Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes

•SCO2 heat transfer behaviors in various channels are comparatively studied.•The coupling relationship of buoyancy effect and flow characteristics is discussed.•The various buoyancy criteria are validated in various channels with experimental data.•The heat transfer is improved by helical structures...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of heat and mass transfer Ročník 149; s. 119074
Hlavní autori: Zhang, Shijie, Xu, Xiaoxiao, Liu, Chao, Liu, Xinxin, Ru, Zhipeng, Dang, Chaobin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.03.2020
Elsevier BV
Predmet:
ISSN:0017-9310, 1879-2189
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •SCO2 heat transfer behaviors in various channels are comparatively studied.•The coupling relationship of buoyancy effect and flow characteristics is discussed.•The various buoyancy criteria are validated in various channels with experimental data.•The heat transfer is improved by helical structures at large gravitational buoyancy. For the different flow orientations and physical models, the influence of buoyancy effect on flow characteristics exist essential difference, the heat transfer behaviors change accordingly. To suppress heat transfer deterioration and improve heat transfer performance, it is quite necessary to discuss the heat transfer behaviors of supercritical CO2 in various heating tubes. The heat transfer and flow characteristics of supercritical CO2 heated in the vertically straight tube, horizontal tube, and vertical helical-coiled tube, with inner diameter of 4 mm, are comparatively studied by experiments and numerical simulations. The tests are conducted at operating pressures from 7.5 MPa to 9 MPa, the mass flow rate is in the range of 80–600 kg/(m2•s). The heat flux covers a range from 10 kW/m2 to 70 kW/m2. The coupling relationship of buoyancy effect and flow characteristics in different physical models are revealed, and the various buoyancy criteria are validated with experimental data. The experimental results confirm that the employment of buoyancy parameter needs to take full account of the interaction between buoyancy force and flow orientations. And experimental data indicate that the heat transfer deterioration in the vertical tube is more serious than it in the horizontal tube. Generally, the helical-coiled tube has a noteworthy advantage for the average heat transfer performance, especially in the case of strong buoyancy. The new empirical correlations for the horizontal tube and helical-coiled tube are proposed with experimental data.
AbstractList For the different flow orientations and physical models, the influence of buoyancy effect on flow characteristics exist essential difference, the heat transfer behaviors change accordingly. To suppress heat transfer deterioration and improve heat transfer performance, it is quite necessary to discuss the heat transfer behaviors of supercritical CO2 in various heating tubes. The heat transfer and flow characteristics of supercritical CO2 heated in the vertically straight tube, horizontal tube, and vertical helical-coiled tube, with inner diameter of 4 mm, are comparatively studied by experiments and numerical simulations. The tests are conducted at operating pressures from 7.5 MPa to 9 MPa, the mass flow rate is in the range of 80–600 kg/(m2•s). The heat flux covers a range from 10 kW/m2 to 70 kW/m2. The coupling relationship of buoyancy effect and flow characteristics in different physical models are revealed, and the various buoyancy criteria are validated with experimental data. The experimental results confirm that the employment of buoyancy parameter needs to take full account of the interaction between buoyancy force and flow orientations. And experimental data indicate that the heat transfer deterioration in the vertical tube is more serious than it in the horizontal tube. Generally, the helical-coiled tube has a noteworthy advantage for the average heat transfer performance, especially in the case of strong buoyancy. The new empirical correlations for the horizontal tube and helical-coiled tube are proposed with experimental data.
•SCO2 heat transfer behaviors in various channels are comparatively studied.•The coupling relationship of buoyancy effect and flow characteristics is discussed.•The various buoyancy criteria are validated in various channels with experimental data.•The heat transfer is improved by helical structures at large gravitational buoyancy. For the different flow orientations and physical models, the influence of buoyancy effect on flow characteristics exist essential difference, the heat transfer behaviors change accordingly. To suppress heat transfer deterioration and improve heat transfer performance, it is quite necessary to discuss the heat transfer behaviors of supercritical CO2 in various heating tubes. The heat transfer and flow characteristics of supercritical CO2 heated in the vertically straight tube, horizontal tube, and vertical helical-coiled tube, with inner diameter of 4 mm, are comparatively studied by experiments and numerical simulations. The tests are conducted at operating pressures from 7.5 MPa to 9 MPa, the mass flow rate is in the range of 80–600 kg/(m2•s). The heat flux covers a range from 10 kW/m2 to 70 kW/m2. The coupling relationship of buoyancy effect and flow characteristics in different physical models are revealed, and the various buoyancy criteria are validated with experimental data. The experimental results confirm that the employment of buoyancy parameter needs to take full account of the interaction between buoyancy force and flow orientations. And experimental data indicate that the heat transfer deterioration in the vertical tube is more serious than it in the horizontal tube. Generally, the helical-coiled tube has a noteworthy advantage for the average heat transfer performance, especially in the case of strong buoyancy. The new empirical correlations for the horizontal tube and helical-coiled tube are proposed with experimental data.
ArticleNumber 119074
Author Zhang, Shijie
Liu, Xinxin
Dang, Chaobin
Liu, Chao
Xu, Xiaoxiao
Ru, Zhipeng
Author_xml – sequence: 1
  givenname: Shijie
  surname: Zhang
  fullname: Zhang, Shijie
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 2
  givenname: Xiaoxiao
  surname: Xu
  fullname: Xu, Xiaoxiao
  email: xuxiaoxiao@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 3
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 4
  givenname: Xinxin
  surname: Liu
  fullname: Liu, Xinxin
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China
– sequence: 5
  givenname: Zhipeng
  surname: Ru
  fullname: Ru, Zhipeng
  organization: Chongqing Midea General Refrigeration Equipment Co., Ltd. No.15 Qiangwei Road, Nanan District, Chongqing, PR China
– sequence: 6
  givenname: Chaobin
  surname: Dang
  fullname: Dang, Chaobin
  organization: Department of Human and Engineered Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan
BookMark eNqVkc9uGyEQxlGVSHX-vANSL72sy-yu2eXWyrLbRJFySc6IZYealQ0usFb9BHntsnZyaS_NCQ3M_D7m-67IhfMOCfkMbA4M-JdhbocNqrRTMaagXDQY5iUDMQcQrKk_kBm0jShKaMUFmTEGTSEqYB_JVYzDVLKaz8jL6vceg92hS2pLleupG3f5QudK-91eBRu9o97QtEE6CdI3NdrhRh2sD_E0143-qJw-UjQGdYrTTBwzXAebTrzlY0mto4fM9GM8waz7SdPYYbwhl0ZtI96-ntfkeb16Wv4oHh6_3y2_PRS6rngqKmE0h1YhCtUJ0TfQ8EUnSm4Ae1b1eXHWlv2Ct2BMWauO8071XIgaGlV3uromn87cffC_RoxJDn4MLkvKslrUFeM1h9y1Pnfp4GMMaKS2Kf_Wu7y83UpgcgpBDvLfEOQUgjyHkEFf_wLts9kqHN-DuD8jMNtysPk1aotOY29D9ln23v4_7A9ntLgw
CitedBy_id crossref_primary_10_1016_j_compfluid_2023_105911
crossref_primary_10_1134_S0040601521080048
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122510
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124694
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124098
crossref_primary_10_1016_j_applthermaleng_2024_123023
crossref_primary_10_1016_j_anucene_2024_110676
crossref_primary_10_1016_j_tsep_2024_102442
crossref_primary_10_1016_j_applthermaleng_2023_120198
crossref_primary_10_1016_j_applthermaleng_2023_120391
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123258
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122103
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125630
crossref_primary_10_1016_j_ijthermalsci_2025_110256
crossref_primary_10_1016_j_energy_2024_133635
crossref_primary_10_1016_j_applthermaleng_2023_120606
crossref_primary_10_1016_j_anucene_2023_110223
crossref_primary_10_1016_j_ijthermalsci_2023_108572
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126786
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124802
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124647
crossref_primary_10_1016_j_energy_2020_118061
crossref_primary_10_1016_j_supflu_2022_105738
crossref_primary_10_1016_j_applthermaleng_2025_127274
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123225
crossref_primary_10_1080_00295639_2022_2102391
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121641
crossref_primary_10_1016_j_applthermaleng_2024_123165
crossref_primary_10_1016_j_ijheatfluidflow_2024_109558
crossref_primary_10_1016_j_applthermaleng_2024_123761
crossref_primary_10_1007_s11630_024_2039_4
crossref_primary_10_1016_j_applthermaleng_2024_122630
crossref_primary_10_3390_ijms22179201
crossref_primary_10_1016_j_applthermaleng_2025_126796
crossref_primary_10_1016_j_applthermaleng_2025_125623
crossref_primary_10_1016_j_ijthermalsci_2024_108942
crossref_primary_10_2298_TSCI210719052Y
crossref_primary_10_1016_j_applthermaleng_2025_126472
crossref_primary_10_1016_j_ijthermalsci_2023_108386
crossref_primary_10_1088_1742_6596_2029_1_012116
crossref_primary_10_1080_10407782_2020_1746168
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123503
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122581
crossref_primary_10_1016_j_rser_2024_115267
crossref_primary_10_1016_j_applthermaleng_2024_122821
crossref_primary_10_1016_j_applthermaleng_2024_122823
crossref_primary_10_1016_j_applthermaleng_2024_124925
crossref_primary_10_1016_j_applthermaleng_2023_120429
crossref_primary_10_1016_j_ijrefrig_2022_05_013
crossref_primary_10_1002_er_8131
crossref_primary_10_1016_j_energy_2022_125444
crossref_primary_10_1016_j_applthermaleng_2023_122244
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122865
crossref_primary_10_1016_j_applthermaleng_2025_126321
crossref_primary_10_1080_10407782_2024_2314234
Cites_doi 10.1016/j.ijheatfluidflow.2010.06.013
10.1016/j.ijheatmasstransfer.2011.01.008
10.1016/j.ijheatmasstransfer.2008.05.014
10.1016/S0017-9310(96)00248-7
10.1016/j.ijheatmasstransfer.2014.10.074
10.1016/j.rser.2018.04.106
10.1017/jfm.2016.653
10.1016/j.ijheatmasstransfer.2016.10.093
10.1016/j.ijheatmasstransfer.2015.02.013
10.1016/0017-9310(73)90135-X
10.1016/j.nucengdes.2010.07.002
10.1016/S0196-8904(96)00040-4
10.1016/j.nucengdes.2005.05.034
10.1016/j.energy.2016.10.005
10.1016/j.ijheatfluidflow.2007.09.007
10.1016/j.ijrefrig.2016.12.002
10.1016/j.enconman.2017.12.046
10.1016/S0065-2717(08)70333-2
10.1016/j.ijrefrig.2018.03.011
10.1016/j.energy.2014.07.044
10.1016/j.applthermaleng.2014.10.031
10.1016/j.nucengdes.2012.09.040
10.1016/j.applthermaleng.2017.03.146
10.1016/j.expthermflusci.2017.11.024
10.1016/j.applthermaleng.2019.04.097
10.1016/j.applthermaleng.2017.07.049
10.13182/NT06-A3738
10.1016/0142-727X(89)90049-0
10.1016/j.supflu.2015.02.001
10.1007/BF00851521
10.1016/S0017-9310(02)00206-5
10.1016/j.expthermflusci.2018.08.027
10.1016/j.apenergy.2016.06.018
10.1016/j.applthermaleng.2017.12.042
10.1016/j.energy.2018.03.009
10.1007/s00231-015-1580-9
10.1016/j.ijheatmasstransfer.2018.04.033
10.1016/j.rser.2015.04.039
10.1016/j.energy.2019.03.150
10.1016/j.nucengdes.2011.06.016
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Mar 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2019.119074
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2019_119074
S0017931019352597
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c436t-39fc618aee9ab99d71765b926f1ed03d074082d5681ff24ab66bad699417a4bc3
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538009600099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Fri Jul 25 03:08:07 EDT 2025
Sat Nov 29 07:32:12 EST 2025
Tue Nov 18 21:47:48 EST 2025
Fri Feb 23 02:48:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat transfer deterioration
Helical-coiled tube
Supercritical CO2
Comparative study
Buoyancy effect
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-39fc618aee9ab99d71765b926f1ed03d074082d5681ff24ab66bad699417a4bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2354306461
PQPubID 2045464
ParticipantIDs proquest_journals_2354306461
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_119074
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119074
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_119074
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jiang (bib0023) 2008; 51
Jackson, Cotton, Axcell (bib0008) 1989; 10
Hall, Jackson, Watson (bib0007) 1967; 182
Shiralkar, Griffith (bib0034) 1968
Xu, Zhang, Liu (bib0004) 2018; 89
Pioro, Duffey (bib0006) 2005; 235
Ehsan, Guan, Klimenko (bib0041) 2018; 92
Wang, Guan, Gurgenci (bib0044) 2018; 157
Tian (bib0017) 2019; 100
He, He, Seddighi (bib0035) 2016; 809
Ciofalo, Arini, Liberto (bib0029) 2015; 82
Polyakov, A.F., Heat transfer under supercritical pressures. 1991, 21: 1–53.
Watts, Chou (bib0037) 1982
Zhang (bib0030) 2018; 125
Petukhov, Polyakov (bib0043) 1970; 8
Zhang, Zhu, Li (bib0003) 2018; 151
Knez, Markočič, Leitgeb (bib0001) 2014; 77
Huang, Li (bib0020) 2018; 131
Hiroaki (bib0009) 1973; 16
Zhang, Xu, Liu (bib0039) 2019; 176
Zhang, Xu, Liu (bib0032) 2019; 157
Bae (bib0042) 2011; 241
Yildiz, Biçer, Pehlivan (bib0028) 1997; 38
Cabeza, de Gracia, Fernández (bib0005) 2017; 125
Jackson (bib0036) 2017; 124
Zhang (bib0016) 2015; 88
Goering, Humphrey, Greif (bib0031) 1997; 40
Jackson (bib0014) 2013; 264
Kim, Kim (bib0038) 2010; 240
Sarkar (bib0002) 2015; 48
Bae, Kim, Yoo (bib0025) 2011; 32
Liao, Zhao (bib0024) 2002; 45
Liu (bib0026) 2015; 85
Licht, Anderson, Corradini (bib0021) 2008; 29
Liu (bib0013) 2017; 106
Li, Zhai, Li (bib0040) 2016; 116
Polyakov (bib0010) 1974; 15
Kim (bib0019) 2018; 92
Li (bib0015) 2016; 178
Wang (bib0022) 2011; 54
Wang, Xu, Wu (bib0033) 2015; 99
Seo (bib0012) 2006; 154
Salimpour, Shahmoradi (bib0027) 2017; 74
Lemmon, Huber, McLinden (bib0045) 2013
Tanimizu, Sadr (bib0018) 2016; 52
Knez (10.1016/j.ijheatmasstransfer.2019.119074_bib0001) 2014; 77
Jackson (10.1016/j.ijheatmasstransfer.2019.119074_bib0008) 1989; 10
Bae (10.1016/j.ijheatmasstransfer.2019.119074_bib0042) 2011; 241
Li (10.1016/j.ijheatmasstransfer.2019.119074_bib0015) 2016; 178
Petukhov (10.1016/j.ijheatmasstransfer.2019.119074_bib0043) 1970; 8
Lemmon (10.1016/j.ijheatmasstransfer.2019.119074_bib0045) 2013
Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0039) 2019; 176
Liao (10.1016/j.ijheatmasstransfer.2019.119074_bib0024) 2002; 45
10.1016/j.ijheatmasstransfer.2019.119074_bib0011
Liu (10.1016/j.ijheatmasstransfer.2019.119074_bib0026) 2015; 85
Wang (10.1016/j.ijheatmasstransfer.2019.119074_bib0022) 2011; 54
Polyakov (10.1016/j.ijheatmasstransfer.2019.119074_bib0010) 1974; 15
Tanimizu (10.1016/j.ijheatmasstransfer.2019.119074_bib0018) 2016; 52
Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0003) 2018; 151
Xu (10.1016/j.ijheatmasstransfer.2019.119074_bib0004) 2018; 89
Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0030) 2018; 125
Wang (10.1016/j.ijheatmasstransfer.2019.119074_bib0044) 2018; 157
Seo (10.1016/j.ijheatmasstransfer.2019.119074_bib0012) 2006; 154
Shiralkar (10.1016/j.ijheatmasstransfer.2019.119074_bib0034) 1968
Ehsan (10.1016/j.ijheatmasstransfer.2019.119074_bib0041) 2018; 92
Ciofalo (10.1016/j.ijheatmasstransfer.2019.119074_bib0029) 2015; 82
Li (10.1016/j.ijheatmasstransfer.2019.119074_bib0040) 2016; 116
Licht (10.1016/j.ijheatmasstransfer.2019.119074_bib0021) 2008; 29
Yildiz (10.1016/j.ijheatmasstransfer.2019.119074_bib0028) 1997; 38
Wang (10.1016/j.ijheatmasstransfer.2019.119074_bib0033) 2015; 99
He (10.1016/j.ijheatmasstransfer.2019.119074_bib0035) 2016; 809
Hiroaki (10.1016/j.ijheatmasstransfer.2019.119074_bib0009) 1973; 16
Pioro (10.1016/j.ijheatmasstransfer.2019.119074_bib0006) 2005; 235
Kim (10.1016/j.ijheatmasstransfer.2019.119074_bib0038) 2010; 240
Sarkar (10.1016/j.ijheatmasstransfer.2019.119074_bib0002) 2015; 48
Bae (10.1016/j.ijheatmasstransfer.2019.119074_bib0025) 2011; 32
Kim (10.1016/j.ijheatmasstransfer.2019.119074_bib0019) 2018; 92
Jackson (10.1016/j.ijheatmasstransfer.2019.119074_bib0014) 2013; 264
Cabeza (10.1016/j.ijheatmasstransfer.2019.119074_bib0005) 2017; 125
Hall (10.1016/j.ijheatmasstransfer.2019.119074_bib0007) 1967; 182
Jiang (10.1016/j.ijheatmasstransfer.2019.119074_bib0023) 2008; 51
Watts (10.1016/j.ijheatmasstransfer.2019.119074_bib0037) 1982
Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0032) 2019; 157
Tian (10.1016/j.ijheatmasstransfer.2019.119074_bib0017) 2019; 100
Jackson (10.1016/j.ijheatmasstransfer.2019.119074_bib0036) 2017; 124
Salimpour (10.1016/j.ijheatmasstransfer.2019.119074_bib0027) 2017; 74
Liu (10.1016/j.ijheatmasstransfer.2019.119074_bib0013) 2017; 106
Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0016) 2015; 88
Huang (10.1016/j.ijheatmasstransfer.2019.119074_bib0020) 2018; 131
Goering (10.1016/j.ijheatmasstransfer.2019.119074_bib0031) 1997; 40
References_xml – volume: 116
  start-page: 661
  year: 2016
  end-page: 676
  ident: bib0040
  article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 rankine cycles
  publication-title: Energy
– volume: 88
  start-page: 61
  year: 2015
  end-page: 70
  ident: bib0016
  article-title: Mixed convective heat transfer of CO
  publication-title: Appl. Therm Eng.
– volume: 92
  start-page: 222
  year: 2018
  end-page: 230
  ident: bib0019
  article-title: Experimental investigation on validity of buoyancy parameters to heat transfer of CO
  publication-title: Exper. Thermal Fluid Sci.
– volume: 89
  start-page: 177
  year: 2018
  end-page: 185
  ident: bib0004
  article-title: Experimental investigation of heat transfer of supercritical CO
  publication-title: Int. J. Refrigerat.
– volume: 178
  start-page: 126
  year: 2016
  end-page: 141
  ident: bib0015
  article-title: Improved gas heaters for supercritical CO
  publication-title: Appl Energy
– volume: 240
  start-page: 3336
  year: 2010
  end-page: 3349
  ident: bib0038
  article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube
  publication-title: Nuclear Eng. Design
– year: 2013
  ident: bib0045
  article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Standard Reference Data Program
– volume: 182
  start-page: 10
  year: 1967
  end-page: 22
  ident: bib0007
  article-title: A review of forced convection heat transfer to fluids at supercritical pressures
  publication-title: Proceedings of the Institution of Mechanical Engineers, Conference
– volume: 16
  start-page: 1267
  year: 1973
  end-page: 1288
  ident: bib0009
  article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow
  publication-title: Int. J. Heat Mass Transf.
– year: 1968
  ident: bib0034
  article-title: The Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes, DSR-70332-55
– volume: 99
  start-page: 112
  year: 2015
  end-page: 120
  ident: bib0033
  article-title: Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes
  publication-title: J. Supercrit. Fluids
– volume: 809
  start-page: 31
  year: 2016
  end-page: 71
  ident: bib0035
  article-title: Laminarisation of flow at low reynolds number due to streamwise body force
  publication-title: J. Fluid Mech.
– volume: 92
  start-page: 658
  year: 2018
  end-page: 675
  ident: bib0041
  article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications
  publication-title: Renew. Susta. Energy Rev.
– start-page: 495
  year: 1982
  ident: bib0037
  article-title: Mixed convection heat transfer to supercritical pressure water
  publication-title: Proceedings of the 7th International Heat Transfer Conference
– volume: 48
  start-page: 434
  year: 2015
  end-page: 451
  ident: bib0002
  article-title: Review and future trends of supercritical CO
  publication-title: Renew. Susta. Energy Rev.
– reference: Polyakov, A.F., Heat transfer under supercritical pressures. 1991, 21: 1–53.
– volume: 54
  start-page: 1950
  year: 2011
  end-page: 1958
  ident: bib0022
  article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 157
  start-page: 536
  year: 2018
  end-page: 548
  ident: bib0044
  article-title: Computational investigations of heat transfer to supercritical CO
  publication-title: Energy Convers. Manag.
– volume: 151
  start-page: 376
  year: 2018
  end-page: 386
  ident: bib0003
  article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO
  publication-title: Energy
– volume: 15
  start-page: 632
  year: 1974
  end-page: 637
  ident: bib0010
  article-title: Development of secondary free-convection currents in forced turbulent flow in horizontal tubes
  publication-title: J. Appl. Mech. Tech. Phys.
– volume: 241
  start-page: 3164
  year: 2011
  end-page: 3177
  ident: bib0042
  article-title: Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel
  publication-title: Nuclear Eng. Design
– volume: 32
  start-page: 340
  year: 2011
  end-page: 351
  ident: bib0025
  article-title: Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures
  publication-title: Int. J. Heat Fluid Flow
– volume: 74
  start-page: 584
  year: 2017
  end-page: 591
  ident: bib0027
  article-title: Experimental study of condensation heat transfer of R-404A in helically coiled tubes
  publication-title: Int. J. Refrigerat.
– volume: 124
  start-page: 1481
  year: 2017
  end-page: 1491
  ident: bib0036
  article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration
  publication-title: Appl. Therm Eng.
– volume: 125
  start-page: 799
  year: 2017
  end-page: 810
  ident: bib0005
  article-title: Supercritical CO
  publication-title: Appl. Therm. Eng.
– volume: 235
  start-page: 2407
  year: 2005
  end-page: 2430
  ident: bib0006
  article-title: Experimental heat transfer in supercritical water flowing inside channels (survey)
  publication-title: Nuclear Eng. Des.
– volume: 52
  start-page: 713
  year: 2016
  end-page: 726
  ident: bib0018
  article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO
  publication-title: Heat Mass Transfer
– volume: 38
  start-page: 619
  year: 1997
  end-page: 624
  ident: bib0028
  article-title: Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs
  publication-title: Energy Convers. Manag.
– volume: 154
  start-page: 335
  year: 2006
  end-page: 349
  ident: bib0012
  article-title: Heat transfer in a supercritical fluid: classification of heat transfer regimes
  publication-title: Nucl. Technol.
– volume: 10
  start-page: 2
  year: 1989
  end-page: 15
  ident: bib0008
  article-title: Studies of mixed convection in vertical tubes
  publication-title: Int. J. Heat Fluid Flow
– volume: 100
  start-page: 49
  year: 2019
  end-page: 61
  ident: bib0017
  article-title: Experimental study of the heat transfer characteristics of supercritical pressure R134a in a horizontal tube
  publication-title: Exper. Thermal Fluid Sci.
– volume: 131
  start-page: 977
  year: 2018
  end-page: 987
  ident: bib0020
  article-title: A brief review on the buoyancy criteria for supercritical fluids
  publication-title: Appl. Therm Eng.
– volume: 51
  start-page: 6283
  year: 2008
  end-page: 6293
  ident: bib0023
  article-title: Experimental and numerical study of convection heat transfer of CO
  publication-title: Int. J. Heat Mass. Transf.
– volume: 82
  start-page: 123
  year: 2015
  end-page: 134
  ident: bib0029
  article-title: On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils
  publication-title: Int. J. Heat Mass. Transf.
– volume: 8
  start-page: 1
  year: 1970
  end-page: 11
  ident: bib0043
  article-title: Flow and heat transfer in horizontal tubes under the combined effect of forced and free convection
  publication-title: Proceedings of the 4th International Heat Transfer Conference
– volume: 77
  start-page: 235
  year: 2014
  end-page: 243
  ident: bib0001
  article-title: Industrial applications of supercritical fluids: a review
  publication-title: Energy
– volume: 85
  start-page: 679
  year: 2015
  end-page: 693
  ident: bib0026
  article-title: Experimental study of heat transfer and pressure drop of supercritical CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 45
  start-page: 5025
  year: 2002
  end-page: 5034
  ident: bib0024
  article-title: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 125
  start-page: 274
  year: 2018
  end-page: 289
  ident: bib0030
  article-title: The buoyancy force and flow acceleration effects of supercritical CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 40
  start-page: 2187
  year: 1997
  end-page: 2199
  ident: bib0031
  article-title: The dual influence of curvature and buoyancy in fully developed tube flows
  publication-title: Int. J. Heat Mass Transf.
– volume: 106
  start-page: 1144
  year: 2017
  end-page: 1156
  ident: bib0013
  article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes
  publication-title: Int. J. Heat. Mass. Transf.
– volume: 176
  start-page: 7650
  year: 2019
  end-page: 7777
  ident: bib0039
  article-title: The heat transfer of supercritical CO
  publication-title: Energy
– volume: 157
  year: 2019
  ident: bib0032
  article-title: Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube
  publication-title: Appl. Therm Eng.
– volume: 264
  start-page: 24
  year: 2013
  end-page: 40
  ident: bib0014
  article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure
  publication-title: Nucl. Eng. Des.
– volume: 29
  start-page: 156
  year: 2008
  end-page: 166
  ident: bib0021
  article-title: Heat transfer to water at supercritical pressures in a circular and square annular flow geometry
  publication-title: Int. J. Heat Fluid Flow
– volume: 32
  start-page: 340
  issue: 1
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0025
  article-title: Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2010.06.013
– volume: 54
  start-page: 1950
  issue: 9–10
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0022
  article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.008
– volume: 51
  start-page: 6283
  issue: 25–26
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0023
  article-title: Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes
  publication-title: Int. J. Heat Mass. Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.05.014
– volume: 40
  start-page: 2187
  issue: 9
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0031
  article-title: The dual influence of curvature and buoyancy in fully developed tube flows
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(96)00248-7
– volume: 82
  start-page: 123
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0029
  article-title: On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils
  publication-title: Int. J. Heat Mass. Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.10.074
– volume: 182
  start-page: 10
  year: 1967
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0007
  article-title: A review of forced convection heat transfer to fluids at supercritical pressures
– volume: 92
  start-page: 658
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0041
  article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications
  publication-title: Renew. Susta. Energy Rev.
  doi: 10.1016/j.rser.2018.04.106
– volume: 809
  start-page: 31
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0035
  article-title: Laminarisation of flow at low reynolds number due to streamwise body force
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.653
– volume: 106
  start-page: 1144
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0013
  article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes
  publication-title: Int. J. Heat. Mass. Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.10.093
– volume: 85
  start-page: 679
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0026
  article-title: Experimental study of heat transfer and pressure drop of supercritical CO2 cooled in metal foam tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.02.013
– volume: 16
  start-page: 1267
  issue: 6
  year: 1973
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0009
  article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(73)90135-X
– volume: 240
  start-page: 3336
  issue: 10
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0038
  article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube
  publication-title: Nuclear Eng. Design
  doi: 10.1016/j.nucengdes.2010.07.002
– volume: 38
  start-page: 619
  issue: 6
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0028
  article-title: Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(96)00040-4
– volume: 235
  start-page: 2407
  issue: 22
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0006
  article-title: Experimental heat transfer in supercritical water flowing inside channels (survey)
  publication-title: Nuclear Eng. Des.
  doi: 10.1016/j.nucengdes.2005.05.034
– volume: 116
  start-page: 661
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0040
  article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.005
– volume: 29
  start-page: 156
  issue: 1
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0021
  article-title: Heat transfer to water at supercritical pressures in a circular and square annular flow geometry
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2007.09.007
– volume: 74
  start-page: 584
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0027
  article-title: Experimental study of condensation heat transfer of R-404A in helically coiled tubes
  publication-title: Int. J. Refrigerat.
  doi: 10.1016/j.ijrefrig.2016.12.002
– year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0045
– volume: 157
  start-page: 536
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0044
  article-title: Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.12.046
– ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0011
  doi: 10.1016/S0065-2717(08)70333-2
– volume: 89
  start-page: 177
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0004
  article-title: Experimental investigation of heat transfer of supercritical CO2 cooled in helically coiled tubes based on exergy analysis
  publication-title: Int. J. Refrigerat.
  doi: 10.1016/j.ijrefrig.2018.03.011
– volume: 77
  start-page: 235
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0001
  article-title: Industrial applications of supercritical fluids: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.044
– volume: 88
  start-page: 61
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0016
  article-title: Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube
  publication-title: Appl. Therm Eng.
  doi: 10.1016/j.applthermaleng.2014.10.031
– volume: 8
  start-page: 1
  year: 1970
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0043
  article-title: Flow and heat transfer in horizontal tubes under the combined effect of forced and free convection
– volume: 264
  start-page: 24
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0014
  article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2012.09.040
– year: 1968
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0034
– volume: 124
  start-page: 1481
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0036
  article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration
  publication-title: Appl. Therm Eng.
  doi: 10.1016/j.applthermaleng.2017.03.146
– volume: 92
  start-page: 222
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0019
  article-title: Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube
  publication-title: Exper. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.11.024
– volume: 157
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0032
  article-title: Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube
  publication-title: Appl. Therm Eng.
  doi: 10.1016/j.applthermaleng.2019.04.097
– volume: 125
  start-page: 799
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0005
  article-title: Supercritical CO2 as heat transfer fluid: a review
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.049
– volume: 154
  start-page: 335
  issue: 3
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0012
  article-title: Heat transfer in a supercritical fluid: classification of heat transfer regimes
  publication-title: Nucl. Technol.
  doi: 10.13182/NT06-A3738
– volume: 10
  start-page: 2
  issue: 1
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0008
  article-title: Studies of mixed convection in vertical tubes
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(89)90049-0
– volume: 99
  start-page: 112
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0033
  article-title: Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2015.02.001
– volume: 15
  start-page: 632
  issue: 5
  year: 1974
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0010
  article-title: Development of secondary free-convection currents in forced turbulent flow in horizontal tubes
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1007/BF00851521
– volume: 45
  start-page: 5025
  issue: 25
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0024
  article-title: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00206-5
– volume: 100
  start-page: 49
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0017
  article-title: Experimental study of the heat transfer characteristics of supercritical pressure R134a in a horizontal tube
  publication-title: Exper. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.08.027
– volume: 178
  start-page: 126
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0015
  article-title: Improved gas heaters for supercritical CO2 rankine cycles: considerations on forced and mixed convection heat transfer enhancement
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.018
– volume: 131
  start-page: 977
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0020
  article-title: A brief review on the buoyancy criteria for supercritical fluids
  publication-title: Appl. Therm Eng.
  doi: 10.1016/j.applthermaleng.2017.12.042
– volume: 151
  start-page: 376
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0003
  article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO2 as the working fluid based on temperature glide matching
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.009
– volume: 52
  start-page: 713
  issue: 4
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0018
  article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-015-1580-9
– start-page: 495
  year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0037
  article-title: Mixed convection heat transfer to supercritical pressure water
– volume: 125
  start-page: 274
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0030
  article-title: The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.033
– volume: 48
  start-page: 434
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0002
  article-title: Review and future trends of supercritical CO2 rankine cycle for low-grade heat conversion
  publication-title: Renew. Susta. Energy Rev.
  doi: 10.1016/j.rser.2015.04.039
– volume: 176
  start-page: 7650
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0039
  article-title: The heat transfer of supercritical CO2 in helically coiled tube: trade-off between curvature and buoyancy effect
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.150
– volume: 241
  start-page: 3164
  issue: 8
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0042
  article-title: Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel
  publication-title: Nuclear Eng. Design
  doi: 10.1016/j.nucengdes.2011.06.016
SSID ssj0017046
Score 2.5438378
Snippet •SCO2 heat transfer behaviors in various channels are comparatively studied.•The coupling relationship of buoyancy effect and flow characteristics is...
For the different flow orientations and physical models, the influence of buoyancy effect on flow characteristics exist essential difference, the heat transfer...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119074
SubjectTerms Buoyancy
Buoyancy effect
Carbon dioxide
Comparative study
Computer simulation
Deterioration
Flow characteristics
Heat flux
Heat transfer
Heat transfer deterioration
Heating
Helical-coiled tube
Mass flow rate
Mathematical models
Supercritical CO2
Tubes
Title Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119074
https://www.proquest.com/docview/2354306461
Volume 149
WOSCitedRecordID wos000538009600099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLqy4IJ5iYUE-IMQlqHk0jk9oVXUFqOpy6KLcrMRJRKqSlrapur-A38c_YiZ-JLsLK3rg0KhyZMfOfBmPx59nCHnjcgZGtAwdL5OwQAn8vsMlLxzpupJLCSuWpIkzO2aTSRTH_Euv98uchdnOWVVFux1f_ldRQxkIG4_O7iFu2ygUwH8QOlxB7HD9J8GPujH70S1e1WpXZq4J5zrpYGNyoirGNBFgvOYre2ZfxW1O68Ul6t4u52NdQ-PSpEcYnnvoL9lCm8ikxcaa01d1qpmJs5Yn37odO8Eqmsfjs76DDW_7cdOZ_a2clRaBcY1lcZksdvCzjKKy1vSB60VxWe10fHHt3oC1rOV3KZ-bPXfztavGYWrlvubD5kpzR4w7YK_wK6pdhUPVytn945ShvBez9-UMx4zDNaNF4h-HOQX9B-10aSgCk3NxdjEei-konr5d_nAwkRlu-OusLnfIoccGHBTt4emnUfzZbm2xvjo9ZsZwRN61pMPbO_E32-maFdGYRtOH5IFe09BThcVHpJdXj8m9hlss10_Izy4iKUibWkTSFpF0UVBAJMWeUdMtahHZ1DOIpBqRWOcKIikgkpYV1YikGpG0QeRTcnE2mg4_Ojr_hyMDP9w4Pi9k6EZJnvMk5TxjLgsHKffCws2zvp_BGwEDNsMQekXhBUkahmmShZwHLkuCVPrPyEG1qPLnhCawrGB5P8sw2XaQDXgwiGCuZ2CdpZIVwTH5YN6skDo4PuZomQvDgpyJm7IRKBuhZHNMuG1hqQLF7FF3aIQptOGrDFoBIN2jlRODA6G_5LXw_EGATobQfXH77Zfkfvv5nZCDzarOX5G7crsp16vXGsS_Ac3z5xw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+comparison+of+the+heat+transfer+behaviors+and+buoyancy+effects+of+supercritical+CO2+in+various+heating+tubes&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhang%2C+Shijie&rft.au=Xu%2C+Xiaoxiao&rft.au=Liu%2C+Chao&rft.au=Liu%2C+Xinxin&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=149&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.119074&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon