Evacuation Path Planning Based on the Hybrid Improved Sparrow Search Optimization Algorithm

In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent optimization algorithms can achieve this goal, including the sparrow search algorithm (SSA). Despite the powerful search ability of the SSA, there are still some areas that need improvements. Aiming at the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fire (Basel, Switzerland) Ročník 6; číslo 10; s. 380
Hlavní autori: Wei, Xiaoge, Zhang, Yuming, Zhao, Yinlong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.10.2023
Predmet:
ISSN:2571-6255, 2571-6255
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent optimization algorithms can achieve this goal, including the sparrow search algorithm (SSA). Despite the powerful search ability of the SSA, there are still some areas that need improvements. Aiming at the problem that the sparrow search algorithm reduces population diversity and is easy to fall into local optimum when solving the optimal solution of the objective function, a hybrid improved sparrow search algorithm is proposed. First, logistic-tent mapping is used to initialize the population and enhance diversity in the population. Also, an adaptive period factor is introduced into the producer’s update position equation. Then, the Lévy flight is introduced to the position of the participant to improve the optimization ability of the algorithm. Finally, the adaptive disturbance strategy is adopted for excellent individuals to strengthen the ability of the algorithm to jump out of the local optimum in the later stage. In order to prove the improvement of the optimization ability of the improved algorithm, the improved sparrow algorithm is applied to five kinds of maps for evacuation path planning and compared with the simulation results of other intelligent algorithms. The ultimate simulation results show that the optimization algorithm proposed in this paper has better performance in path length, path smoothness, and algorithm convergence, showing better optimization performance.
AbstractList In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent optimization algorithms can achieve this goal, including the sparrow search algorithm (SSA). Despite the powerful search ability of the SSA, there are still some areas that need improvements. Aiming at the problem that the sparrow search algorithm reduces population diversity and is easy to fall into local optimum when solving the optimal solution of the objective function, a hybrid improved sparrow search algorithm is proposed. First, logistic-tent mapping is used to initialize the population and enhance diversity in the population. Also, an adaptive period factor is introduced into the producer’s update position equation. Then, the Lévy flight is introduced to the position of the participant to improve the optimization ability of the algorithm. Finally, the adaptive disturbance strategy is adopted for excellent individuals to strengthen the ability of the algorithm to jump out of the local optimum in the later stage. In order to prove the improvement of the optimization ability of the improved algorithm, the improved sparrow algorithm is applied to five kinds of maps for evacuation path planning and compared with the simulation results of other intelligent algorithms. The ultimate simulation results show that the optimization algorithm proposed in this paper has better performance in path length, path smoothness, and algorithm convergence, showing better optimization performance.
Audience Academic
Author Zhang, Yuming
Wei, Xiaoge
Zhao, Yinlong
Author_xml – sequence: 1
  givenname: Xiaoge
  orcidid: 0000-0003-4765-4725
  surname: Wei
  fullname: Wei, Xiaoge
– sequence: 2
  givenname: Yuming
  surname: Zhang
  fullname: Zhang, Yuming
– sequence: 3
  givenname: Yinlong
  surname: Zhao
  fullname: Zhao, Yinlong
BookMark eNptUV1LHDEUDWJBa33qHxjoS6GsvfmeedyK1gVBwfapDyGTudnNMjPZZrKK_vpGpwWRkkAuh3NOOOe-J4djHJGQjxTOOG_gqw8JFQXgNRyQYyY1XSgm5eGr-YicTtMWABijXGl5TH5d3Fu3tznEsbq1eVPd9nYcw7iuvtkJu6rAeYPV1WObQlethl2K9wW-29mU4kN1hza5TXWzy2EIT7PNsl_HFPJm-EDeedtPePr3PSE_Ly9-nF8trm--r86X1wsnuMoLblm5KBhXqm2oE7VW0PDaNVyBxrotEzhuaec5CvCsa6Rt29axDkom5CdkNft20W7NLoXBpkcTbTAvQExrY1MOrkcjNSivvUcphfCybXQxQJBIG68t08Xr8-xVgv7e45TNECaHfWkF434yHARwyZkShfrpDXUb92ksSQ2rayaUBA6FdTaz1rb8H0Yfc7KunA6H4MoGfSj4UmsGioN8FtBZ4FKcpoTeuJBfmi3C0BsK5nnd5tW6i-bLG82_Fv7H_gMpy6ul
CitedBy_id crossref_primary_10_3390_pr12122775
crossref_primary_10_3390_technologies13090389
crossref_primary_10_3390_electronics13081580
crossref_primary_10_3390_wevj15050177
crossref_primary_10_1016_j_jobe_2024_110408
crossref_primary_10_32604_cmes_2023_045096
crossref_primary_10_1016_j_jobe_2024_109757
crossref_primary_10_1038_s41598_024_71052_8
Cites_doi 10.1109/ACCESS.2019.2920913
10.1002/ima.22559
10.1007/s13748-021-00244-4
10.1016/j.advengsoft.2013.12.007
10.1177/0954411920987964
10.1007/s10694-023-01448-x
10.1016/j.eswa.2018.04.028
10.1007/s00500-018-3310-y
10.1109/CSAIEE54046.2021.9543453
10.1016/j.advengsoft.2016.01.008
10.1016/j.neucom.2019.06.099
10.1080/21642583.2019.1708830
10.3390/electronics11223660
10.3390/s21165297
10.3390/su141610250
10.1145/2842630
10.1007/s40436-021-00366-x
10.1016/j.physa.2021.126289
10.1088/1742-6596/1986/1/012114
10.1007/s10694-011-0217-x
10.1155/2021/9808449
10.1016/j.trb.2017.06.017
10.1016/j.plrev.2015.03.002
10.3390/s21041224
10.1155/2021/4059784
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.3390/fire6100380
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Agricultural Science
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Agricultural Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2571-6255
ExternalDocumentID oai_doaj_org_article_5706f7ffe5544f5b9755ee05e19f7a27
A772063050
10_3390_fire6100380
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 7X2
AAFWJ
AAHBH
AAYXX
ABDBF
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c436t-3a23a2e42366b91c48760938c93607e8b8c90c3a1df3e40f2d95abbbc2d0255e3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001095359400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2571-6255
IngestDate Fri Oct 03 12:41:57 EDT 2025
Thu Oct 02 05:43:07 EDT 2025
Sun Nov 09 07:42:01 EST 2025
Tue Nov 04 18:38:26 EST 2025
Tue Nov 18 21:58:33 EST 2025
Sat Nov 29 07:12:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-3a23a2e42366b91c48760938c93607e8b8c90c3a1df3e40f2d95abbbc2d0255e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4765-4725
OpenAccessLink https://www.proquest.com/docview/2882465030?pq-origsite=%requestingapplication%
PQID 2882465030
PQPubID 5046899
ParticipantIDs doaj_primary_oai_doaj_org_article_5706f7ffe5544f5b9755ee05e19f7a27
proquest_miscellaneous_3040353264
proquest_journals_2882465030
gale_infotracacademiconefile_A772063050
crossref_citationtrail_10_3390_fire6100380
crossref_primary_10_3390_fire6100380
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fire (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_21) 2022; 10
Ibrahim (ref_4) 2016; 7
Guan (ref_6) 2023; 59
Sharbini (ref_5) 2021; 8
Shan (ref_26) 2005; 20
Zhou (ref_12) 2021; 583
Ibrahim (ref_24) 2018; 108
Liu (ref_16) 2021; 235
ref_15
Reynolds (ref_27) 2015; 14
Wang (ref_13) 2019; 7
Zhang (ref_9) 2021; 2021
Liu (ref_17) 2021; 31
Mirjalili (ref_29) 2016; 95
Cao (ref_19) 2021; 2021
Haghani (ref_1) 2018; 107
ref_23
Fridolf (ref_2) 2013; 49
ref_20
Xue (ref_14) 2020; 8
Peng (ref_11) 2019; 365
Mirjalili (ref_28) 2014; 69
Jiang (ref_22) 2021; 1986
ref_8
Asghari (ref_10) 2021; 10
Kathiroli (ref_18) 2022; 34
Yang (ref_3) 2023; 99
ref_7
Teng (ref_25) 2019; 23
References_xml – volume: 7
  start-page: 73841
  year: 2019
  ident: ref_13
  article-title: Improved multi-agent reinforcement learning for path planning-based crowd simulation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920913
– volume: 31
  start-page: 1921
  year: 2021
  ident: ref_17
  article-title: Optimal brain tumor diagnosis based on deep learning and balanced sparrow search algorithm
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22559
– volume: 10
  start-page: 349
  year: 2021
  ident: ref_10
  article-title: A chaotic and hybrid gray wolf-whale algorithm for solving continuous optimization problems
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-021-00244-4
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_28
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 235
  start-page: 459
  year: 2021
  ident: ref_16
  article-title: An optimal brain tumor detection by convolutional neural network and enhanced sparrow search algorithm
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411920987964
– volume: 59
  start-page: 2853
  year: 2023
  ident: ref_6
  article-title: Dynamic Evacuation Path Planning for Multi-Exit Building Fire: Bi-Objective Model and Algorithm
  publication-title: Fire Technol.
  doi: 10.1007/s10694-023-01448-x
– volume: 108
  start-page: 1
  year: 2018
  ident: ref_24
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.028
– volume: 23
  start-page: 6617
  year: 2019
  ident: ref_25
  article-title: An improved hybrid grey wolf optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3310-y
– ident: ref_15
  doi: 10.1109/CSAIEE54046.2021.9543453
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_29
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 365
  start-page: 71
  year: 2019
  ident: ref_11
  article-title: A self-learning dynamic path planning method for evacuation in large public buildings based on neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.099
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_14
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control. Eng.
  doi: 10.1080/21642583.2019.1708830
– ident: ref_8
  doi: 10.3390/electronics11223660
– ident: ref_20
  doi: 10.3390/s21165297
– ident: ref_7
  doi: 10.3390/su141610250
– volume: 7
  start-page: 1
  year: 2016
  ident: ref_4
  article-title: Intelligent evacuation management systems: A review
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/2842630
– volume: 34
  start-page: 8564
  year: 2022
  ident: ref_18
  article-title: Energy efficient cluster head selection using improved Sparrow Search Algorithm in Wireless Sensor Networks
  publication-title: J. King Saud Univ. -Comput. Inf. Sci.
– volume: 10
  start-page: 114
  year: 2022
  ident: ref_21
  article-title: A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-021-00366-x
– volume: 583
  start-page: 126289
  year: 2021
  ident: ref_12
  article-title: Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2021.126289
– volume: 1986
  start-page: 012114
  year: 2021
  ident: ref_22
  article-title: Fast Trajectory Optimization for Gliding Reentry Vehicle Based on Improved Sparrow Search Algorithm
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1986/1/012114
– volume: 99
  start-page: 1
  year: 2023
  ident: ref_3
  article-title: Multi-Objective Optimization of Evacuation Route for Heterogeneous Passengers in the Metro Station Considering Node Efficiency
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 49
  start-page: 451
  year: 2013
  ident: ref_2
  article-title: Fire evacuation in underground transportation systems: A review of accidents and empirical research
  publication-title: Fire Technol.
  doi: 10.1007/s10694-011-0217-x
– volume: 2021
  start-page: 9808449
  year: 2021
  ident: ref_19
  article-title: A data collection strategy for heterogeneous wireless sensor networks based on energy efficiency and collaborative optimization
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/9808449
– volume: 8
  start-page: 443
  year: 2021
  ident: ref_5
  article-title: Crowd evacuation simulation model with soft computing optimization techniques: A systematic literature review
  publication-title: J. Manag. Anal.
– volume: 107
  start-page: 253
  year: 2018
  ident: ref_1
  article-title: Crowd behaviour and motion: Empirical methods
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2017.06.017
– volume: 20
  start-page: 179
  year: 2005
  ident: ref_26
  article-title: Chaotic optimization algorithm based on Tent map
  publication-title: Control. Decis.
– volume: 14
  start-page: 59
  year: 2015
  ident: ref_27
  article-title: Liberating Lévy walk research from the shackles of optimal foraging
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2015.03.002
– ident: ref_23
  doi: 10.3390/s21041224
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: Simulation of Sports Venue Based on Ant Colony Algorithm and Artificial Intelligence
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/4059784
SSID ssj0002213675
Score 2.2863328
Snippet In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent optimization algorithms can achieve this goal, including the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 380
SubjectTerms Adaptive algorithms
adaptive perturbation
Algorithms
chaotic mapping
equations
Evacuation
Evacuation of civilians
evacuation path planning
Evacuation routing
Food
Foraging behavior
hybrids
Intelligence
levy
Logistics
Machine learning
Markov chain
Mathematical optimization
Methods
Normal distribution
Objective function
Optimization
Optimization algorithms
Passeriformes
Path planning
Planning
Search algorithms
Simulation
Smoothness
SSA
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUl9NAeSj-p06SoECgUlsqrlbQ6OiEhpzTQFgI9CEkrtSmJHWwnkH-fN6u12UNLL4U9GEl45Vlp5j2v5g1jB9rqoFSUlem8AUGR0yqoaKvkrRfJSwqKfbEJc3bWXlzY81GpLzoTVuSBi-FA2IXOJueEuNdkFaxRKiWh0tRm4-s-j1wYOyJTv3tRF5IiUyUhT4LXf87wIIAKQpIA5CgE9Ur9f_PHfZA5ec6eDeiQz8qsXrBHaf6SPR1pBr5iP4B9Y9Hn5ueAb3xTdogfIiB1HM3AdPz0nlKxePnPAM1fb3q1RV6OF_Mv8BTXQwomn139XCwv17-uX7PvJ8ffjk6roUJCFRup15X0Na4ESKR1sNMI9qGFlW20UguT2oBPIko_7bJMjch1Z5UPIcS6Iy6R5Bu2M1_M01vGfdfqHBoVgTcafIlPhl7ywWIefqhpJ-zTxmguDvLhVMXiyoFGkIXdyMITdrAdfFNUM_487JCsvx1CUtd9AxaAGxaA-9cCmLCP9OwcbUhMKPohrwA_i6St3Az8gYTFFG63t3m8btipK1eDYjSAqRLdH7bd2GP04sTP0-J25SQ8nVQAus3u_5jxO_aEitaXI4F7bGe9vE377HG8W1-ulu_7hfwA1QX2sg
  priority: 102
  providerName: Directory of Open Access Journals
Title Evacuation Path Planning Based on the Hybrid Improved Sparrow Search Optimization Algorithm
URI https://www.proquest.com/docview/2882465030
https://www.proquest.com/docview/3040353264
https://doaj.org/article/5706f7ffe5544f5b9755ee05e19f7a27
Volume 6
WOSCitedRecordID wos001095359400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: M0K
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2571-6255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213675
  issn: 2571-6255
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBZbu8N2WPerLFtbNCgMBqaKZdnWaSQlpWM0M_sBHTsIWZa6QZtkSTrYZX97v2crWQ7bLgNjjCzsZz_p6XtP0vcYO8x1XivlZFI0toCDIvtJrZxOvNVWeCtpUGyTTRTjcXl-rqsYcFvEZZUrm9ga6mbqKEZ-lAIKZoATUryefU8oaxTNrsYUGrfZNjGVoZ1vD0fj6v06ypKmREmmuo15Ev79UYAlAWQQkoggN4ailrH_b3a5HWxOdv5XzAfsfoSZfNC1i4fslp88Yvc2yAcfsy8A0a4j-uYVcCBf5S_iQ4xsDUcxwCE__Ul7ungXfEDxh1lL28i7dcr8HUzOVdzLyQeXF5Bl-fXqCft0Mvp4fJrEVAuJy2S-TKRNcXhgqzyvdd_BjcmFlqXTMheFL2tcCSdtvwnSZyKkjVa2rmuXNuSUeLnLtibTiX_KuG3KPNSZcgAuGR5ifUGzhfjlFgYtK3vs1eqvGxd5yCkdxqWBP0IqMhsq6rHDdeVZR7_x52pDUt-6CnFmtwXT-YWJXdAoyBGKEDwQVBZUrQsI7oXyfR0KmxY99pKUb6hnQyBn4wYFfBZxZJkBHBFiKFN43d5K-SZ2-YX5rfkee7G-jc5KMzB24qfXCyNhMqUCYs6e_fsRz9ldymvfrRrcY1vL-bXfZ3fcj-W3xfwgtvKDNoCA85l4S-dfI9yp3pxVn28Acl8K5Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAk4lFdRAwWMVISEtOrGXq_XB4RSoErUNkSiSEUcXK_XbpHaJCQpVf8Uv5GZfYQcgFsPSDmsHMux429nvvHjG4CtVKe5lE5EqrAKAxTRiXLpdOSttrG3gpximWxCDQbZ0ZEersDP5i4MHatsbGJpqIuxozXybY5UMEE6IeK3k-8RZY2i3dUmhUYFiz1_dYkh2-xN_z3O70vOdz8cvutFdVaByCUinUfCcvx4pBFpmuuOQ8aeYlifOS3SWPksx6fYCdspgvBJHHihpc3z3PGC-LcX2O4NWE0I7C1YHfYPhl8WqzqckwSarC4CCqHj7YCWCylKLEh4csn1lRkC_uYHSue2e_d_-1vuwVpNo1m3wv19WPGjB3BnSVzxIXzFIMFVQuZsiDyXNfmZ2A567oJhMZJf1ruiO2usWlzB4k-TUpaSVeew2Uc0qef1XVXWPTvBsc9Pz9fh87WM7hG0RuOR3wBmiywNeSIdErMEG7Fe0W4oTrFFg51kbXjdzLJxtc46pfs4MxhvESTMEiTasLWoPKnkRf5cbYfgsqhCmuBlwXh6YmoTYyT2I6gQPDLEJMhcK-y4j6Xv6KAsV214RWAzZLmwQ87WFzBwWKQBZroYaJECm8Sf22zAZmqTNjO_kdaGF4uv0RjRDpMd-fHFzAh0CUJiRJA8_ncTz-FW7_Bg3-z3B3tP4DZH5lidkNyE1nx64Z_CTfdj_m02fVa_YQyOrxu9vwAknWJF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHULwwPgYorCBkYaQkKKldpzEDwh1jGrVoEQCpCEePMdxBtLWlrYD7a_x6zjOR-kD8LYHpDxEjuXY8c2959q-5xLtxCrOpbQiSAqTwEERvSCXVgXOKBM6I7xRrJJNJKNRenSksjX62cbC-GOVrU6sFHUxsX6NfJcDCkaAEyLcLZtjEdn-4OX0W-AzSPmd1jadRi0ih-7iB9y3-YvhPub6KeeD1x9eHQRNhoHARiJeBMJwXA6QIo5z1bNA7zFc_NQqEYeJS3PchVaYXlEKF4UlL5Q0eZ5bXngs7gTavULrgOQR79B6NnybfVqu8HDu6dBkHRQohELHocUAV0LhSShXzGCVLeBvNqEydION__kT3aKbDbxm_fp_uE1rbnyHbqyQLt6lz3AebE1wzjLgX9bmbWJ7sOgFQzFAMTu48LFsrF50QfH7aUVXyerz2ewdVO1ZE8PK-qcnGPviy9kmfbyU0d2jzngydveJmSKNyzySFoAtQiPGJX6XFNNtoMijtEvP2xnXtuFf92lATjX8MC8eekU8urSzrDytaUf-XG3Pi86yiucKrwomsxPdqB4t0Y8yKUsH5BiVMlcJOu5C6XqqTAxPuvTMC572Gg0dsqYJzMCwPDeY7sMB88xsEq_bagVPN6purn9LXZeeLB9DSfmdJzN2k_O5FjAVQsJTiB78u4nHdA0iq98MR4cP6ToHoKwPTm5RZzE7d9t01X5ffJ3PHjU_G6PjyxbeX-lRawU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evacuation+Path+Planning+Based+on+the+Hybrid+Improved+Sparrow+Search+Optimization+Algorithm&rft.jtitle=Fire+%28Basel%2C+Switzerland%29&rft.au=Wei%2C+Xiaoge&rft.au=Zhang%2C+Yuming&rft.au=Zhao%2C+Yinlong&rft.date=2023-10-01&rft.issn=2571-6255&rft.eissn=2571-6255&rft.volume=6&rft.issue=10&rft.spage=380&rft_id=info:doi/10.3390%2Ffire6100380&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fire6100380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-6255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-6255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-6255&client=summon