Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage

Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expecte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Free radical biology & medicine Ročník 177; s. 370 - 380
Hlavní autoři: Liepinsh, Edgars, Kuka, Janis, Vilks, Karlis, Svalbe, Baiba, Stelfa, Gundega, Vilskersts, Reinis, Sevostjanovs, Eduards, Goldins, Niks Ricards, Groma, Valerija, Grinberga, Solveiga, Plaas, Mario, Makrecka-Kuka, Marina, Dambrova, Maija
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.12.2021
Témata:
ISSN:0891-5849, 1873-4596, 1873-4596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion. [Display omitted] •TMLHE gene deletion is associated with lower acylcarnitine concentrations in plasma and tissues.•Accumulated long-chain acylcarnitines induce ROS production during reperfusion.•I/R-induced mitochondrial ROS production was lower in TMLHE KO mouse hearts.•TMLD is a novel drug target for cardioprotection.
AbstractList Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.
Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N -trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.
Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion. [Display omitted] •TMLHE gene deletion is associated with lower acylcarnitine concentrations in plasma and tissues.•Accumulated long-chain acylcarnitines induce ROS production during reperfusion.•I/R-induced mitochondrial ROS production was lower in TMLHE KO mouse hearts.•TMLD is a novel drug target for cardioprotection.
Author Vilks, Karlis
Svalbe, Baiba
Stelfa, Gundega
Makrecka-Kuka, Marina
Kuka, Janis
Groma, Valerija
Liepinsh, Edgars
Grinberga, Solveiga
Vilskersts, Reinis
Plaas, Mario
Sevostjanovs, Eduards
Goldins, Niks Ricards
Dambrova, Maija
Author_xml – sequence: 1
  givenname: Edgars
  orcidid: 0000-0003-2213-8337
  surname: Liepinsh
  fullname: Liepinsh, Edgars
  email: ledgars@farm.osi.lv
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 2
  givenname: Janis
  orcidid: 0000-0002-0411-0229
  surname: Kuka
  fullname: Kuka, Janis
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 3
  givenname: Karlis
  orcidid: 0000-0002-4203-2129
  surname: Vilks
  fullname: Vilks, Karlis
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 4
  givenname: Baiba
  orcidid: 0000-0001-8390-773X
  surname: Svalbe
  fullname: Svalbe, Baiba
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 5
  givenname: Gundega
  orcidid: 0000-0001-7520-142X
  surname: Stelfa
  fullname: Stelfa, Gundega
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 6
  givenname: Reinis
  orcidid: 0000-0001-9174-4985
  surname: Vilskersts
  fullname: Vilskersts, Reinis
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 7
  givenname: Eduards
  surname: Sevostjanovs
  fullname: Sevostjanovs, Eduards
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 8
  givenname: Niks Ricards
  surname: Goldins
  fullname: Goldins, Niks Ricards
  organization: Riga Stradins University, Dzirciema Str 16, Riga, LV1007, Latvia
– sequence: 9
  givenname: Valerija
  surname: Groma
  fullname: Groma, Valerija
  organization: Riga Stradins University, Dzirciema Str 16, Riga, LV1007, Latvia
– sequence: 10
  givenname: Solveiga
  surname: Grinberga
  fullname: Grinberga, Solveiga
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 11
  givenname: Mario
  surname: Plaas
  fullname: Plaas, Mario
  organization: Laboratory Animal Center, University of Tartu, Ravila 14b, Tartu, 50411, Estonia
– sequence: 12
  givenname: Marina
  surname: Makrecka-Kuka
  fullname: Makrecka-Kuka, Marina
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
– sequence: 13
  givenname: Maija
  orcidid: 0000-0002-1739-0928
  surname: Dambrova
  fullname: Dambrova, Maija
  organization: Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34728372$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URH_gFVAkNmwy-CeJHbGqqoEiDWJT1pZ7fd16mtiD7bTqU_DKeDSlEqy6suT7nePrc07JUYgBCfnA6IpRNnzarlxCTMZe-zijXXHKWZ2sqOhfkROmpGi7fhyOyAlVI2t71Y3H5DTnLaW064V6Q45FJ7kSkp-Q35v40IBJ1htoIIaCoTTRNVMMNy3cGh8aA49TJYIvPmBu6s3V983lurkLEe7iUprZAza7hPdVW-e5ynD2pk24w-SW7GNofbALoK1siXAbg03eTI0J9vlxa2Zzg2_Ja2emjO-ezjPy88v66uKy3fz4-u3ifNNCJ4bS9tJJCW5gcuCqV06AwPofPoKikg0WuoEOUnbGIRghrOlAKuitk8CYMVyckY8H312KvxbMRc91cZwmEzAuWfN-FJQrPsqKvn9Cl-uat94lP5v0qP-GWIHPBwBSzDmhe0YY1fvK9Fb_U5neV7Yf1sqq-vw_NfhiSg2tJOOnF3qsDx5YI7v3mHQGj6EG7hNC0Tb6F_n8AeWtv6g
CitedBy_id crossref_primary_10_1002_jimd_12664
crossref_primary_10_3390_ijms24065528
crossref_primary_10_1016_j_biopha_2023_115803
crossref_primary_10_1016_j_heliyon_2024_e36429
crossref_primary_10_1186_s12967_025_06341_5
crossref_primary_10_1186_s13229_023_00560_7
crossref_primary_10_1002_biof_70014
crossref_primary_10_3390_jpm13020298
crossref_primary_10_1113_JP285720
crossref_primary_10_1186_s12967_023_04420_z
Cites_doi 10.1016/S0022-3565(25)27660-1
10.12997/jla.2020.9.3.313
10.1096/fj.14-255901
10.1016/j.bbabio.2018.11.017
10.1038/s41598-017-17797-x
10.1016/j.metabol.2013.09.014
10.1159/000028407
10.1152/ajpheart.01307.2007
10.1152/ajpheart.01028.2002
10.1097/SHK.0000000000001315
10.3390/ijms21207461
10.1073/pnas.1120210109
10.1016/j.freeradbiomed.2021.01.036
10.1042/BCJ20160164
10.1016/j.pep.2014.09.002
10.1126/science.1260419
10.1038/nrendo.2015.129
10.1210/jc.2017-02139
10.1038/5030
10.1007/s11010-014-2106-3
10.1111/bph.13004
10.1177/1074248411419502
10.1161/RES.0000000000000104
10.1111/j.1742-4658.2007.06108.x
10.1111/j.1432-1033.1989.tb15164.x
10.1111/j.1476-5381.2010.00873.x
10.1017/S0029665118002793
10.1016/j.phrs.2015.11.014
10.3390/molecules24183251
10.1007/s00210-004-0925-6
10.1038/srep00079
10.1016/j.vascn.2012.11.001
10.1126/science.179.4076.899
10.1111/jcmm.15180
10.1016/j.bbadis.2016.04.012
10.1016/j.jacc.2015.10.079
10.1039/c0cs00203h
10.1016/j.vph.2015.05.005
10.1146/annurev.bi.57.070188.001401
10.1016/j.gene.2007.02.012
10.2337/db12-0259
10.1038/s42255-019-0115-y
10.1210/endocr/bqz046
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.freeradbiomed.2021.10.035
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1873-4596
EndPage 380
ExternalDocumentID 34728372
10_1016_j_freeradbiomed_2021_10_035
S0891584921007851
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HLW
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LCYCR
LX3
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
TEORI
WUQ
XPP
ZGI
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c436t-57f77cf61762858f3c3e37229c80716dc4606774afeca33da4c78c5df7c11aa23
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721492400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0891-5849
1873-4596
IngestDate Sun Nov 09 14:16:34 EST 2025
Thu Apr 03 07:03:12 EDT 2025
Sat Nov 29 07:15:39 EST 2025
Tue Nov 18 22:15:33 EST 2025
Fri Feb 23 02:40:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Myocardial infarction
Acylcarnitine
Trimethyllysine
Gamma-butyrobetaine
Fatty acid metabolism
PUFA
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-57f77cf61762858f3c3e37229c80716dc4606774afeca33da4c78c5df7c11aa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2213-8337
0000-0001-9174-4985
0000-0002-4203-2129
0000-0002-0411-0229
0000-0002-1739-0928
0000-0001-7520-142X
0000-0001-8390-773X
OpenAccessLink https://dx.doi.org/10.1016/j.freeradbiomed.2021.10.035
PMID 34728372
PQID 2593028297
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2593028297
pubmed_primary_34728372
crossref_primary_10_1016_j_freeradbiomed_2021_10_035
crossref_citationtrail_10_1016_j_freeradbiomed_2021_10_035
elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2021_10_035
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Free radical biology & medicine
PublicationTitleAlternate Free Radic Biol Med
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hosein, Booth, Gasoi, Kato (bib42) 1967; 156
Rose, McDonough, King, Kawamura, Schofield (bib19) 2011; 40
Shriver, Manchester (bib5) 2011; 1
Martin, Costa, Gruszczyk, Beach, Allen, Prag, Hinchy, Mahbubani, Hamed, Tronci, Nikitopoulou, James, Krieg, Robinson, Huang, Caldwell, Logan, Pala, Hartley, Frezza, Saeb-Parsy, Murphy (bib39) 2019; 1
Kuka, Vilskersts, Cirule, Makrecka, Pugovics, Kalvinsh, Dambrova, Liepinsh (bib27) 2012; 17
Liepinsh, Makrecka-Kuka, Makarova, Volska, Svalbe, Sevostjanovs, Grinberga, Kuka, Dambrova (bib15) 2016; 113
Nezu, Tamai, Oku, Ohashi, Yabuuchi, Hashimoto, Nikaido, Sai, Koizumi, Shoji, Takada, Matsuishi, Yoshino, Kato, Ohura, Tsujimoto, Hayakawa, Shimane, Tsuji (bib35) 1999; 21
Menezes-Filho, Amigo, Luevano-Martinez, Kowaltowski (bib23) 2019; 1860
Berezhnov, Fedotova, Nenov, Kasymov, Pimenov, Dynnik (bib31) 2020; 21
Aguer, McCoin, Knotts, Thrush, Ono-Moore, McPherson, Dent, Hwang, Adams, Harper (bib9) 2015; 29
Strand, Rebnord, Flygel, Lysne, Svingen, Tell, Loland, Berge, Svardal, Nygard, Pedersen (bib44) 2018
Zuurbier, Bertrand, Beauloye, Andreadou, Ruiz-Meana, Jespersen, Kula-Alwar, Prag, Eric Botker, Dambrova, Montessuit, Kaambre, Liepinsh, Brookes, Krieg (bib12) 2020; 24
McCoin, Knotts, Adams (bib1) 2015; 11
Makrecka, Kuka, Volska, Antone, Sevostjanovs, Cirule, Grinberga, Pugovics, Dambrova, Liepinsh (bib10) 2014; 395
Makrecka-Kuka, Korzh, Vilks, Vilskersts, Cirule, Dambrova, Liepinsh (bib30) 2019; 52
Murphy, Ardehali, Balaban, DiLisa, Dorn, Kitsis, Otsu, Ping, Rizzuto, Sack, Wallace, Youle (bib40) 2016; 118
Wanders, Visser, Ferdinandusse, Vaz, Houtkooper (bib3) 2020; 9
Tominaga, Katoh, Odagiri, Takeuchi, Kawashima, Saotome, Urushida, Satoh, Hayashi (bib8) 2008; 295
Hayashi, Tajima, Kirimoto, Miyake, Matsuura (bib14) 2000; 61
Monfregola, Napolitano, Conte, Cevenini, Migliaccio, D'Urso, Ursini (bib21) 2007; 395
Liepinsh, Makrecka, Kuka, Makarova, Vilskersts, Cirule, Sevostjanovs, Grinberga, Pugovics, Dambrova (bib26) 2014; 63
Liepinsh, Makrecka-Kuka, Kuka, Vilskersts, Makarova, Cirule, Loza, Lola, Grinberga, Pugovics, Kalvins, Dambrova (bib13) 2015; 172
Kolwicz, Tian (bib29) 2010; 42
van Vlies, Ofman, Wanders, Vaz (bib18) 2007; 274
Bieber (bib34) 1988; 57
Celestino-Soper, Violante, Crawford, Luo, Lionel, Delaby, Cai, Sadikovic, Lee, Lo, Gao, Person, Moss, German, Huang, Shinawi, Treadwell-Deering, Szatmari, Roberts, Fernandez, Schroer, Stevenson, Buxbaum, Betancur, Scherer, Sanders, Geschwind, Sutcliffe, Hurles, Wanders, Shaw, Leal, Cook, Goin-Kochel, Vaz, Beaudet (bib38) 2012; 109
Ahmad, Kelly, McGarrah, Hellkamp, Fiuzat, Testani, Wang, Verma, Samsky, Donahue, Ilkayeva, Bowles, Patel, Milano, Rogers, Felker, O'Connor, Shah, Kraus (bib2) 2016; 67
Uhlen, Fagerberg, Hallstrom, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjostedt, Asplund, Olsson, Edlund, Lundberg, Navani, Szigyarto, Odeberg, Djureinovic, Takanen, Hober, Alm, Edqvist, Berling, Tegel, Mulder, Rockberg, Nilsson, Schwenk, Hamsten, von Feilitzen, Forsberg, Persson, Johansson, Zwahlen, von Heijne, Nielsen, Ponten (bib20) 2015; 347
Dambrova, Zuurbier, Borutaite, Liepinsh, Makrecka-Kuka (bib4) 2021; 165
Vilskersts, Kuka, Liepinsh, Makrecka-Kuka, Volska, Makarova, Sevostjanovs, Cirule, Grinberga, Dambrova (bib16) 2015; 72
Keung, Ussher, Jaswal, Raubenheimer, Lam, Wagg, Lopaschuk (bib17) 2013; 62
Korge, Honda, Weiss (bib33) 2003; 285
Schlaepfer, Joshi (bib6) 2020; 161
Liepinsh, Kuka, Dambrova (bib28) 2013; 67
Liepinsh, Makrecka-Kuka, Volska, Kuka, Makarova, Antone, Sevostjanovs, Vilskersts, Strods, Tars, Dambrova (bib7) 2016; 473
Lenighan, McNulty, Roche (bib32) 2019; 78
McGrath, Drummond, McLachlan, Kilkenny, Wainwright (bib22) 2010; 160
Makrecka-Kuka, Sevostjanovs, Vilks, Volska, Antone, Kuka, Makarova, Pugovics, Dambrova, Liepinsh (bib25) 2017; 7
Almannai, Alfadhel, El-Hattab (bib36) 2019; 24
Sandor, Hoppel (bib41) 1989; 185
Dambrova, Chlopicki, Liepinsh, Kirjanova, Gorshkova, Kozlovski, Uhlen, Liepina, Petrovska, Kalvinsh (bib43) 2004; 369
Engel, Angelini (bib37) 1973; 179
Schooneman, Houtkooper, Hollak, Wanders, Vaz, Soeters, Houten (bib45) 2016; 1862
Kazaks, Makrecka-Kuka, Kuka, Voronkova, Akopjana, Grinberga, Pugovics, Tars (bib24) 2014; 104
Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib15) 2016; 113
Ahmad (10.1016/j.freeradbiomed.2021.10.035_bib2) 2016; 67
Celestino-Soper (10.1016/j.freeradbiomed.2021.10.035_bib38) 2012; 109
Murphy (10.1016/j.freeradbiomed.2021.10.035_bib40) 2016; 118
Aguer (10.1016/j.freeradbiomed.2021.10.035_bib9) 2015; 29
McGrath (10.1016/j.freeradbiomed.2021.10.035_bib22) 2010; 160
Martin (10.1016/j.freeradbiomed.2021.10.035_bib39) 2019; 1
Zuurbier (10.1016/j.freeradbiomed.2021.10.035_bib12) 2020; 24
Vilskersts (10.1016/j.freeradbiomed.2021.10.035_bib16) 2015; 72
van Vlies (10.1016/j.freeradbiomed.2021.10.035_bib18) 2007; 274
Monfregola (10.1016/j.freeradbiomed.2021.10.035_bib21) 2007; 395
Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib7) 2016; 473
Berezhnov (10.1016/j.freeradbiomed.2021.10.035_bib31) 2020; 21
Almannai (10.1016/j.freeradbiomed.2021.10.035_bib36) 2019; 24
Makrecka (10.1016/j.freeradbiomed.2021.10.035_bib10) 2014; 395
Nezu (10.1016/j.freeradbiomed.2021.10.035_bib35) 1999; 21
Wanders (10.1016/j.freeradbiomed.2021.10.035_bib3) 2020; 9
Hosein (10.1016/j.freeradbiomed.2021.10.035_bib42) 1967; 156
Engel (10.1016/j.freeradbiomed.2021.10.035_bib37) 1973; 179
Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib13) 2015; 172
Schooneman (10.1016/j.freeradbiomed.2021.10.035_bib45) 2016; 1862
Kuka (10.1016/j.freeradbiomed.2021.10.035_bib27) 2012; 17
Sandor (10.1016/j.freeradbiomed.2021.10.035_bib41) 1989; 185
Tominaga (10.1016/j.freeradbiomed.2021.10.035_bib8) 2008; 295
Kazaks (10.1016/j.freeradbiomed.2021.10.035_bib24) 2014; 104
Kolwicz (10.1016/j.freeradbiomed.2021.10.035_bib29) 2010; 42
Dambrova (10.1016/j.freeradbiomed.2021.10.035_bib4) 2021; 165
Makrecka-Kuka (10.1016/j.freeradbiomed.2021.10.035_bib30) 2019; 52
Keung (10.1016/j.freeradbiomed.2021.10.035_bib17) 2013; 62
Dambrova (10.1016/j.freeradbiomed.2021.10.035_bib43) 2004; 369
Menezes-Filho (10.1016/j.freeradbiomed.2021.10.035_bib23) 2019; 1860
McCoin (10.1016/j.freeradbiomed.2021.10.035_bib1) 2015; 11
Schlaepfer (10.1016/j.freeradbiomed.2021.10.035_bib6) 2020; 161
Rose (10.1016/j.freeradbiomed.2021.10.035_bib19) 2011; 40
Makrecka-Kuka (10.1016/j.freeradbiomed.2021.10.035_bib25) 2017; 7
Lenighan (10.1016/j.freeradbiomed.2021.10.035_bib32) 2019; 78
Korge (10.1016/j.freeradbiomed.2021.10.035_bib33) 2003; 285
Shriver (10.1016/j.freeradbiomed.2021.10.035_bib5) 2011; 1
Uhlen (10.1016/j.freeradbiomed.2021.10.035_bib20) 2015; 347
Bieber (10.1016/j.freeradbiomed.2021.10.035_bib34) 1988; 57
Strand (10.1016/j.freeradbiomed.2021.10.035_bib44) 2018
Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib26) 2014; 63
Liepinsh (10.1016/j.freeradbiomed.2021.10.035_bib28) 2013; 67
Hayashi (10.1016/j.freeradbiomed.2021.10.035_bib14) 2000; 61
References_xml – volume: 185
  start-page: 671
  year: 1989
  end-page: 675
  ident: bib41
  article-title: Butyrobetaine availability in liver is a regulatory factor for carnitine biosynthesis in rat. Flux through butyrobetaine hydroxylase in fasting state
  publication-title: Eur. J. Biochem.
– volume: 295
  start-page: H105
  year: 2008
  end-page: H112
  ident: bib8
  article-title: Different effects of palmitoyl-L-carnitine and palmitoyl-CoA on mitochondrial function in rat ventricular myocytes
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 72
  start-page: 101
  year: 2015
  end-page: 107
  ident: bib16
  article-title: Methyl-gamma-butyrobetaine decreases levels of acylcarnitines and attenuates the development of atherosclerosis
  publication-title: Vasc. Pharmacol.
– volume: 29
  start-page: 336
  year: 2015
  end-page: 345
  ident: bib9
  article-title: Acylcarnitines: potential implications for skeletal muscle insulin resistance
  publication-title: Faseb. J. : Off. Publ. Feder. Am. Soc. Exp. Biol.
– volume: 21
  year: 2020
  ident: bib31
  article-title: Dissecting cellular mechanisms of long-chain acylcarnitines-driven cardiotoxicity: disturbance of calcium homeostasis, activation of Ca(2+)-dependent phospholipases, and mitochondrial energetics collapse
  publication-title: Int. J. Mol. Sci.
– volume: 21
  start-page: 91
  year: 1999
  end-page: 94
  ident: bib35
  article-title: Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter
  publication-title: Nat. Genet.
– volume: 24
  start-page: 5937
  year: 2020
  end-page: 5954
  ident: bib12
  article-title: Cardiac metabolism as a driver and therapeutic target of myocardial infarction
  publication-title: J. Cell Mol. Med.
– volume: 17
  start-page: 215
  year: 2012
  end-page: 222
  ident: bib27
  article-title: The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine
  publication-title: J. Cardiovasc. Pharmacol. Therapeut.
– volume: 7
  start-page: 17528
  year: 2017
  ident: bib25
  article-title: Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues
  publication-title: Sci. Rep.
– year: 2018
  ident: bib44
  article-title: Serum carnitine metabolites and incident type 2 diabetes mellitus in patients with suspected stable Angina pectoris
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 285
  start-page: H259
  year: 2003
  end-page: H269
  ident: bib33
  article-title: Effects of fatty acids in isolated mitochondria: implications for ischemic injury and cardioprotection
  publication-title: Am J Physiol-Heart C
– volume: 160
  start-page: 1573
  year: 2010
  end-page: 1576
  ident: bib22
  article-title: Guidelines for reporting experiments involving animals: the ARRIVE guidelines
  publication-title: Br. J. Pharmacol.
– volume: 67
  start-page: 291
  year: 2016
  end-page: 299
  ident: bib2
  article-title: Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support
  publication-title: J. Am. Coll. Cardiol.
– volume: 67
  start-page: 98
  year: 2013
  end-page: 106
  ident: bib28
  article-title: Troubleshooting digital macro photography for image acquisition and the analysis of biological samples
  publication-title: J. Pharmacol. Toxicol. Methods
– volume: 1
  start-page: 966
  year: 2019
  end-page: 974
  ident: bib39
  article-title: Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation
  publication-title: Nat Metab
– volume: 161
  year: 2020
  ident: bib6
  article-title: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential
  publication-title: Endocrinology
– volume: 11
  start-page: 617
  year: 2015
  end-page: 625
  ident: bib1
  article-title: Acylcarnitines--old actors auditioning for new roles in metabolic physiology
  publication-title: Nat. Rev. Endocrinol.
– volume: 1
  start-page: 79
  year: 2011
  ident: bib5
  article-title: Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis
  publication-title: Sci. Rep.
– volume: 61
  start-page: 238
  year: 2000
  end-page: 243
  ident: bib14
  article-title: Cardioprotective effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor, on cardiac dysfunction induced by ischemia/reperfusion in isolated rat hearts
  publication-title: Pharmacology
– volume: 473
  start-page: 1191
  year: 2016
  end-page: 1202
  ident: bib7
  article-title: Long-chain acylcarnitines determine ischemia-reperfusion induced damage in heart mitochondria
  publication-title: Biochem. J.
– volume: 52
  start-page: e153
  year: 2019
  end-page: e162
  ident: bib30
  article-title: Mitochondrial function in the kidney and heart, but not the brain, is mainly altered in an experimental model of endotoxaemia
  publication-title: Shock
– volume: 274
  start-page: 5845
  year: 2007
  end-page: 5851
  ident: bib18
  article-title: Submitochondrial localization of 6-N-trimethyllysine dioxygenase - implications for carnitine biosynthesis
  publication-title: FEBS J.
– volume: 40
  start-page: 4364
  year: 2011
  end-page: 4397
  ident: bib19
  article-title: Inhibition of 2-oxoglutarate dependent oxygenases
  publication-title: Chem. Soc. Rev.
– volume: 347
  start-page: 1260419
  year: 2015
  ident: bib20
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
– volume: 156
  start-page: 565
  year: 1967
  end-page: 572
  ident: bib42
  article-title: Neuromuscular blocking activity and other pharmacologic properties of various carnitine derivatives
  publication-title: J. Pharmacol. Exp. Therapeut.
– volume: 109
  start-page: 7974
  year: 2012
  end-page: 7981
  ident: bib38
  article-title: A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 313
  year: 2020
  end-page: 333
  ident: bib3
  article-title: Mitochondrial fatty acid oxidation disorders: laboratory diagnosis, pathogenesis, and the complicated route to treatment
  publication-title: J Lipid Atheroscler
– volume: 63
  start-page: 127
  year: 2014
  end-page: 136
  ident: bib26
  article-title: The heart is better protected against myocardial infarction in the fed state compared to the fasted state
  publication-title: Metab. Clin. Exp.
– volume: 1860
  start-page: 129
  year: 2019
  end-page: 135
  ident: bib23
  article-title: Fasting promotes functional changes in liver mitochondria
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 42
  year: 2010
  ident: bib29
  article-title: Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy
  publication-title: JoVE
– volume: 24
  year: 2019
  ident: bib36
  article-title: Carnitine inborn errors of metabolism
  publication-title: Molecules
– volume: 179
  start-page: 899
  year: 1973
  end-page: 902
  ident: bib37
  article-title: Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome
  publication-title: Science
– volume: 172
  start-page: 1319
  year: 2015
  end-page: 1332
  ident: bib13
  article-title: Inhibition of L-carnitine biosynthesis and transport by methyl-gamma-butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction
  publication-title: Br. J. Pharmacol.
– volume: 369
  start-page: 533
  year: 2004
  end-page: 539
  ident: bib43
  article-title: The methylester of gamma-butyrobetaine, but not gamma-butyrobetaine itself, induces muscarinic receptor-dependent vasodilatation
  publication-title: N. Schmied. Arch. Pharmacol.
– volume: 165
  start-page: 24
  year: 2021
  end-page: 37
  ident: bib4
  article-title: Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury
  publication-title: Free Radic. Biol. Med.
– volume: 78
  start-page: 234
  year: 2019
  end-page: 245
  ident: bib32
  article-title: Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on -linolenic acid
  publication-title: Proc. Nutr. Soc.
– volume: 62
  start-page: 711
  year: 2013
  end-page: 720
  ident: bib17
  article-title: Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice
  publication-title: Diabetes
– volume: 395
  start-page: 86
  year: 2007
  end-page: 97
  ident: bib21
  article-title: Functional characterization of the TMLH gene: promoter analysis, in situ hybridization, identification and mapping of alternative splicing variants
  publication-title: Gene
– volume: 57
  start-page: 261
  year: 1988
  end-page: 283
  ident: bib34
  article-title: Carnitine
  publication-title: Annu. Rev. Biochem.
– volume: 104
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib24
  article-title: Expression and purification of active, stabilized trimethyllysine hydroxylase
  publication-title: Protein Expr. Purif.
– volume: 395
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib10
  article-title: Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria
  publication-title: Mol. Cell. Biochem.
– volume: 113
  start-page: 788
  year: 2016
  end-page: 795
  ident: bib15
  article-title: Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance
  publication-title: Pharmacol. Res.
– volume: 118
  start-page: 1960
  year: 2016
  end-page: 1991
  ident: bib40
  article-title: American heart association Council on basic cardiovascular Sciences, G. Council on functional, B. Translational, mitochondrial function, biology, and role in disease: a scientific statement from the American heart association
  publication-title: Circ. Res.
– volume: 1862
  start-page: 1375
  year: 2016
  end-page: 1382
  ident: bib45
  article-title: The impact of altered carnitine availability on acylcarnitine metabolism, energy expenditure and glucose tolerance in diet-induced obese mice
  publication-title: Biochim. Biophys. Acta
– volume: 156
  start-page: 565
  issue: 3
  year: 1967
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib42
  article-title: Neuromuscular blocking activity and other pharmacologic properties of various carnitine derivatives
  publication-title: J. Pharmacol. Exp. Therapeut.
  doi: 10.1016/S0022-3565(25)27660-1
– volume: 9
  start-page: 313
  issue: 3
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib3
  article-title: Mitochondrial fatty acid oxidation disorders: laboratory diagnosis, pathogenesis, and the complicated route to treatment
  publication-title: J Lipid Atheroscler
  doi: 10.12997/jla.2020.9.3.313
– volume: 29
  start-page: 336
  issue: 1
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib9
  article-title: Acylcarnitines: potential implications for skeletal muscle insulin resistance
  publication-title: Faseb. J. : Off. Publ. Feder. Am. Soc. Exp. Biol.
  doi: 10.1096/fj.14-255901
– volume: 1860
  start-page: 129
  issue: 2
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib23
  article-title: Fasting promotes functional changes in liver mitochondria
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2018.11.017
– volume: 7
  start-page: 17528
  issue: 1
  year: 2017
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib25
  article-title: Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17797-x
– volume: 63
  start-page: 127
  issue: 1
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib26
  article-title: The heart is better protected against myocardial infarction in the fed state compared to the fasted state
  publication-title: Metab. Clin. Exp.
  doi: 10.1016/j.metabol.2013.09.014
– volume: 61
  start-page: 238
  issue: 4
  year: 2000
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib14
  article-title: Cardioprotective effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor, on cardiac dysfunction induced by ischemia/reperfusion in isolated rat hearts
  publication-title: Pharmacology
  doi: 10.1159/000028407
– volume: 295
  start-page: H105
  issue: 1
  year: 2008
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib8
  article-title: Different effects of palmitoyl-L-carnitine and palmitoyl-CoA on mitochondrial function in rat ventricular myocytes
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01307.2007
– volume: 285
  start-page: H259
  issue: 1
  year: 2003
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib33
  article-title: Effects of fatty acids in isolated mitochondria: implications for ischemic injury and cardioprotection
  publication-title: Am J Physiol-Heart C
  doi: 10.1152/ajpheart.01028.2002
– volume: 52
  start-page: e153
  issue: 6
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib30
  article-title: Mitochondrial function in the kidney and heart, but not the brain, is mainly altered in an experimental model of endotoxaemia
  publication-title: Shock
  doi: 10.1097/SHK.0000000000001315
– volume: 21
  issue: 20
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib31
  article-title: Dissecting cellular mechanisms of long-chain acylcarnitines-driven cardiotoxicity: disturbance of calcium homeostasis, activation of Ca(2+)-dependent phospholipases, and mitochondrial energetics collapse
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21207461
– volume: 109
  start-page: 7974
  issue: 21
  year: 2012
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib38
  article-title: A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1120210109
– volume: 165
  start-page: 24
  year: 2021
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib4
  article-title: Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2021.01.036
– volume: 473
  start-page: 1191
  issue: 9
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib7
  article-title: Long-chain acylcarnitines determine ischemia-reperfusion induced damage in heart mitochondria
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20160164
– volume: 104
  start-page: 1
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib24
  article-title: Expression and purification of active, stabilized trimethyllysine hydroxylase
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2014.09.002
– volume: 347
  start-page: 1260419
  issue: 6220
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib20
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 11
  start-page: 617
  issue: 10
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib1
  article-title: Acylcarnitines--old actors auditioning for new roles in metabolic physiology
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2015.129
– year: 2018
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib44
  article-title: Serum carnitine metabolites and incident type 2 diabetes mellitus in patients with suspected stable Angina pectoris
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2017-02139
– volume: 21
  start-page: 91
  issue: 1
  year: 1999
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib35
  article-title: Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter
  publication-title: Nat. Genet.
  doi: 10.1038/5030
– volume: 395
  start-page: 1
  issue: 1–2
  year: 2014
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib10
  article-title: Long-chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-014-2106-3
– volume: 172
  start-page: 1319
  issue: 5
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib13
  article-title: Inhibition of L-carnitine biosynthesis and transport by methyl-gamma-butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.13004
– volume: 17
  start-page: 215
  issue: 2
  year: 2012
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib27
  article-title: The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine
  publication-title: J. Cardiovasc. Pharmacol. Therapeut.
  doi: 10.1177/1074248411419502
– volume: 118
  start-page: 1960
  issue: 12
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib40
  article-title: American heart association Council on basic cardiovascular Sciences, G. Council on functional, B. Translational, mitochondrial function, biology, and role in disease: a scientific statement from the American heart association
  publication-title: Circ. Res.
  doi: 10.1161/RES.0000000000000104
– volume: 274
  start-page: 5845
  issue: 22
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib18
  article-title: Submitochondrial localization of 6-N-trimethyllysine dioxygenase - implications for carnitine biosynthesis
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2007.06108.x
– volume: 185
  start-page: 671
  issue: 3
  year: 1989
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib41
  article-title: Butyrobetaine availability in liver is a regulatory factor for carnitine biosynthesis in rat. Flux through butyrobetaine hydroxylase in fasting state
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1989.tb15164.x
– volume: 160
  start-page: 1573
  issue: 7
  year: 2010
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib22
  article-title: Guidelines for reporting experiments involving animals: the ARRIVE guidelines
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2010.00873.x
– volume: 78
  start-page: 234
  issue: 2
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib32
  article-title: Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on -linolenic acid
  publication-title: Proc. Nutr. Soc.
  doi: 10.1017/S0029665118002793
– volume: 113
  start-page: 788
  issue: Pt B
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib15
  article-title: Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2015.11.014
– volume: 24
  issue: 18
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib36
  article-title: Carnitine inborn errors of metabolism
  publication-title: Molecules
  doi: 10.3390/molecules24183251
– volume: 369
  start-page: 533
  issue: 5
  year: 2004
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib43
  article-title: The methylester of gamma-butyrobetaine, but not gamma-butyrobetaine itself, induces muscarinic receptor-dependent vasodilatation
  publication-title: N. Schmied. Arch. Pharmacol.
  doi: 10.1007/s00210-004-0925-6
– volume: 1
  start-page: 79
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib5
  article-title: Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep00079
– volume: 67
  start-page: 98
  issue: 2
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib28
  article-title: Troubleshooting digital macro photography for image acquisition and the analysis of biological samples
  publication-title: J. Pharmacol. Toxicol. Methods
  doi: 10.1016/j.vascn.2012.11.001
– volume: 179
  start-page: 899
  issue: 4076
  year: 1973
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib37
  article-title: Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome
  publication-title: Science
  doi: 10.1126/science.179.4076.899
– volume: 24
  start-page: 5937
  issue: 11
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib12
  article-title: Cardiac metabolism as a driver and therapeutic target of myocardial infarction
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.15180
– volume: 1862
  start-page: 1375
  issue: 8
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib45
  article-title: The impact of altered carnitine availability on acylcarnitine metabolism, energy expenditure and glucose tolerance in diet-induced obese mice
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2016.04.012
– volume: 67
  start-page: 291
  issue: 3
  year: 2016
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib2
  article-title: Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2015.10.079
– volume: 40
  start-page: 4364
  issue: 8
  year: 2011
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib19
  article-title: Inhibition of 2-oxoglutarate dependent oxygenases
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00203h
– volume: 72
  start-page: 101
  year: 2015
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib16
  article-title: Methyl-gamma-butyrobetaine decreases levels of acylcarnitines and attenuates the development of atherosclerosis
  publication-title: Vasc. Pharmacol.
  doi: 10.1016/j.vph.2015.05.005
– volume: 57
  start-page: 261
  year: 1988
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib34
  article-title: Carnitine
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.57.070188.001401
– volume: 42
  year: 2010
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib29
  article-title: Assessment of cardiac function and energetics in isolated mouse hearts using 31P NMR spectroscopy
  publication-title: JoVE
– volume: 395
  start-page: 86
  issue: 1–2
  year: 2007
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib21
  article-title: Functional characterization of the TMLH gene: promoter analysis, in situ hybridization, identification and mapping of alternative splicing variants
  publication-title: Gene
  doi: 10.1016/j.gene.2007.02.012
– volume: 62
  start-page: 711
  issue: 3
  year: 2013
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib17
  article-title: Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice
  publication-title: Diabetes
  doi: 10.2337/db12-0259
– volume: 1
  start-page: 966
  year: 2019
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib39
  article-title: Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation
  publication-title: Nat Metab
  doi: 10.1038/s42255-019-0115-y
– volume: 161
  issue: 2
  year: 2020
  ident: 10.1016/j.freeradbiomed.2021.10.035_bib6
  article-title: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential
  publication-title: Endocrinology
  doi: 10.1210/endocr/bqz046
SSID ssj0004538
Score 2.4406748
Snippet Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase...
Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N -trimethyllysine dioxygenase...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 370
SubjectTerms Acylcarnitine
Animals
Carnitine - analogs & derivatives
Fatty acid metabolism
Gamma-butyrobetaine
Ischemia
Male
Mice
Mice, Knockout
Mitochondria, Heart
Myocardial infarction
PUFA
Reperfusion
Trimethyllysine
Title Low cardiac content of long-chain acylcarnitines in TMLHE knockout mice prevents ischaemia-reperfusion-induced mitochondrial and cardiac damage
URI https://dx.doi.org/10.1016/j.freeradbiomed.2021.10.035
https://www.ncbi.nlm.nih.gov/pubmed/34728372
https://www.proquest.com/docview/2593028297
Volume 177
WOSCitedRecordID wos000721492400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004538
  issn: 0891-5849
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DRAvCDYG5TIZwXiZUrVxUic8IFXQaqAykOikvkWua4-sbVp6Y_sV_CV-GufYTi9AUXngJapcxU7yfTk59vl8DiEvAi0rgGzsBcLXXtCR3OswBo5c3BFGhqFs1ZImPzuL2u34U6HwI98LM-_zLIuuruLRf4Ua2gBs3Dr7D3AvOoUG-A2gwxFgh-NWwDeH3zDfNOAujRDdBfv7w-zCk19EmmGF977EFZEpat5xxaP1oXlaP-llYBxRp4wl6jF7wNxsf0snqKwfpMIbq5Ea6xkusHkwl5-hdmAAJgFMaNY15T_MLjk3eFcMxLrSqDFW6mQsbGgoT_-E3Ps1wt9MFZbUNks-9e6FWA059Zy616ZEsdXC0n5v4ra29ZfNn-GxdpSNqqQdsbrA4VdWxCLWJkeceUEYu4zZf2jLDbkrCGNNMbMFSX77RNjVisuShltGuYLJclDCgUso87PJU9YTc599TBrnzWbSqrdbx6wx-uph1TKM7h-zt5ZBO2TP52EMdnWv9q7efr-Ssd5UU19c8C3yfKkx3HgNm7ykTbMg4w217pI7bhpDa5Z-90hBZfvkoJaJ6XBwTV9SIyw2-O6Tm7be6fUB-Q7cpI4e1HGTDjVdcpOuc5NCi-EmzblJkZs05yb9KzfpGjcpcHMxuOXmfXLeqLfenHquIognA1adeiHXnEsNXjfu_I00k0wx7vuxjMBVrnZlUMWMiIHQSgrGuiKQPJJhV3NZqQjhs0Oymw0z9ZBQVi0LEepypaxZEOpOJMIYOtcK3DWfhapIXuUIJNKly8eqLf0k10VeJmvwJQgf_gnwFUmwOHlks8Zsd9rrHOrEOcDWsU2AvNt18CwnSAKfCYz9iUwNZ5PED2NmVBO8SB5Y5iyujMEdR_AYH21x9mNye_mOPiG70_FMPSU35HyaTsZHZIe3oyP3CvwEOWbv5w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+cardiac+content+of+long-chain+acylcarnitines+in+TMLHE+knockout+mice+prevents+ischaemia-reperfusion-induced+mitochondrial+and+cardiac+damage&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Liepinsh%2C+Edgars&rft.au=Kuka%2C+Janis&rft.au=Vilks%2C+Karlis&rft.au=Svalbe%2C+Baiba&rft.date=2021-12-01&rft.issn=1873-4596&rft.eissn=1873-4596&rft.volume=177&rft.spage=370&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2021.10.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon