO-ezjPy88v66uKy3fz4-u3ifNNCJ4bS9tJJCW5gcuCqV06AwPofPoKikg0WuoEOUnbGIRghrOlAKuitk8CYMVyckY8H312KvxbMRc91cZwmEzAuWfN-FJQrPsqKvn9Cl-uat94lP5v0qP-GWIHPBwBSzDmhe0YY1fvK9Fb_U5neV7Yf1sqq-vw_NfhiSg2tJOOnF3qsDx5YI7v3mHQGj6EG7hNC0Tb6F_n8AeWtv6g |
| CitedBy_id | crossref_primary_10_1002_jimd_12664 crossref_primary_10_3390_ijms24065528 crossref_primary_10_1016_j_biopha_2023_115803 crossref_primary_10_1016_j_heliyon_2024_e36429 crossref_primary_10_1186_s12967_025_06341_5 crossref_primary_10_1186_s13229_023_00560_7 crossref_primary_10_1002_biof_70014 crossref_primary_10_3390_jpm13020298 crossref_primary_10_1113_JP285720 crossref_primary_10_1186_s12967_023_04420_z |
| Cites_doi | 10.1016/S0022-3565(25)27660-1 10.12997/jla.2020.9.3.313 10.1096/fj.14-255901 10.1016/j.bbabio.2018.11.017 10.1038/s41598-017-17797-x 10.1016/j.metabol.2013.09.014 10.1159/000028407 10.1152/ajpheart.01307.2007 10.1152/ajpheart.01028.2002 10.1097/SHK.0000000000001315 10.3390/ijms21207461 10.1073/pnas.1120210109 10.1016/j.freeradbiomed.2021.01.036 10.1042/BCJ20160164 10.1016/j.pep.2014.09.002 10.1126/science.1260419 10.1038/nrendo.2015.129 10.1210/jc.2017-02139 10.1038/5030 10.1007/s11010-014-2106-3 10.1111/bph.13004 10.1177/1074248411419502 10.1161/RES.0000000000000104 10.1111/j.1742-4658.2007.06108.x 10.1111/j.1432-1033.1989.tb15164.x 10.1111/j.1476-5381.2010.00873.x 10.1017/S0029665118002793 10.1016/j.phrs.2015.11.014 10.3390/molecules24183251 10.1007/s00210-004-0925-6 10.1038/srep00079 10.1016/j.vascn.2012.11.001 10.1126/science.179.4076.899 10.1111/jcmm.15180 10.1016/j.bbadis.2016.04.012 10.1016/j.jacc.2015.10.079 10.1039/c0cs00203h 10.1016/j.vph.2015.05.005 10.1146/annurev.bi.57.070188.001401 10.1016/j.gene.2007.02.012 10.2337/db12-0259 10.1038/s42255-019-0115-y 10.1210/endocr/bqz046 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.freeradbiomed.2021.10.035 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1873-4596 |
| EndPage | 380 |
| ExternalDocumentID | 34728372 10_1016_j_freeradbiomed_2021_10_035 S0891584921007851 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c436t-57f77cf61762858f3c3e37229c80716dc4606774afeca33da4c78c5df7c11aa23 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721492400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0891-5849 1873-4596 |
| IngestDate | Sun Nov 09 14:16:34 EST 2025 Thu Apr 03 07:03:12 EDT 2025 Sat Nov 29 07:15:39 EST 2025 Tue Nov 18 22:15:33 EST 2025 Fri Feb 23 02:40:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Myocardial infarction Acylcarnitine Trimethyllysine Gamma-butyrobetaine Fatty acid metabolism PUFA |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c436t-57f77cf61762858f3c3e37229c80716dc4606774afeca33da4c78c5df7c11aa23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2213-8337 0000-0001-9174-4985 0000-0002-4203-2129 0000-0002-0411-0229 0000-0002-1739-0928 0000-0001-7520-142X 0000-0001-8390-773X |
| OpenAccessLink | https://dx.doi.org/10.1016/j.freeradbiomed.2021.10.035 |
| PMID | 34728372 |
| PQID | 2593028297 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2593028297 pubmed_primary_34728372 crossref_primary_10_1016_j_freeradbiomed_2021_10_035 crossref_citationtrail_10_1016_j_freeradbiomed_2021_10_035 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2021_10_035 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Free radical biology & medicine |
| PublicationTitleAlternate | Free Radic Biol Med |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Hosein, Booth, Gasoi, Kato (bib42) 1967; 156 Rose, McDonough, King, Kawamura, Schofield (bib19) 2011; 40 Shriver, Manchester (bib5) 2011; 1 Martin, Costa, Gruszczyk, Beach, Allen, Prag, Hinchy, Mahbubani, Hamed, Tronci, Nikitopoulou, James, Krieg, Robinson, Huang, Caldwell, Logan, Pala, Hartley, Frezza, Saeb-Parsy, Murphy (bib39) 2019; 1 Kuka, Vilskersts, Cirule, Makrecka, Pugovics, Kalvinsh, Dambrova, Liepinsh (bib27) 2012; 17 Liepinsh, Makrecka-Kuka, Makarova, Volska, Svalbe, Sevostjanovs, Grinberga, Kuka, Dambrova (bib15) 2016; 113 Nezu, Tamai, Oku, Ohashi, Yabuuchi, Hashimoto, Nikaido, Sai, Koizumi, Shoji, Takada, Matsuishi, Yoshino, Kato, Ohura, Tsujimoto, Hayakawa, Shimane, Tsuji (bib35) 1999; 21 Menezes-Filho, Amigo, Luevano-Martinez, Kowaltowski (bib23) 2019; 1860 Berezhnov, Fedotova, Nenov, Kasymov, Pimenov, Dynnik (bib31) 2020; 21 Aguer, McCoin, Knotts, Thrush, Ono-Moore, McPherson, Dent, Hwang, Adams, Harper (bib9) 2015; 29 Strand, Rebnord, Flygel, Lysne, Svingen, Tell, Loland, Berge, Svardal, Nygard, Pedersen (bib44) 2018 Zuurbier, Bertrand, Beauloye, Andreadou, Ruiz-Meana, Jespersen, Kula-Alwar, Prag, Eric Botker, Dambrova, Montessuit, Kaambre, Liepinsh, Brookes, Krieg (bib12) 2020; 24 McCoin, Knotts, Adams (bib1) 2015; 11 Makrecka, Kuka, Volska, Antone, Sevostjanovs, Cirule, Grinberga, Pugovics, Dambrova, Liepinsh (bib10) 2014; 395 Makrecka-Kuka, Korzh, Vilks, Vilskersts, Cirule, Dambrova, Liepinsh (bib30) 2019; 52 Murphy, Ardehali, Balaban, DiLisa, Dorn, Kitsis, Otsu, Ping, Rizzuto, Sack, Wallace, Youle (bib40) 2016; 118 Wanders, Visser, Ferdinandusse, Vaz, Houtkooper (bib3) 2020; 9 Tominaga, Katoh, Odagiri, Takeuchi, Kawashima, Saotome, Urushida, Satoh, Hayashi (bib8) 2008; 295 Hayashi, Tajima, Kirimoto, Miyake, Matsuura (bib14) 2000; 61 Monfregola, Napolitano, Conte, Cevenini, Migliaccio, D'Urso, Ursini (bib21) 2007; 395 Liepinsh, Makrecka, Kuka, Makarova, Vilskersts, Cirule, Sevostjanovs, Grinberga, Pugovics, Dambrova (bib26) 2014; 63 Liepinsh, Makrecka-Kuka, Kuka, Vilskersts, Makarova, Cirule, Loza, Lola, Grinberga, Pugovics, Kalvins, Dambrova (bib13) 2015; 172 Kolwicz, Tian (bib29) 2010; 42 van Vlies, Ofman, Wanders, Vaz (bib18) 2007; 274 Bieber (bib34) 1988; 57 Celestino-Soper, Violante, Crawford, Luo, Lionel, Delaby, Cai, Sadikovic, Lee, Lo, Gao, Person, Moss, German, Huang, Shinawi, Treadwell-Deering, Szatmari, Roberts, Fernandez, Schroer, Stevenson, Buxbaum, Betancur, Scherer, Sanders, Geschwind, Sutcliffe, Hurles, Wanders, Shaw, Leal, Cook, Goin-Kochel, Vaz, Beaudet (bib38) 2012; 109 Ahmad, Kelly, McGarrah, Hellkamp, Fiuzat, Testani, Wang, Verma, Samsky, Donahue, Ilkayeva, Bowles, Patel, Milano, Rogers, Felker, O'Connor, Shah, Kraus (bib2) 2016; 67 Uhlen, Fagerberg, Hallstrom, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjostedt, Asplund, Olsson, Edlund, Lundberg, Navani, Szigyarto, Odeberg, Djureinovic, Takanen, Hober, Alm, Edqvist, Berling, Tegel, Mulder, Rockberg, Nilsson, Schwenk, Hamsten, von Feilitzen, Forsberg, Persson, Johansson, Zwahlen, von Heijne, Nielsen, Ponten (bib20) 2015; 347 Dambrova, Zuurbier, Borutaite, Liepinsh, Makrecka-Kuka (bib4) 2021; 165 Vilskersts, Kuka, Liepinsh, Makrecka-Kuka, Volska, Makarova, Sevostjanovs, Cirule, Grinberga, Dambrova (bib16) 2015; 72 Keung, Ussher, Jaswal, Raubenheimer, Lam, Wagg, Lopaschuk (bib17) 2013; 62 Korge, Honda, Weiss (bib33) 2003; 285 Schlaepfer, Joshi (bib6) 2020; 161 Liepinsh, Kuka, Dambrova (bib28) 2013; 67 Liepinsh, Makrecka-Kuka, Volska, Kuka, Makarova, Antone, Sevostjanovs, Vilskersts, Strods, Tars, Dambrova (bib7) 2016; 473 Lenighan, McNulty, Roche (bib32) 2019; 78 McGrath, Drummond, McLachlan, Kilkenny, Wainwright (bib22) 2010; 160 Makrecka-Kuka, Sevostjanovs, Vilks, Volska, Antone, Kuka, Makarova, Pugovics, Dambrova, Liepinsh (bib25) 2017; 7 Almannai, Alfadhel, El-Hattab (bib36) 2019; 24 Sandor, Hoppel (bib41) 1989; 185 Dambrova, Chlopicki, Liepinsh, Kirjanova, Gorshkova, Kozlovski, Uhlen, Liepina, Petrovska, Kalvinsh (bib43) 2004; 369 Engel, Angelini (bib37) 1973; 179 Schooneman, Houtkooper, Hollak, Wanders, Vaz, Soeters, Houten (bib45) 2016; 1862 Kazaks, Makrecka-Kuka, Kuka, Voronkova, Akopjana, Grinberga, Pugovics, Tars (bib24) 2014; 104 Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib15) 2016; 113 Ahmad (10.1016/j.freeradbiomed.2021.10.035_bib2) 2016; 67 Celestino-Soper (10.1016/j.freeradbiomed.2021.10.035_bib38) 2012; 109 Murphy (10.1016/j.freeradbiomed.2021.10.035_bib40) 2016; 118 Aguer (10.1016/j.freeradbiomed.2021.10.035_bib9) 2015; 29 McGrath (10.1016/j.freeradbiomed.2021.10.035_bib22) 2010; 160 Martin (10.1016/j.freeradbiomed.2021.10.035_bib39) 2019; 1 Zuurbier (10.1016/j.freeradbiomed.2021.10.035_bib12) 2020; 24 Vilskersts (10.1016/j.freeradbiomed.2021.10.035_bib16) 2015; 72 van Vlies (10.1016/j.freeradbiomed.2021.10.035_bib18) 2007; 274 Monfregola (10.1016/j.freeradbiomed.2021.10.035_bib21) 2007; 395 Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib7) 2016; 473 Berezhnov (10.1016/j.freeradbiomed.2021.10.035_bib31) 2020; 21 Almannai (10.1016/j.freeradbiomed.2021.10.035_bib36) 2019; 24 Makrecka (10.1016/j.freeradbiomed.2021.10.035_bib10) 2014; 395 Nezu (10.1016/j.freeradbiomed.2021.10.035_bib35) 1999; 21 Wanders (10.1016/j.freeradbiomed.2021.10.035_bib3) 2020; 9 Hosein (10.1016/j.freeradbiomed.2021.10.035_bib42) 1967; 156 Engel (10.1016/j.freeradbiomed.2021.10.035_bib37) 1973; 179 Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib13) 2015; 172 Schooneman (10.1016/j.freeradbiomed.2021.10.035_bib45) 2016; 1862 Kuka (10.1016/j.freeradbiomed.2021.10.035_bib27) 2012; 17 Sandor (10.1016/j.freeradbiomed.2021.10.035_bib41) 1989; 185 Tominaga (10.1016/j.freeradbiomed.2021.10.035_bib8) 2008; 295 Kazaks (10.1016/j.freeradbiomed.2021.10.035_bib24) 2014; 104 Kolwicz (10.1016/j.freeradbiomed.2021.10.035_bib29) 2010; 42 Dambrova (10.1016/j.freeradbiomed.2021.10.035_bib4) 2021; 165 Makrecka-Kuka (10.1016/j.freeradbiomed.2021.10.035_bib30) 2019; 52 Keung (10.1016/j.freeradbiomed.2021.10.035_bib17) 2013; 62 Dambrova (10.1016/j.freeradbiomed.2021.10.035_bib43) 2004; 369 Menezes-Filho (10.1016/j.freeradbiomed.2021.10.035_bib23) 2019; 1860 McCoin (10.1016/j.freeradbiomed.2021.10.035_bib1) 2015; 11 Schlaepfer (10.1016/j.freeradbiomed.2021.10.035_bib6) 2020; 161 Rose (10.1016/j.freeradbiomed.2021.10.035_bib19) 2011; 40 Makrecka-Kuka (10.1016/j.freeradbiomed.2021.10.035_bib25) 2017; 7 Lenighan (10.1016/j.freeradbiomed.2021.10.035_bib32) 2019; 78 Korge (10.1016/j.freeradbiomed.2021.10.035_bib33) 2003; 285 Shriver (10.1016/j.freeradbiomed.2021.10.035_bib5) 2011; 1 Uhlen (10.1016/j.freeradbiomed.2021.10.035_bib20) 2015; 347 Bieber (10.1016/j.freeradbiomed.2021.10.035_bib34) 1988; 57 Strand (10.1016/j.freeradbiomed.2021.10.035_bib44) 2018 Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib26) 2014; 63 Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib28) 2013; 67 Hayashi (10.1016/j.freeradbiomed.2021.10.035_bib14) 2000; 61 |
| References_xml | – volume: 185 start-page: 671 year: 1989 end-page: 675 ident: bib41 article-title: Butyrobetaine availability in liver is a regulatory factor for carnitine biosynthesis in rat. Flux through butyrobetaine hydroxylase in fasting state publication-title: Eur. J. Biochem. – volume: 295 start-page: H105 year: 2008 end-page: H112 ident: bib8 article-title: Different effects of palmitoyl-L-carnitine and palmitoyl-CoA on mitochondrial function in rat ventricular myocytes publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 72 start-page: 101 year: 2015 end-page: 107 ident: bib16 article-title: Methyl-gamma-butyrobetaine decreases levels of acylcarnitines and attenuates the development of atherosclerosis publication-title: Vasc. Pharmacol. – volume: 29 start-page: 336 year: 2015 end-page: 345 ident: bib9 article-title: Acylcarnitines: potential implications for skeletal muscle insulin resistance publication-title: Faseb. J. : Off. Publ. Feder. Am. Soc. Exp. Biol. – volume: 21 year: 2020 ident: bib31 article-title: Dissecting cellular mechanisms of long-chain acylcarnitines-driven cardiotoxicity: disturbance of calcium homeostasis, activation of Ca(2+)-dependent phospholipases, and mitochondrial energetics collapse publication-title: Int. J. Mol. Sci. – volume: 21 start-page: 91 year: 1999 end-page: 94 ident: bib35 article-title: Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter publication-title: Nat. Genet. – volume: 24 start-page: 5937 year: 2020 end-page: 5954 ident: bib12 article-title: Cardiac metabolism as a driver and therapeutic target of myocardial infarction publication-title: J. Cell Mol. Med. – volume: 17 start-page: 215 year: 2012 end-page: 222 ident: bib27 article-title: The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine publication-title: J. Cardiovasc. Pharmacol. Therapeut. – volume: 7 start-page: 17528 year: 2017 ident: bib25 article-title: Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues publication-title: Sci. Rep. – year: 2018 ident: bib44 article-title: Serum carnitine metabolites and incident type 2 diabetes mellitus in patients with suspected stable Angina pectoris publication-title: J. Clin. Endocrinol. Metab. – volume: 285 start-page: H259 year: 2003 end-page: H269 ident: bib33 article-title: Effects of fatty acids in isolated mitochondria: implications for ischemic injury and cardioprotection publication-title: Am J Physiol-Heart C – volume: 160 start-page: 1573 year: 2010 end-page: 1576 ident: bib22 article-title: Guidelines for reporting experiments involving animals: the ARRIVE guidelines publication-title: Br. J. Pharmacol. – volume: 67 start-page: 291 year: 2016 end-page: 299 ident: bib2 article-title: Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support publication-title: J. Am. Coll. Cardiol. – volume: 67 start-page: 98 year: 2013 end-page: 106 ident: bib28 article-title: Troubleshooting digital macro photography for image acquisition and the analysis of biological samples publication-title: J. Pharmacol. Toxicol. Methods – volume: 1 start-page: 966 year: 2019 end-page: 974 ident: bib39 article-title: Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation publication-title: Nat Metab – volume: 161 year: 2020 ident: bib6 article-title: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential publication-title: Endocrinology – volume: 11 start-page: 617 year: 2015 end-page: 625 ident: bib1 article-title: Acylcarnitines--old actors auditioning for new roles in metabolic physiology publication-title: Nat. Rev. Endocrinol. – volume: 1 start-page: 79 year: 2011 ident: bib5 article-title: Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis publication-title: Sci. Rep. – volume: 61 start-page: 238 year: 2000 end-page: 243 ident: bib14 article-title: Cardioprotective effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor, on cardiac dysfunction induced by ischemia/reperfusion in isolated rat hearts publication-title: Pharmacology – volume: 473 start-page: 1191 year: 2016 end-page: 1202 ident: bib7 article-title: Long-chain acylcarnitines determine ischemia-reperfusion induced damage in heart mitochondria publication-title: Biochem. J. – volume: 52 start-page: e153 year: 2019 end-page: e162 ident: bib30 article-title: Mitochondrial function in the kidney and heart, but not the brain, is mainly altered in an experimental model of endotoxaemia publication-title: Shock – volume: 274 start-page: 5845 year: 2007 end-page: 5851 ident: bib18 article-title: Submitochondrial localization of 6-N-trimethyllysine dioxygenase - implications for carnitine biosynthesis publication-title: FEBS J. – volume: 40 start-page: 4364 year: 2011 end-page: 4397 ident: bib19 article-title: Inhibition of 2-oxoglutarate dependent oxygenases publication-title: Chem. Soc. Rev. – volume: 347 start-page: 1260419 year: 2015 ident: bib20 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science – volume: 156 start-page: 565 year: 1967 end-page: 572 ident: bib42 article-title: Neuromuscular blocking activity and other pharmacologic properties of various carnitine derivatives publication-title: J. Pharmacol. Exp. Therapeut. – volume: 109 start-page: 7974 year: 2012 end-page: 7981 ident: bib38 article-title: A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 313 year: 2020 end-page: 333 ident: bib3 article-title: Mitochondrial fatty acid oxidation disorders: laboratory diagnosis, pathogenesis, and the complicated route to treatment publication-title: J Lipid Atheroscler – volume: 63 start-page: 127 year: 2014 end-page: 136 ident: bib26 article-title: The heart is better protected against myocardial infarction in the fed state compared to the fasted state publication-title: Metab. Clin. Exp. – volume: 1860 start-page: 129 year: 2019 end-page: 135 ident: bib23 article-title: Fasting promotes functional changes in liver mitochondria publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 42 year: 2010 ident: bib29 article-title: Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy publication-title: JoVE – volume: 24 year: 2019 ident: bib36 article-title: Carnitine inborn errors of metabolism publication-title: Molecules – volume: 179 start-page: 899 year: 1973 end-page: 902 ident: bib37 article-title: Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome publication-title: Science – volume: 172 start-page: 1319 year: 2015 end-page: 1332 ident: bib13 article-title: Inhibition of L-carnitine biosynthesis and transport by methyl-gamma-butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction publication-title: Br. J. Pharmacol. – volume: 369 start-page: 533 year: 2004 end-page: 539 ident: bib43 article-title: The methylester of gamma-butyrobetaine, but not gamma-butyrobetaine itself, induces muscarinic receptor-dependent vasodilatation publication-title: N. Schmied. Arch. Pharmacol. – volume: 165 start-page: 24 year: 2021 end-page: 37 ident: bib4 article-title: Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury publication-title: Free Radic. Biol. Med. – volume: 78 start-page: 234 year: 2019 end-page: 245 ident: bib32 article-title: Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on -linolenic acid publication-title: Proc. Nutr. Soc. – volume: 62 start-page: 711 year: 2013 end-page: 720 ident: bib17 article-title: Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice publication-title: Diabetes – volume: 395 start-page: 86 year: 2007 end-page: 97 ident: bib21 article-title: Functional characterization of the TMLH gene: promoter analysis, in situ hybridization, identification and mapping of alternative splicing variants publication-title: Gene – volume: 57 start-page: 261 year: 1988 end-page: 283 ident: bib34 article-title: Carnitine publication-title: Annu. Rev. Biochem. – volume: 104 start-page: 1 year: 2014 end-page: 6 ident: bib24 article-title: Expression and purification of active, stabilized trimethyllysine hydroxylase publication-title: Protein Expr. Purif. – volume: 395 start-page: 1 year: 2014 end-page: 10 ident: bib10 article-title: Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria publication-title: Mol. Cell. Biochem. – volume: 113 start-page: 788 year: 2016 end-page: 795 ident: bib15 article-title: Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance publication-title: Pharmacol. Res. – volume: 118 start-page: 1960 year: 2016 end-page: 1991 ident: bib40 article-title: American heart association Council on basic cardiovascular Sciences, G. Council on functional, B. Translational, mitochondrial function, biology, and role in disease: a scientific statement from the American heart association publication-title: Circ. Res. – volume: 1862 start-page: 1375 year: 2016 end-page: 1382 ident: bib45 article-title: The impact of altered carnitine availability on acylcarnitine metabolism, energy expenditure and glucose tolerance in diet-induced obese mice publication-title: Biochim. Biophys. Acta – volume: 156 start-page: 565 issue: 3 year: 1967 ident: 10.1016/j.freeradbiomed.2021.10.035_bib42 article-title: Neuromuscular blocking activity and other pharmacologic properties of various carnitine derivatives publication-title: J. Pharmacol. Exp. Therapeut. doi: 10.1016/S0022-3565(25)27660-1 – volume: 9 start-page: 313 issue: 3 year: 2020 ident: 10.1016/j.freeradbiomed.2021.10.035_bib3 article-title: Mitochondrial fatty acid oxidation disorders: laboratory diagnosis, pathogenesis, and the complicated route to treatment publication-title: J Lipid Atheroscler doi: 10.12997/jla.2020.9.3.313 – volume: 29 start-page: 336 issue: 1 year: 2015 ident: 10.1016/j.freeradbiomed.2021.10.035_bib9 article-title: Acylcarnitines: potential implications for skeletal muscle insulin resistance publication-title: Faseb. J. : Off. Publ. Feder. Am. Soc. Exp. Biol. doi: 10.1096/fj.14-255901 – volume: 1860 start-page: 129 issue: 2 year: 2019 ident: 10.1016/j.freeradbiomed.2021.10.035_bib23 article-title: Fasting promotes functional changes in liver mitochondria publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2018.11.017 – volume: 7 start-page: 17528 issue: 1 year: 2017 ident: 10.1016/j.freeradbiomed.2021.10.035_bib25 article-title: Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues publication-title: Sci. Rep. doi: 10.1038/s41598-017-17797-x – volume: 63 start-page: 127 issue: 1 year: 2014 ident: 10.1016/j.freeradbiomed.2021.10.035_bib26 article-title: The heart is better protected against myocardial infarction in the fed state compared to the fasted state publication-title: Metab. Clin. Exp. doi: 10.1016/j.metabol.2013.09.014 – volume: 61 start-page: 238 issue: 4 year: 2000 ident: 10.1016/j.freeradbiomed.2021.10.035_bib14 article-title: Cardioprotective effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor, on cardiac dysfunction induced by ischemia/reperfusion in isolated rat hearts publication-title: Pharmacology doi: 10.1159/000028407 – volume: 295 start-page: H105 issue: 1 year: 2008 ident: 10.1016/j.freeradbiomed.2021.10.035_bib8 article-title: Different effects of palmitoyl-L-carnitine and palmitoyl-CoA on mitochondrial function in rat ventricular myocytes publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01307.2007 – volume: 285 start-page: H259 issue: 1 year: 2003 ident: 10.1016/j.freeradbiomed.2021.10.035_bib33 article-title: Effects of fatty acids in isolated mitochondria: implications for ischemic injury and cardioprotection publication-title: Am J Physiol-Heart C doi: 10.1152/ajpheart.01028.2002 – volume: 52 start-page: e153 issue: 6 year: 2019 ident: 10.1016/j.freeradbiomed.2021.10.035_bib30 article-title: Mitochondrial function in the kidney and heart, but not the brain, is mainly altered in an experimental model of endotoxaemia publication-title: Shock doi: 10.1097/SHK.0000000000001315 – volume: 21 issue: 20 year: 2020 ident: 10.1016/j.freeradbiomed.2021.10.035_bib31 article-title: Dissecting cellular mechanisms of long-chain acylcarnitines-driven cardiotoxicity: disturbance of calcium homeostasis, activation of Ca(2+)-dependent phospholipases, and mitochondrial energetics collapse publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21207461 – volume: 109 start-page: 7974 issue: 21 year: 2012 ident: 10.1016/j.freeradbiomed.2021.10.035_bib38 article-title: A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1120210109 – volume: 165 start-page: 24 year: 2021 ident: 10.1016/j.freeradbiomed.2021.10.035_bib4 article-title: Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.01.036 – volume: 473 start-page: 1191 issue: 9 year: 2016 ident: 10.1016/j.freeradbiomed.2021.10.035_bib7 article-title: Long-chain acylcarnitines determine ischemia-reperfusion induced damage in heart mitochondria publication-title: Biochem. J. doi: 10.1042/BCJ20160164 – volume: 104 start-page: 1 year: 2014 ident: 10.1016/j.freeradbiomed.2021.10.035_bib24 article-title: Expression and purification of active, stabilized trimethyllysine hydroxylase publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2014.09.002 – volume: 347 start-page: 1260419 issue: 6220 year: 2015 ident: 10.1016/j.freeradbiomed.2021.10.035_bib20 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 11 start-page: 617 issue: 10 year: 2015 ident: 10.1016/j.freeradbiomed.2021.10.035_bib1 article-title: Acylcarnitines--old actors auditioning for new roles in metabolic physiology publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2015.129 – year: 2018 ident: 10.1016/j.freeradbiomed.2021.10.035_bib44 article-title: Serum carnitine metabolites and incident type 2 diabetes mellitus in patients with suspected stable Angina pectoris publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2017-02139 – volume: 21 start-page: 91 issue: 1 year: 1999 ident: 10.1016/j.freeradbiomed.2021.10.035_bib35 article-title: Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter publication-title: Nat. Genet. doi: 10.1038/5030 – volume: 395 start-page: 1 issue: 1–2 year: 2014 ident: 10.1016/j.freeradbiomed.2021.10.035_bib10 article-title: Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-014-2106-3 – volume: 172 start-page: 1319 issue: 5 year: 2015 ident: 10.1016/j.freeradbiomed.2021.10.035_bib13 article-title: Inhibition of L-carnitine biosynthesis and transport by methyl-gamma-butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction publication-title: Br. J. Pharmacol. doi: 10.1111/bph.13004 – volume: 17 start-page: 215 issue: 2 year: 2012 ident: 10.1016/j.freeradbiomed.2021.10.035_bib27 article-title: The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine publication-title: J. Cardiovasc. Pharmacol. Therapeut. doi: 10.1177/1074248411419502 – volume: 118 start-page: 1960 issue: 12 year: 2016 ident: 10.1016/j.freeradbiomed.2021.10.035_bib40 article-title: American heart association Council on basic cardiovascular Sciences, G. Council on functional, B. Translational, mitochondrial function, biology, and role in disease: a scientific statement from the American heart association publication-title: Circ. Res. doi: 10.1161/RES.0000000000000104 – volume: 274 start-page: 5845 issue: 22 year: 2007 ident: 10.1016/j.freeradbiomed.2021.10.035_bib18 article-title: Submitochondrial localization of 6-N-trimethyllysine dioxygenase - implications for carnitine biosynthesis publication-title: FEBS J. doi: 10.1111/j.1742-4658.2007.06108.x – volume: 185 start-page: 671 issue: 3 year: 1989 ident: 10.1016/j.freeradbiomed.2021.10.035_bib41 article-title: Butyrobetaine availability in liver is a regulatory factor for carnitine biosynthesis in rat. Flux through butyrobetaine hydroxylase in fasting state publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1989.tb15164.x – volume: 160 start-page: 1573 issue: 7 year: 2010 ident: 10.1016/j.freeradbiomed.2021.10.035_bib22 article-title: Guidelines for reporting experiments involving animals: the ARRIVE guidelines publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2010.00873.x – volume: 78 start-page: 234 issue: 2 year: 2019 ident: 10.1016/j.freeradbiomed.2021.10.035_bib32 article-title: Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on -linolenic acid publication-title: Proc. Nutr. Soc. doi: 10.1017/S0029665118002793 – volume: 113 start-page: 788 issue: Pt B year: 2016 ident: 10.1016/j.freeradbiomed.2021.10.035_bib15 article-title: Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2015.11.014 – volume: 24 issue: 18 year: 2019 ident: 10.1016/j.freeradbiomed.2021.10.035_bib36 article-title: Carnitine inborn errors of metabolism publication-title: Molecules doi: 10.3390/molecules24183251 – volume: 369 start-page: 533 issue: 5 year: 2004 ident: 10.1016/j.freeradbiomed.2021.10.035_bib43 article-title: The methylester of gamma-butyrobetaine, but not gamma-butyrobetaine itself, induces muscarinic receptor-dependent vasodilatation publication-title: N. Schmied. Arch. Pharmacol. doi: 10.1007/s00210-004-0925-6 – volume: 1 start-page: 79 year: 2011 ident: 10.1016/j.freeradbiomed.2021.10.035_bib5 article-title: Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis publication-title: Sci. Rep. doi: 10.1038/srep00079 – volume: 67 start-page: 98 issue: 2 year: 2013 ident: 10.1016/j.freeradbiomed.2021.10.035_bib28 article-title: Troubleshooting digital macro photography for image acquisition and the analysis of biological samples publication-title: J. Pharmacol. Toxicol. Methods doi: 10.1016/j.vascn.2012.11.001 – volume: 179 start-page: 899 issue: 4076 year: 1973 ident: 10.1016/j.freeradbiomed.2021.10.035_bib37 article-title: Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome publication-title: Science doi: 10.1126/science.179.4076.899 – volume: 24 start-page: 5937 issue: 11 year: 2020 ident: 10.1016/j.freeradbiomed.2021.10.035_bib12 article-title: Cardiac metabolism as a driver and therapeutic target of myocardial infarction publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.15180 – volume: 1862 start-page: 1375 issue: 8 year: 2016 ident: 10.1016/j.freeradbiomed.2021.10.035_bib45 article-title: The impact of altered carnitine availability on acylcarnitine metabolism, energy expenditure and glucose tolerance in diet-induced obese mice publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2016.04.012 – volume: 67 start-page: 291 issue: 3 year: 2016 ident: 10.1016/j.freeradbiomed.2021.10.035_bib2 article-title: Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2015.10.079 – volume: 40 start-page: 4364 issue: 8 year: 2011 ident: 10.1016/j.freeradbiomed.2021.10.035_bib19 article-title: Inhibition of 2-oxoglutarate dependent oxygenases publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00203h – volume: 72 start-page: 101 year: 2015 ident: 10.1016/j.freeradbiomed.2021.10.035_bib16 article-title: Methyl-gamma-butyrobetaine decreases levels of acylcarnitines and attenuates the development of atherosclerosis publication-title: Vasc. Pharmacol. doi: 10.1016/j.vph.2015.05.005 – volume: 57 start-page: 261 year: 1988 ident: 10.1016/j.freeradbiomed.2021.10.035_bib34 article-title: Carnitine publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.57.070188.001401 – volume: 42 year: 2010 ident: 10.1016/j.freeradbiomed.2021.10.035_bib29 article-title: Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy publication-title: JoVE – volume: 395 start-page: 86 issue: 1–2 year: 2007 ident: 10.1016/j.freeradbiomed.2021.10.035_bib21 article-title: Functional characterization of the TMLH gene: promoter analysis, in situ hybridization, identification and mapping of alternative splicing variants publication-title: Gene doi: 10.1016/j.gene.2007.02.012 – volume: 62 start-page: 711 issue: 3 year: 2013 ident: 10.1016/j.freeradbiomed.2021.10.035_bib17 article-title: Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice publication-title: Diabetes doi: 10.2337/db12-0259 – volume: 1 start-page: 966 year: 2019 ident: 10.1016/j.freeradbiomed.2021.10.035_bib39 article-title: Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation publication-title: Nat Metab doi: 10.1038/s42255-019-0115-y – volume: 161 issue: 2 year: 2020 ident: 10.1016/j.freeradbiomed.2021.10.035_bib6 article-title: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential publication-title: Endocrinology doi: 10.1210/endocr/bqz046 |
| SSID | ssj0004538 |
| Score | 2.4406748 |
| Snippet | Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase... Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N -trimethyllysine dioxygenase... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 370 |
| SubjectTerms | Acylcarnitine Animals Carnitine - analogs & derivatives Fatty acid metabolism Gamma-butyrobetaine Ischemia Male Mice Mice, Knockout Mitochondria, Heart Myocardial infarction PUFA Reperfusion Trimethyllysine |
| Title | Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage |
| URI | https://dx.doi.org/10.1016/j.freeradbiomed.2021.10.035 https://www.ncbi.nlm.nih.gov/pubmed/34728372 https://www.proquest.com/docview/2593028297 |
| Volume | 177 |
| WOSCitedRecordID | wos000721492400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004538 issn: 0891-5849 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DRAvCDYG5TIZwXiZUrVxUic8IFXQaqAykOikvkWua4-sbVp6Y_sV_CV-GufYTi9AUXngJapcxU7yfTk59vl8DiEvAi0rgGzsBcLXXtCR3OswBo5c3BFGhqFs1ZImPzuL2u34U6HwI98LM-_zLIuuruLRf4Ua2gBs3Dr7D3AvOoUG-A2gwxFgh-NWwDeH3zDfNOAujRDdBfv7w-zCk19EmmGF977EFZEpat5xxaP1oXlaP-llYBxRp4wl6jF7wNxsf0snqKwfpMIbq5Ea6xkusHkwl5-hdmAAJgFMaNY15T_MLjk3eFcMxLrSqDFW6mQsbGgoT_-E3Ps1wt9MFZbUNks-9e6FWA059Zy616ZEsdXC0n5v4ra29ZfNn-GxdpSNqqQdsbrA4VdWxCLWJkeceUEYu4zZf2jLDbkrCGNNMbMFSX77RNjVisuShltGuYLJclDCgUso87PJU9YTc599TBrnzWbSqrdbx6wx-uph1TKM7h-zt5ZBO2TP52EMdnWv9q7efr-Ssd5UU19c8C3yfKkx3HgNm7ykTbMg4w217pI7bhpDa5Z-90hBZfvkoJaJ6XBwTV9SIyw2-O6Tm7be6fUB-Q7cpI4e1HGTDjVdcpOuc5NCi-EmzblJkZs05yb9KzfpGjcpcHMxuOXmfXLeqLfenHquIognA1adeiHXnEsNXjfu_I00k0wx7vuxjMBVrnZlUMWMiIHQSgrGuiKQPJJhV3NZqQjhs0Oymw0z9ZBQVi0LEepypaxZEOpOJMIYOtcK3DWfhapIXuUIJNKly8eqLf0k10VeJmvwJQgf_gnwFUmwOHlks8Zsd9rrHOrEOcDWsU2AvNt18CwnSAKfCYz9iUwNZ5PED2NmVBO8SB5Y5iyujMEdR_AYH21x9mNye_mOPiG70_FMPSU35HyaTsZHZIe3oyP3CvwEOWbv5w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+cardiac+content+of+long-chain+acylcarnitines+in+TMLHE+knockout+mice+prevents+ischaemia-reperfusion-induced+mitochondrial+and+cardiac+damage&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Liepinsh%2C+Edgars&rft.au=Kuka%2C+Janis&rft.au=Vilks%2C+Karlis&rft.au=Svalbe%2C+Baiba&rft.date=2021-12-01&rft.issn=1873-4596&rft.eissn=1873-4596&rft.volume=177&rft.spage=370&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2021.10.035&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |