Evacuation Path Planning Based on the Hybrid Improved Sparrow Search Optimization Algorithm
In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent optimization algorithms can achieve this goal, including the sparrow search algorithm (SSA). Despite the powerful search ability of the SSA, there are still some areas that need improvements. Aiming at the...
Uložené v:
| Vydané v: | Fire (Basel, Switzerland) Ročník 6; číslo 10; s. 380 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.10.2023
|
| Predmet: | |
| ISSN: | 2571-6255, 2571-6255 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent optimization algorithms can achieve this goal, including the sparrow search algorithm (SSA). Despite the powerful search ability of the SSA, there are still some areas that need improvements. Aiming at the problem that the sparrow search algorithm reduces population diversity and is easy to fall into local optimum when solving the optimal solution of the objective function, a hybrid improved sparrow search algorithm is proposed. First, logistic-tent mapping is used to initialize the population and enhance diversity in the population. Also, an adaptive period factor is introduced into the producer’s update position equation. Then, the Lévy flight is introduced to the position of the participant to improve the optimization ability of the algorithm. Finally, the adaptive disturbance strategy is adopted for excellent individuals to strengthen the ability of the algorithm to jump out of the local optimum in the later stage. In order to prove the improvement of the optimization ability of the improved algorithm, the improved sparrow algorithm is applied to five kinds of maps for evacuation path planning and compared with the simulation results of other intelligent algorithms. The ultimate simulation results show that the optimization algorithm proposed in this paper has better performance in path length, path smoothness, and algorithm convergence, showing better optimization performance. |
|---|---|
| AbstractList | In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent optimization algorithms can achieve this goal, including the sparrow search algorithm (SSA). Despite the powerful search ability of the SSA, there are still some areas that need improvements. Aiming at the problem that the sparrow search algorithm reduces population diversity and is easy to fall into local optimum when solving the optimal solution of the objective function, a hybrid improved sparrow search algorithm is proposed. First, logistic-tent mapping is used to initialize the population and enhance diversity in the population. Also, an adaptive period factor is introduced into the producer’s update position equation. Then, the Lévy flight is introduced to the position of the participant to improve the optimization ability of the algorithm. Finally, the adaptive disturbance strategy is adopted for excellent individuals to strengthen the ability of the algorithm to jump out of the local optimum in the later stage. In order to prove the improvement of the optimization ability of the improved algorithm, the improved sparrow algorithm is applied to five kinds of maps for evacuation path planning and compared with the simulation results of other intelligent algorithms. The ultimate simulation results show that the optimization algorithm proposed in this paper has better performance in path length, path smoothness, and algorithm convergence, showing better optimization performance. |
| Audience | Academic |
| Author | Zhang, Yuming Wei, Xiaoge Zhao, Yinlong |
| Author_xml | – sequence: 1 givenname: Xiaoge orcidid: 0000-0003-4765-4725 surname: Wei fullname: Wei, Xiaoge – sequence: 2 givenname: Yuming surname: Zhang fullname: Zhang, Yuming – sequence: 3 givenname: Yinlong surname: Zhao fullname: Zhao, Yinlong |
| BookMark | eNptUV1LHDEUDWJBa33qHxjoS6GsvfmeedyK1gVBwfapDyGTudnNMjPZZrKK_vpGpwWRkkAuh3NOOOe-J4djHJGQjxTOOG_gqw8JFQXgNRyQYyY1XSgm5eGr-YicTtMWABijXGl5TH5d3Fu3tznEsbq1eVPd9nYcw7iuvtkJu6rAeYPV1WObQlethl2K9wW-29mU4kN1hza5TXWzy2EIT7PNsl_HFPJm-EDeedtPePr3PSE_Ly9-nF8trm--r86X1wsnuMoLblm5KBhXqm2oE7VW0PDaNVyBxrotEzhuaec5CvCsa6Rt29axDkom5CdkNft20W7NLoXBpkcTbTAvQExrY1MOrkcjNSivvUcphfCybXQxQJBIG68t08Xr8-xVgv7e45TNECaHfWkF434yHARwyZkShfrpDXUb92ksSQ2rayaUBA6FdTaz1rb8H0Yfc7KunA6H4MoGfSj4UmsGioN8FtBZ4FKcpoTeuJBfmi3C0BsK5nnd5tW6i-bLG82_Fv7H_gMpy6ul |
| CitedBy_id | crossref_primary_10_3390_pr12122775 crossref_primary_10_3390_technologies13090389 crossref_primary_10_3390_electronics13081580 crossref_primary_10_3390_wevj15050177 crossref_primary_10_1016_j_jobe_2024_110408 crossref_primary_10_32604_cmes_2023_045096 crossref_primary_10_1016_j_jobe_2024_109757 crossref_primary_10_1038_s41598_024_71052_8 |
| Cites_doi | 10.1109/ACCESS.2019.2920913 10.1002/ima.22559 10.1007/s13748-021-00244-4 10.1016/j.advengsoft.2013.12.007 10.1177/0954411920987964 10.1007/s10694-023-01448-x 10.1016/j.eswa.2018.04.028 10.1007/s00500-018-3310-y 10.1109/CSAIEE54046.2021.9543453 10.1016/j.advengsoft.2016.01.008 10.1016/j.neucom.2019.06.099 10.1080/21642583.2019.1708830 10.3390/electronics11223660 10.3390/s21165297 10.3390/su141610250 10.1145/2842630 10.1007/s40436-021-00366-x 10.1016/j.physa.2021.126289 10.1088/1742-6596/1986/1/012114 10.1007/s10694-011-0217-x 10.1155/2021/9808449 10.1016/j.trb.2017.06.017 10.1016/j.plrev.2015.03.002 10.3390/s21041224 10.1155/2021/4059784 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 DOA |
| DOI | 10.3390/fire6100380 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Agricultural Science ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Agricultural Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2571-6255 |
| ExternalDocumentID | oai_doaj_org_article_5706f7ffe5544f5b9755ee05e19f7a27 A772063050 10_3390_fire6100380 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 7X2 AAFWJ AAHBH AAYXX ABDBF ADBBV AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC M0K MODMG M~E OK1 PHGZM PHGZT PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c436t-3a23a2e42366b91c48760938c93607e8b8c90c3a1df3e40f2d95abbbc2d0255e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001095359400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2571-6255 |
| IngestDate | Fri Oct 03 12:41:57 EDT 2025 Thu Oct 02 05:43:07 EDT 2025 Sun Nov 09 07:42:01 EST 2025 Tue Nov 04 18:38:26 EST 2025 Tue Nov 18 21:58:33 EST 2025 Sat Nov 29 07:12:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-3a23a2e42366b91c48760938c93607e8b8c90c3a1df3e40f2d95abbbc2d0255e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4765-4725 |
| OpenAccessLink | https://www.proquest.com/docview/2882465030?pq-origsite=%requestingapplication% |
| PQID | 2882465030 |
| PQPubID | 5046899 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5706f7ffe5544f5b9755ee05e19f7a27 proquest_miscellaneous_3040353264 proquest_journals_2882465030 gale_infotracacademiconefile_A772063050 crossref_citationtrail_10_3390_fire6100380 crossref_primary_10_3390_fire6100380 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Fire (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_21) 2022; 10 Ibrahim (ref_4) 2016; 7 Guan (ref_6) 2023; 59 Sharbini (ref_5) 2021; 8 Shan (ref_26) 2005; 20 Zhou (ref_12) 2021; 583 Ibrahim (ref_24) 2018; 108 Liu (ref_16) 2021; 235 ref_15 Reynolds (ref_27) 2015; 14 Wang (ref_13) 2019; 7 Zhang (ref_9) 2021; 2021 Liu (ref_17) 2021; 31 Mirjalili (ref_29) 2016; 95 Cao (ref_19) 2021; 2021 Haghani (ref_1) 2018; 107 ref_23 Fridolf (ref_2) 2013; 49 ref_20 Xue (ref_14) 2020; 8 Peng (ref_11) 2019; 365 Mirjalili (ref_28) 2014; 69 Jiang (ref_22) 2021; 1986 ref_8 Asghari (ref_10) 2021; 10 Kathiroli (ref_18) 2022; 34 Yang (ref_3) 2023; 99 ref_7 Teng (ref_25) 2019; 23 |
| References_xml | – volume: 7 start-page: 73841 year: 2019 ident: ref_13 article-title: Improved multi-agent reinforcement learning for path planning-based crowd simulation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920913 – volume: 31 start-page: 1921 year: 2021 ident: ref_17 article-title: Optimal brain tumor diagnosis based on deep learning and balanced sparrow search algorithm publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22559 – volume: 10 start-page: 349 year: 2021 ident: ref_10 article-title: A chaotic and hybrid gray wolf-whale algorithm for solving continuous optimization problems publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-021-00244-4 – volume: 69 start-page: 46 year: 2014 ident: ref_28 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 235 start-page: 459 year: 2021 ident: ref_16 article-title: An optimal brain tumor detection by convolutional neural network and enhanced sparrow search algorithm publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411920987964 – volume: 59 start-page: 2853 year: 2023 ident: ref_6 article-title: Dynamic Evacuation Path Planning for Multi-Exit Building Fire: Bi-Objective Model and Algorithm publication-title: Fire Technol. doi: 10.1007/s10694-023-01448-x – volume: 108 start-page: 1 year: 2018 ident: ref_24 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.028 – volume: 23 start-page: 6617 year: 2019 ident: ref_25 article-title: An improved hybrid grey wolf optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-018-3310-y – ident: ref_15 doi: 10.1109/CSAIEE54046.2021.9543453 – volume: 95 start-page: 51 year: 2016 ident: ref_29 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 365 start-page: 71 year: 2019 ident: ref_11 article-title: A self-learning dynamic path planning method for evacuation in large public buildings based on neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.06.099 – volume: 8 start-page: 22 year: 2020 ident: ref_14 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control. Eng. doi: 10.1080/21642583.2019.1708830 – ident: ref_8 doi: 10.3390/electronics11223660 – ident: ref_20 doi: 10.3390/s21165297 – ident: ref_7 doi: 10.3390/su141610250 – volume: 7 start-page: 1 year: 2016 ident: ref_4 article-title: Intelligent evacuation management systems: A review publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/2842630 – volume: 34 start-page: 8564 year: 2022 ident: ref_18 article-title: Energy efficient cluster head selection using improved Sparrow Search Algorithm in Wireless Sensor Networks publication-title: J. King Saud Univ. -Comput. Inf. Sci. – volume: 10 start-page: 114 year: 2022 ident: ref_21 article-title: A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm publication-title: Adv. Manuf. doi: 10.1007/s40436-021-00366-x – volume: 583 start-page: 126289 year: 2021 ident: ref_12 article-title: Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2021.126289 – volume: 1986 start-page: 012114 year: 2021 ident: ref_22 article-title: Fast Trajectory Optimization for Gliding Reentry Vehicle Based on Improved Sparrow Search Algorithm publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1986/1/012114 – volume: 99 start-page: 1 year: 2023 ident: ref_3 article-title: Multi-Objective Optimization of Evacuation Route for Heterogeneous Passengers in the Metro Station Considering Node Efficiency publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 49 start-page: 451 year: 2013 ident: ref_2 article-title: Fire evacuation in underground transportation systems: A review of accidents and empirical research publication-title: Fire Technol. doi: 10.1007/s10694-011-0217-x – volume: 2021 start-page: 9808449 year: 2021 ident: ref_19 article-title: A data collection strategy for heterogeneous wireless sensor networks based on energy efficiency and collaborative optimization publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/9808449 – volume: 8 start-page: 443 year: 2021 ident: ref_5 article-title: Crowd evacuation simulation model with soft computing optimization techniques: A systematic literature review publication-title: J. Manag. Anal. – volume: 107 start-page: 253 year: 2018 ident: ref_1 article-title: Crowd behaviour and motion: Empirical methods publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2017.06.017 – volume: 20 start-page: 179 year: 2005 ident: ref_26 article-title: Chaotic optimization algorithm based on Tent map publication-title: Control. Decis. – volume: 14 start-page: 59 year: 2015 ident: ref_27 article-title: Liberating Lévy walk research from the shackles of optimal foraging publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2015.03.002 – ident: ref_23 doi: 10.3390/s21041224 – volume: 2021 start-page: 1 year: 2021 ident: ref_9 article-title: Simulation of Sports Venue Based on Ant Colony Algorithm and Artificial Intelligence publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/4059784 |
| SSID | ssj0002213675 |
| Score | 2.2863328 |
| Snippet | In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent optimization algorithms can achieve this goal, including the... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 380 |
| SubjectTerms | Adaptive algorithms adaptive perturbation Algorithms chaotic mapping equations Evacuation Evacuation of civilians evacuation path planning Evacuation routing Food Foraging behavior hybrids Intelligence levy Logistics Machine learning Markov chain Mathematical optimization Methods Normal distribution Objective function Optimization Optimization algorithms Passeriformes Path planning Planning Search algorithms Simulation Smoothness SSA Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUl9NAeSj-p06SoECgUlsqrlbQ6OiEhpzTQFgI9CEkrtSmJHWwnkH-fN6u12UNLL4U9GEl45Vlp5j2v5g1jB9rqoFSUlem8AUGR0yqoaKvkrRfJSwqKfbEJc3bWXlzY81GpLzoTVuSBi-FA2IXOJueEuNdkFaxRKiWh0tRm4-s-j1wYOyJTv3tRF5IiUyUhT4LXf87wIIAKQpIA5CgE9Ur9f_PHfZA5ec6eDeiQz8qsXrBHaf6SPR1pBr5iP4B9Y9Hn5ueAb3xTdogfIiB1HM3AdPz0nlKxePnPAM1fb3q1RV6OF_Mv8BTXQwomn139XCwv17-uX7PvJ8ffjk6roUJCFRup15X0Na4ESKR1sNMI9qGFlW20UguT2oBPIko_7bJMjch1Z5UPIcS6Iy6R5Bu2M1_M01vGfdfqHBoVgTcafIlPhl7ywWIefqhpJ-zTxmguDvLhVMXiyoFGkIXdyMITdrAdfFNUM_487JCsvx1CUtd9AxaAGxaA-9cCmLCP9OwcbUhMKPohrwA_i6St3Az8gYTFFG63t3m8btipK1eDYjSAqRLdH7bd2GP04sTP0-J25SQ8nVQAus3u_5jxO_aEitaXI4F7bGe9vE377HG8W1-ulu_7hfwA1QX2sg priority: 102 providerName: Directory of Open Access Journals |
| Title | Evacuation Path Planning Based on the Hybrid Improved Sparrow Search Optimization Algorithm |
| URI | https://www.proquest.com/docview/2882465030 https://www.proquest.com/docview/3040353264 https://doaj.org/article/5706f7ffe5544f5b9755ee05e19f7a27 |
| Volume | 6 |
| WOSCitedRecordID | wos001095359400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: M0K dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2571-6255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213675 issn: 2571-6255 databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBZbu8N2WPerLFtbNCgMBqaKZdnWaSQlpWM0M_sBHTsIWZa6QZtkSTrYZX97v2crWQ7bLgNjjCzsZz_p6XtP0vcYO8x1XivlZFI0toCDIvtJrZxOvNVWeCtpUGyTTRTjcXl-rqsYcFvEZZUrm9ga6mbqKEZ-lAIKZoATUryefU8oaxTNrsYUGrfZNjGVoZ1vD0fj6v06ypKmREmmuo15Ev79UYAlAWQQkoggN4ailrH_b3a5HWxOdv5XzAfsfoSZfNC1i4fslp88Yvc2yAcfsy8A0a4j-uYVcCBf5S_iQ4xsDUcxwCE__Ul7ungXfEDxh1lL28i7dcr8HUzOVdzLyQeXF5Bl-fXqCft0Mvp4fJrEVAuJy2S-TKRNcXhgqzyvdd_BjcmFlqXTMheFL2tcCSdtvwnSZyKkjVa2rmuXNuSUeLnLtibTiX_KuG3KPNSZcgAuGR5ifUGzhfjlFgYtK3vs1eqvGxd5yCkdxqWBP0IqMhsq6rHDdeVZR7_x52pDUt-6CnFmtwXT-YWJXdAoyBGKEDwQVBZUrQsI7oXyfR0KmxY99pKUb6hnQyBn4wYFfBZxZJkBHBFiKFN43d5K-SZ2-YX5rfkee7G-jc5KMzB24qfXCyNhMqUCYs6e_fsRz9ldymvfrRrcY1vL-bXfZ3fcj-W3xfwgtvKDNoCA85l4S-dfI9yp3pxVn28Acl8K5Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAk4lFdRAwWMVISEtOrGXq_XB4RSoErUNkSiSEUcXK_XbpHaJCQpVf8Uv5GZfYQcgFsPSDmsHMux429nvvHjG4CtVKe5lE5EqrAKAxTRiXLpdOSttrG3gpximWxCDQbZ0ZEersDP5i4MHatsbGJpqIuxozXybY5UMEE6IeK3k-8RZY2i3dUmhUYFiz1_dYkh2-xN_z3O70vOdz8cvutFdVaByCUinUfCcvx4pBFpmuuOQ8aeYlifOS3SWPksx6fYCdspgvBJHHihpc3z3PGC-LcX2O4NWE0I7C1YHfYPhl8WqzqckwSarC4CCqHj7YCWCylKLEh4csn1lRkC_uYHSue2e_d_-1vuwVpNo1m3wv19WPGjB3BnSVzxIXzFIMFVQuZsiDyXNfmZ2A567oJhMZJf1ruiO2usWlzB4k-TUpaSVeew2Uc0qef1XVXWPTvBsc9Pz9fh87WM7hG0RuOR3wBmiywNeSIdErMEG7Fe0W4oTrFFg51kbXjdzLJxtc46pfs4MxhvESTMEiTasLWoPKnkRf5cbYfgsqhCmuBlwXh6YmoTYyT2I6gQPDLEJMhcK-y4j6Xv6KAsV214RWAzZLmwQ87WFzBwWKQBZroYaJECm8Sf22zAZmqTNjO_kdaGF4uv0RjRDpMd-fHFzAh0CUJiRJA8_ncTz-FW7_Bg3-z3B3tP4DZH5lidkNyE1nx64Z_CTfdj_m02fVa_YQyOrxu9vwAknWJF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHULwwPgYorCBkYaQkKKldpzEDwh1jGrVoEQCpCEePMdxBtLWlrYD7a_x6zjOR-kD8LYHpDxEjuXY8c2959q-5xLtxCrOpbQiSAqTwEERvSCXVgXOKBM6I7xRrJJNJKNRenSksjX62cbC-GOVrU6sFHUxsX6NfJcDCkaAEyLcLZtjEdn-4OX0W-AzSPmd1jadRi0ih-7iB9y3-YvhPub6KeeD1x9eHQRNhoHARiJeBMJwXA6QIo5z1bNA7zFc_NQqEYeJS3PchVaYXlEKF4UlL5Q0eZ5bXngs7gTavULrgOQR79B6NnybfVqu8HDu6dBkHRQohELHocUAV0LhSShXzGCVLeBvNqEydION__kT3aKbDbxm_fp_uE1rbnyHbqyQLt6lz3AebE1wzjLgX9bmbWJ7sOgFQzFAMTu48LFsrF50QfH7aUVXyerz2ewdVO1ZE8PK-qcnGPviy9kmfbyU0d2jzngydveJmSKNyzySFoAtQiPGJX6XFNNtoMijtEvP2xnXtuFf92lATjX8MC8eekU8urSzrDytaUf-XG3Pi86yiucKrwomsxPdqB4t0Y8yKUsH5BiVMlcJOu5C6XqqTAxPuvTMC572Gg0dsqYJzMCwPDeY7sMB88xsEq_bagVPN6purn9LXZeeLB9DSfmdJzN2k_O5FjAVQsJTiB78u4nHdA0iq98MR4cP6ToHoKwPTm5RZzE7d9t01X5ffJ3PHjU_G6PjyxbeX-lRawU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evacuation+Path+Planning+Based+on+the+Hybrid+Improved+Sparrow+Search+Optimization+Algorithm&rft.jtitle=Fire+%28Basel%2C+Switzerland%29&rft.au=Wei%2C+Xiaoge&rft.au=Zhang%2C+Yuming&rft.au=Zhao%2C+Yinlong&rft.date=2023-10-01&rft.issn=2571-6255&rft.eissn=2571-6255&rft.volume=6&rft.issue=10&rft.spage=380&rft_id=info:doi/10.3390%2Ffire6100380&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fire6100380 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-6255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-6255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-6255&client=summon |