Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes
•SCO2 heat transfer behaviors in various channels are comparatively studied.•The coupling relationship of buoyancy effect and flow characteristics is discussed.•The various buoyancy criteria are validated in various channels with experimental data.•The heat transfer is improved by helical structures...
Uložené v:
| Vydané v: | International journal of heat and mass transfer Ročník 149; s. 119074 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.03.2020
Elsevier BV |
| Predmet: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •SCO2 heat transfer behaviors in various channels are comparatively studied.•The coupling relationship of buoyancy effect and flow characteristics is discussed.•The various buoyancy criteria are validated in various channels with experimental data.•The heat transfer is improved by helical structures at large gravitational buoyancy.
For the different flow orientations and physical models, the influence of buoyancy effect on flow characteristics exist essential difference, the heat transfer behaviors change accordingly. To suppress heat transfer deterioration and improve heat transfer performance, it is quite necessary to discuss the heat transfer behaviors of supercritical CO2 in various heating tubes. The heat transfer and flow characteristics of supercritical CO2 heated in the vertically straight tube, horizontal tube, and vertical helical-coiled tube, with inner diameter of 4 mm, are comparatively studied by experiments and numerical simulations. The tests are conducted at operating pressures from 7.5 MPa to 9 MPa, the mass flow rate is in the range of 80–600 kg/(m2•s). The heat flux covers a range from 10 kW/m2 to 70 kW/m2. The coupling relationship of buoyancy effect and flow characteristics in different physical models are revealed, and the various buoyancy criteria are validated with experimental data. The experimental results confirm that the employment of buoyancy parameter needs to take full account of the interaction between buoyancy force and flow orientations. And experimental data indicate that the heat transfer deterioration in the vertical tube is more serious than it in the horizontal tube. Generally, the helical-coiled tube has a noteworthy advantage for the average heat transfer performance, especially in the case of strong buoyancy. The new empirical correlations for the horizontal tube and helical-coiled tube are proposed with experimental data. |
|---|---|
| AbstractList | For the different flow orientations and physical models, the influence of buoyancy effect on flow characteristics exist essential difference, the heat transfer behaviors change accordingly. To suppress heat transfer deterioration and improve heat transfer performance, it is quite necessary to discuss the heat transfer behaviors of supercritical CO2 in various heating tubes. The heat transfer and flow characteristics of supercritical CO2 heated in the vertically straight tube, horizontal tube, and vertical helical-coiled tube, with inner diameter of 4 mm, are comparatively studied by experiments and numerical simulations. The tests are conducted at operating pressures from 7.5 MPa to 9 MPa, the mass flow rate is in the range of 80–600 kg/(m2•s). The heat flux covers a range from 10 kW/m2 to 70 kW/m2. The coupling relationship of buoyancy effect and flow characteristics in different physical models are revealed, and the various buoyancy criteria are validated with experimental data. The experimental results confirm that the employment of buoyancy parameter needs to take full account of the interaction between buoyancy force and flow orientations. And experimental data indicate that the heat transfer deterioration in the vertical tube is more serious than it in the horizontal tube. Generally, the helical-coiled tube has a noteworthy advantage for the average heat transfer performance, especially in the case of strong buoyancy. The new empirical correlations for the horizontal tube and helical-coiled tube are proposed with experimental data. •SCO2 heat transfer behaviors in various channels are comparatively studied.•The coupling relationship of buoyancy effect and flow characteristics is discussed.•The various buoyancy criteria are validated in various channels with experimental data.•The heat transfer is improved by helical structures at large gravitational buoyancy. For the different flow orientations and physical models, the influence of buoyancy effect on flow characteristics exist essential difference, the heat transfer behaviors change accordingly. To suppress heat transfer deterioration and improve heat transfer performance, it is quite necessary to discuss the heat transfer behaviors of supercritical CO2 in various heating tubes. The heat transfer and flow characteristics of supercritical CO2 heated in the vertically straight tube, horizontal tube, and vertical helical-coiled tube, with inner diameter of 4 mm, are comparatively studied by experiments and numerical simulations. The tests are conducted at operating pressures from 7.5 MPa to 9 MPa, the mass flow rate is in the range of 80–600 kg/(m2•s). The heat flux covers a range from 10 kW/m2 to 70 kW/m2. The coupling relationship of buoyancy effect and flow characteristics in different physical models are revealed, and the various buoyancy criteria are validated with experimental data. The experimental results confirm that the employment of buoyancy parameter needs to take full account of the interaction between buoyancy force and flow orientations. And experimental data indicate that the heat transfer deterioration in the vertical tube is more serious than it in the horizontal tube. Generally, the helical-coiled tube has a noteworthy advantage for the average heat transfer performance, especially in the case of strong buoyancy. The new empirical correlations for the horizontal tube and helical-coiled tube are proposed with experimental data. |
| ArticleNumber | 119074 |
| Author | Zhang, Shijie Liu, Xinxin Dang, Chaobin Liu, Chao Xu, Xiaoxiao Ru, Zhipeng |
| Author_xml | – sequence: 1 givenname: Shijie surname: Zhang fullname: Zhang, Shijie organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 2 givenname: Xiaoxiao surname: Xu fullname: Xu, Xiaoxiao email: xuxiaoxiao@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 3 givenname: Chao surname: Liu fullname: Liu, Chao organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 4 givenname: Xinxin surname: Liu fullname: Liu, Xinxin organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, No. 174 Shazhengjie, Shapingba, Chongqing 400044, PR China – sequence: 5 givenname: Zhipeng surname: Ru fullname: Ru, Zhipeng organization: Chongqing Midea General Refrigeration Equipment Co., Ltd. No.15 Qiangwei Road, Nanan District, Chongqing, PR China – sequence: 6 givenname: Chaobin surname: Dang fullname: Dang, Chaobin organization: Department of Human and Engineered Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan |
| BookMark | eNqVkc9uGyEQxlGVSHX-vANSL72sy-yu2eXWyrLbRJFySc6IZYealQ0usFb9BHntsnZyaS_NCQ3M_D7m-67IhfMOCfkMbA4M-JdhbocNqrRTMaagXDQY5iUDMQcQrKk_kBm0jShKaMUFmTEGTSEqYB_JVYzDVLKaz8jL6vceg92hS2pLleupG3f5QudK-91eBRu9o97QtEE6CdI3NdrhRh2sD_E0143-qJw-UjQGdYrTTBwzXAebTrzlY0mto4fM9GM8waz7SdPYYbwhl0ZtI96-ntfkeb16Wv4oHh6_3y2_PRS6rngqKmE0h1YhCtUJ0TfQ8EUnSm4Ae1b1eXHWlv2Ct2BMWauO8071XIgaGlV3uromn87cffC_RoxJDn4MLkvKslrUFeM1h9y1Pnfp4GMMaKS2Kf_Wu7y83UpgcgpBDvLfEOQUgjyHkEFf_wLts9kqHN-DuD8jMNtysPk1aotOY29D9ln23v4_7A9ntLgw |
| CitedBy_id | crossref_primary_10_1016_j_compfluid_2023_105911 crossref_primary_10_1134_S0040601521080048 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122510 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124694 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124098 crossref_primary_10_1016_j_applthermaleng_2024_123023 crossref_primary_10_1016_j_anucene_2024_110676 crossref_primary_10_1016_j_tsep_2024_102442 crossref_primary_10_1016_j_applthermaleng_2023_120198 crossref_primary_10_1016_j_applthermaleng_2023_120391 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123258 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122103 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125630 crossref_primary_10_1016_j_ijthermalsci_2025_110256 crossref_primary_10_1016_j_energy_2024_133635 crossref_primary_10_1016_j_applthermaleng_2023_120606 crossref_primary_10_1016_j_anucene_2023_110223 crossref_primary_10_1016_j_ijthermalsci_2023_108572 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126786 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124802 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124647 crossref_primary_10_1016_j_energy_2020_118061 crossref_primary_10_1016_j_supflu_2022_105738 crossref_primary_10_1016_j_applthermaleng_2025_127274 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123225 crossref_primary_10_1080_00295639_2022_2102391 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121641 crossref_primary_10_1016_j_applthermaleng_2024_123165 crossref_primary_10_1016_j_ijheatfluidflow_2024_109558 crossref_primary_10_1016_j_applthermaleng_2024_123761 crossref_primary_10_1007_s11630_024_2039_4 crossref_primary_10_1016_j_applthermaleng_2024_122630 crossref_primary_10_3390_ijms22179201 crossref_primary_10_1016_j_applthermaleng_2025_126796 crossref_primary_10_1016_j_applthermaleng_2025_125623 crossref_primary_10_1016_j_ijthermalsci_2024_108942 crossref_primary_10_2298_TSCI210719052Y crossref_primary_10_1016_j_applthermaleng_2025_126472 crossref_primary_10_1016_j_ijthermalsci_2023_108386 crossref_primary_10_1088_1742_6596_2029_1_012116 crossref_primary_10_1080_10407782_2020_1746168 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123503 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122581 crossref_primary_10_1016_j_rser_2024_115267 crossref_primary_10_1016_j_applthermaleng_2024_122821 crossref_primary_10_1016_j_applthermaleng_2024_122823 crossref_primary_10_1016_j_applthermaleng_2024_124925 crossref_primary_10_1016_j_applthermaleng_2023_120429 crossref_primary_10_1016_j_ijrefrig_2022_05_013 crossref_primary_10_1002_er_8131 crossref_primary_10_1016_j_energy_2022_125444 crossref_primary_10_1016_j_applthermaleng_2023_122244 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122865 crossref_primary_10_1016_j_applthermaleng_2025_126321 crossref_primary_10_1080_10407782_2024_2314234 |
| Cites_doi | 10.1016/j.ijheatfluidflow.2010.06.013 10.1016/j.ijheatmasstransfer.2011.01.008 10.1016/j.ijheatmasstransfer.2008.05.014 10.1016/S0017-9310(96)00248-7 10.1016/j.ijheatmasstransfer.2014.10.074 10.1016/j.rser.2018.04.106 10.1017/jfm.2016.653 10.1016/j.ijheatmasstransfer.2016.10.093 10.1016/j.ijheatmasstransfer.2015.02.013 10.1016/0017-9310(73)90135-X 10.1016/j.nucengdes.2010.07.002 10.1016/S0196-8904(96)00040-4 10.1016/j.nucengdes.2005.05.034 10.1016/j.energy.2016.10.005 10.1016/j.ijheatfluidflow.2007.09.007 10.1016/j.ijrefrig.2016.12.002 10.1016/j.enconman.2017.12.046 10.1016/S0065-2717(08)70333-2 10.1016/j.ijrefrig.2018.03.011 10.1016/j.energy.2014.07.044 10.1016/j.applthermaleng.2014.10.031 10.1016/j.nucengdes.2012.09.040 10.1016/j.applthermaleng.2017.03.146 10.1016/j.expthermflusci.2017.11.024 10.1016/j.applthermaleng.2019.04.097 10.1016/j.applthermaleng.2017.07.049 10.13182/NT06-A3738 10.1016/0142-727X(89)90049-0 10.1016/j.supflu.2015.02.001 10.1007/BF00851521 10.1016/S0017-9310(02)00206-5 10.1016/j.expthermflusci.2018.08.027 10.1016/j.apenergy.2016.06.018 10.1016/j.applthermaleng.2017.12.042 10.1016/j.energy.2018.03.009 10.1007/s00231-015-1580-9 10.1016/j.ijheatmasstransfer.2018.04.033 10.1016/j.rser.2015.04.039 10.1016/j.energy.2019.03.150 10.1016/j.nucengdes.2011.06.016 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Mar 2020 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2019.119074 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2019_119074 S0017931019352597 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 H8D KR7 L7M SSH |
| ID | FETCH-LOGICAL-c436t-39fc618aee9ab99d71765b926f1ed03d074082d5681ff24ab66bad699417a4bc3 |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538009600099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Fri Jul 25 03:08:07 EDT 2025 Sat Nov 29 07:32:12 EST 2025 Tue Nov 18 21:47:48 EST 2025 Fri Feb 23 02:48:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heat transfer deterioration Helical-coiled tube Supercritical CO2 Comparative study Buoyancy effect |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c436t-39fc618aee9ab99d71765b926f1ed03d074082d5681ff24ab66bad699417a4bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2354306461 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2354306461 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_119074 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119074 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_119074 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Jiang (bib0023) 2008; 51 Jackson, Cotton, Axcell (bib0008) 1989; 10 Hall, Jackson, Watson (bib0007) 1967; 182 Shiralkar, Griffith (bib0034) 1968 Xu, Zhang, Liu (bib0004) 2018; 89 Pioro, Duffey (bib0006) 2005; 235 Ehsan, Guan, Klimenko (bib0041) 2018; 92 Wang, Guan, Gurgenci (bib0044) 2018; 157 Tian (bib0017) 2019; 100 He, He, Seddighi (bib0035) 2016; 809 Ciofalo, Arini, Liberto (bib0029) 2015; 82 Polyakov, A.F., Heat transfer under supercritical pressures. 1991, 21: 1–53. Watts, Chou (bib0037) 1982 Zhang (bib0030) 2018; 125 Petukhov, Polyakov (bib0043) 1970; 8 Zhang, Zhu, Li (bib0003) 2018; 151 Knez, Markočič, Leitgeb (bib0001) 2014; 77 Huang, Li (bib0020) 2018; 131 Hiroaki (bib0009) 1973; 16 Zhang, Xu, Liu (bib0039) 2019; 176 Zhang, Xu, Liu (bib0032) 2019; 157 Bae (bib0042) 2011; 241 Yildiz, Biçer, Pehlivan (bib0028) 1997; 38 Cabeza, de Gracia, Fernández (bib0005) 2017; 125 Jackson (bib0036) 2017; 124 Zhang (bib0016) 2015; 88 Goering, Humphrey, Greif (bib0031) 1997; 40 Jackson (bib0014) 2013; 264 Kim, Kim (bib0038) 2010; 240 Sarkar (bib0002) 2015; 48 Bae, Kim, Yoo (bib0025) 2011; 32 Liao, Zhao (bib0024) 2002; 45 Liu (bib0026) 2015; 85 Licht, Anderson, Corradini (bib0021) 2008; 29 Liu (bib0013) 2017; 106 Li, Zhai, Li (bib0040) 2016; 116 Polyakov (bib0010) 1974; 15 Kim (bib0019) 2018; 92 Li (bib0015) 2016; 178 Wang (bib0022) 2011; 54 Wang, Xu, Wu (bib0033) 2015; 99 Seo (bib0012) 2006; 154 Salimpour, Shahmoradi (bib0027) 2017; 74 Lemmon, Huber, McLinden (bib0045) 2013 Tanimizu, Sadr (bib0018) 2016; 52 Knez (10.1016/j.ijheatmasstransfer.2019.119074_bib0001) 2014; 77 Jackson (10.1016/j.ijheatmasstransfer.2019.119074_bib0008) 1989; 10 Bae (10.1016/j.ijheatmasstransfer.2019.119074_bib0042) 2011; 241 Li (10.1016/j.ijheatmasstransfer.2019.119074_bib0015) 2016; 178 Petukhov (10.1016/j.ijheatmasstransfer.2019.119074_bib0043) 1970; 8 Lemmon (10.1016/j.ijheatmasstransfer.2019.119074_bib0045) 2013 Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0039) 2019; 176 Liao (10.1016/j.ijheatmasstransfer.2019.119074_bib0024) 2002; 45 10.1016/j.ijheatmasstransfer.2019.119074_bib0011 Liu (10.1016/j.ijheatmasstransfer.2019.119074_bib0026) 2015; 85 Wang (10.1016/j.ijheatmasstransfer.2019.119074_bib0022) 2011; 54 Polyakov (10.1016/j.ijheatmasstransfer.2019.119074_bib0010) 1974; 15 Tanimizu (10.1016/j.ijheatmasstransfer.2019.119074_bib0018) 2016; 52 Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0003) 2018; 151 Xu (10.1016/j.ijheatmasstransfer.2019.119074_bib0004) 2018; 89 Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0030) 2018; 125 Wang (10.1016/j.ijheatmasstransfer.2019.119074_bib0044) 2018; 157 Seo (10.1016/j.ijheatmasstransfer.2019.119074_bib0012) 2006; 154 Shiralkar (10.1016/j.ijheatmasstransfer.2019.119074_bib0034) 1968 Ehsan (10.1016/j.ijheatmasstransfer.2019.119074_bib0041) 2018; 92 Ciofalo (10.1016/j.ijheatmasstransfer.2019.119074_bib0029) 2015; 82 Li (10.1016/j.ijheatmasstransfer.2019.119074_bib0040) 2016; 116 Licht (10.1016/j.ijheatmasstransfer.2019.119074_bib0021) 2008; 29 Yildiz (10.1016/j.ijheatmasstransfer.2019.119074_bib0028) 1997; 38 Wang (10.1016/j.ijheatmasstransfer.2019.119074_bib0033) 2015; 99 He (10.1016/j.ijheatmasstransfer.2019.119074_bib0035) 2016; 809 Hiroaki (10.1016/j.ijheatmasstransfer.2019.119074_bib0009) 1973; 16 Pioro (10.1016/j.ijheatmasstransfer.2019.119074_bib0006) 2005; 235 Kim (10.1016/j.ijheatmasstransfer.2019.119074_bib0038) 2010; 240 Sarkar (10.1016/j.ijheatmasstransfer.2019.119074_bib0002) 2015; 48 Bae (10.1016/j.ijheatmasstransfer.2019.119074_bib0025) 2011; 32 Kim (10.1016/j.ijheatmasstransfer.2019.119074_bib0019) 2018; 92 Jackson (10.1016/j.ijheatmasstransfer.2019.119074_bib0014) 2013; 264 Cabeza (10.1016/j.ijheatmasstransfer.2019.119074_bib0005) 2017; 125 Hall (10.1016/j.ijheatmasstransfer.2019.119074_bib0007) 1967; 182 Jiang (10.1016/j.ijheatmasstransfer.2019.119074_bib0023) 2008; 51 Watts (10.1016/j.ijheatmasstransfer.2019.119074_bib0037) 1982 Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0032) 2019; 157 Tian (10.1016/j.ijheatmasstransfer.2019.119074_bib0017) 2019; 100 Jackson (10.1016/j.ijheatmasstransfer.2019.119074_bib0036) 2017; 124 Salimpour (10.1016/j.ijheatmasstransfer.2019.119074_bib0027) 2017; 74 Liu (10.1016/j.ijheatmasstransfer.2019.119074_bib0013) 2017; 106 Zhang (10.1016/j.ijheatmasstransfer.2019.119074_bib0016) 2015; 88 Huang (10.1016/j.ijheatmasstransfer.2019.119074_bib0020) 2018; 131 Goering (10.1016/j.ijheatmasstransfer.2019.119074_bib0031) 1997; 40 |
| References_xml | – volume: 116 start-page: 661 year: 2016 end-page: 676 ident: bib0040 article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 rankine cycles publication-title: Energy – volume: 88 start-page: 61 year: 2015 end-page: 70 ident: bib0016 article-title: Mixed convective heat transfer of CO publication-title: Appl. Therm Eng. – volume: 92 start-page: 222 year: 2018 end-page: 230 ident: bib0019 article-title: Experimental investigation on validity of buoyancy parameters to heat transfer of CO publication-title: Exper. Thermal Fluid Sci. – volume: 89 start-page: 177 year: 2018 end-page: 185 ident: bib0004 article-title: Experimental investigation of heat transfer of supercritical CO publication-title: Int. J. Refrigerat. – volume: 178 start-page: 126 year: 2016 end-page: 141 ident: bib0015 article-title: Improved gas heaters for supercritical CO publication-title: Appl Energy – volume: 240 start-page: 3336 year: 2010 end-page: 3349 ident: bib0038 article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube publication-title: Nuclear Eng. Design – year: 2013 ident: bib0045 article-title: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Standard Reference Data Program – volume: 182 start-page: 10 year: 1967 end-page: 22 ident: bib0007 article-title: A review of forced convection heat transfer to fluids at supercritical pressures publication-title: Proceedings of the Institution of Mechanical Engineers, Conference – volume: 16 start-page: 1267 year: 1973 end-page: 1288 ident: bib0009 article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow publication-title: Int. J. Heat Mass Transf. – year: 1968 ident: bib0034 article-title: The Deterioration in Heat Transfer to Fluids at Supercritical Pressure and High Heat Fluxes, DSR-70332-55 – volume: 99 start-page: 112 year: 2015 end-page: 120 ident: bib0033 article-title: Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes publication-title: J. Supercrit. Fluids – volume: 809 start-page: 31 year: 2016 end-page: 71 ident: bib0035 article-title: Laminarisation of flow at low reynolds number due to streamwise body force publication-title: J. Fluid Mech. – volume: 92 start-page: 658 year: 2018 end-page: 675 ident: bib0041 article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications publication-title: Renew. Susta. Energy Rev. – start-page: 495 year: 1982 ident: bib0037 article-title: Mixed convection heat transfer to supercritical pressure water publication-title: Proceedings of the 7th International Heat Transfer Conference – volume: 48 start-page: 434 year: 2015 end-page: 451 ident: bib0002 article-title: Review and future trends of supercritical CO publication-title: Renew. Susta. Energy Rev. – reference: Polyakov, A.F., Heat transfer under supercritical pressures. 1991, 21: 1–53. – volume: 54 start-page: 1950 year: 2011 end-page: 1958 ident: bib0022 article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes publication-title: Int. J. Heat Mass Transf. – volume: 157 start-page: 536 year: 2018 end-page: 548 ident: bib0044 article-title: Computational investigations of heat transfer to supercritical CO publication-title: Energy Convers. Manag. – volume: 151 start-page: 376 year: 2018 end-page: 386 ident: bib0003 article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO publication-title: Energy – volume: 15 start-page: 632 year: 1974 end-page: 637 ident: bib0010 article-title: Development of secondary free-convection currents in forced turbulent flow in horizontal tubes publication-title: J. Appl. Mech. Tech. Phys. – volume: 241 start-page: 3164 year: 2011 end-page: 3177 ident: bib0042 article-title: Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel publication-title: Nuclear Eng. Design – volume: 32 start-page: 340 year: 2011 end-page: 351 ident: bib0025 article-title: Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures publication-title: Int. J. Heat Fluid Flow – volume: 74 start-page: 584 year: 2017 end-page: 591 ident: bib0027 article-title: Experimental study of condensation heat transfer of R-404A in helically coiled tubes publication-title: Int. J. Refrigerat. – volume: 124 start-page: 1481 year: 2017 end-page: 1491 ident: bib0036 article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration publication-title: Appl. Therm Eng. – volume: 125 start-page: 799 year: 2017 end-page: 810 ident: bib0005 article-title: Supercritical CO publication-title: Appl. Therm. Eng. – volume: 235 start-page: 2407 year: 2005 end-page: 2430 ident: bib0006 article-title: Experimental heat transfer in supercritical water flowing inside channels (survey) publication-title: Nuclear Eng. Des. – volume: 52 start-page: 713 year: 2016 end-page: 726 ident: bib0018 article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO publication-title: Heat Mass Transfer – volume: 38 start-page: 619 year: 1997 end-page: 624 ident: bib0028 article-title: Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs publication-title: Energy Convers. Manag. – volume: 154 start-page: 335 year: 2006 end-page: 349 ident: bib0012 article-title: Heat transfer in a supercritical fluid: classification of heat transfer regimes publication-title: Nucl. Technol. – volume: 10 start-page: 2 year: 1989 end-page: 15 ident: bib0008 article-title: Studies of mixed convection in vertical tubes publication-title: Int. J. Heat Fluid Flow – volume: 100 start-page: 49 year: 2019 end-page: 61 ident: bib0017 article-title: Experimental study of the heat transfer characteristics of supercritical pressure R134a in a horizontal tube publication-title: Exper. Thermal Fluid Sci. – volume: 131 start-page: 977 year: 2018 end-page: 987 ident: bib0020 article-title: A brief review on the buoyancy criteria for supercritical fluids publication-title: Appl. Therm Eng. – volume: 51 start-page: 6283 year: 2008 end-page: 6293 ident: bib0023 article-title: Experimental and numerical study of convection heat transfer of CO publication-title: Int. J. Heat Mass. Transf. – volume: 82 start-page: 123 year: 2015 end-page: 134 ident: bib0029 article-title: On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils publication-title: Int. J. Heat Mass. Transf. – volume: 8 start-page: 1 year: 1970 end-page: 11 ident: bib0043 article-title: Flow and heat transfer in horizontal tubes under the combined effect of forced and free convection publication-title: Proceedings of the 4th International Heat Transfer Conference – volume: 77 start-page: 235 year: 2014 end-page: 243 ident: bib0001 article-title: Industrial applications of supercritical fluids: a review publication-title: Energy – volume: 85 start-page: 679 year: 2015 end-page: 693 ident: bib0026 article-title: Experimental study of heat transfer and pressure drop of supercritical CO publication-title: Int. J. Heat Mass Transf. – volume: 45 start-page: 5025 year: 2002 end-page: 5034 ident: bib0024 article-title: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes publication-title: Int. J. Heat Mass Transf. – volume: 125 start-page: 274 year: 2018 end-page: 289 ident: bib0030 article-title: The buoyancy force and flow acceleration effects of supercritical CO publication-title: Int. J. Heat Mass Transf. – volume: 40 start-page: 2187 year: 1997 end-page: 2199 ident: bib0031 article-title: The dual influence of curvature and buoyancy in fully developed tube flows publication-title: Int. J. Heat Mass Transf. – volume: 106 start-page: 1144 year: 2017 end-page: 1156 ident: bib0013 article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes publication-title: Int. J. Heat. Mass. Transf. – volume: 176 start-page: 7650 year: 2019 end-page: 7777 ident: bib0039 article-title: The heat transfer of supercritical CO publication-title: Energy – volume: 157 year: 2019 ident: bib0032 article-title: Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube publication-title: Appl. Therm Eng. – volume: 264 start-page: 24 year: 2013 end-page: 40 ident: bib0014 article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure publication-title: Nucl. Eng. Des. – volume: 29 start-page: 156 year: 2008 end-page: 166 ident: bib0021 article-title: Heat transfer to water at supercritical pressures in a circular and square annular flow geometry publication-title: Int. J. Heat Fluid Flow – volume: 32 start-page: 340 issue: 1 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0025 article-title: Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2010.06.013 – volume: 54 start-page: 1950 issue: 9–10 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0022 article-title: Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.01.008 – volume: 51 start-page: 6283 issue: 25–26 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0023 article-title: Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes publication-title: Int. J. Heat Mass. Transf. doi: 10.1016/j.ijheatmasstransfer.2008.05.014 – volume: 40 start-page: 2187 issue: 9 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0031 article-title: The dual influence of curvature and buoyancy in fully developed tube flows publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(96)00248-7 – volume: 82 start-page: 123 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0029 article-title: On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils publication-title: Int. J. Heat Mass. Transf. doi: 10.1016/j.ijheatmasstransfer.2014.10.074 – volume: 182 start-page: 10 year: 1967 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0007 article-title: A review of forced convection heat transfer to fluids at supercritical pressures – volume: 92 start-page: 658 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0041 article-title: A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications publication-title: Renew. Susta. Energy Rev. doi: 10.1016/j.rser.2018.04.106 – volume: 809 start-page: 31 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0035 article-title: Laminarisation of flow at low reynolds number due to streamwise body force publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.653 – volume: 106 start-page: 1144 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0013 article-title: Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes publication-title: Int. J. Heat. Mass. Transf. doi: 10.1016/j.ijheatmasstransfer.2016.10.093 – volume: 85 start-page: 679 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0026 article-title: Experimental study of heat transfer and pressure drop of supercritical CO2 cooled in metal foam tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.02.013 – volume: 16 start-page: 1267 issue: 6 year: 1973 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0009 article-title: Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(73)90135-X – volume: 240 start-page: 3336 issue: 10 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0038 article-title: Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube publication-title: Nuclear Eng. Design doi: 10.1016/j.nucengdes.2010.07.002 – volume: 38 start-page: 619 issue: 6 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0028 article-title: Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(96)00040-4 – volume: 235 start-page: 2407 issue: 22 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0006 article-title: Experimental heat transfer in supercritical water flowing inside channels (survey) publication-title: Nuclear Eng. Des. doi: 10.1016/j.nucengdes.2005.05.034 – volume: 116 start-page: 661 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0040 article-title: A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 rankine cycles publication-title: Energy doi: 10.1016/j.energy.2016.10.005 – volume: 29 start-page: 156 issue: 1 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0021 article-title: Heat transfer to water at supercritical pressures in a circular and square annular flow geometry publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2007.09.007 – volume: 74 start-page: 584 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0027 article-title: Experimental study of condensation heat transfer of R-404A in helically coiled tubes publication-title: Int. J. Refrigerat. doi: 10.1016/j.ijrefrig.2016.12.002 – year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0045 – volume: 157 start-page: 536 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0044 article-title: Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.12.046 – ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0011 doi: 10.1016/S0065-2717(08)70333-2 – volume: 89 start-page: 177 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0004 article-title: Experimental investigation of heat transfer of supercritical CO2 cooled in helically coiled tubes based on exergy analysis publication-title: Int. J. Refrigerat. doi: 10.1016/j.ijrefrig.2018.03.011 – volume: 77 start-page: 235 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0001 article-title: Industrial applications of supercritical fluids: a review publication-title: Energy doi: 10.1016/j.energy.2014.07.044 – volume: 88 start-page: 61 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0016 article-title: Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube publication-title: Appl. Therm Eng. doi: 10.1016/j.applthermaleng.2014.10.031 – volume: 8 start-page: 1 year: 1970 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0043 article-title: Flow and heat transfer in horizontal tubes under the combined effect of forced and free convection – volume: 264 start-page: 24 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0014 article-title: Fluid flow and convective heat transfer to fluids at supercritical pressure publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2012.09.040 – year: 1968 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0034 – volume: 124 start-page: 1481 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0036 article-title: Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration publication-title: Appl. Therm Eng. doi: 10.1016/j.applthermaleng.2017.03.146 – volume: 92 start-page: 222 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0019 article-title: Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube publication-title: Exper. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2017.11.024 – volume: 157 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0032 article-title: Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube publication-title: Appl. Therm Eng. doi: 10.1016/j.applthermaleng.2019.04.097 – volume: 125 start-page: 799 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0005 article-title: Supercritical CO2 as heat transfer fluid: a review publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.049 – volume: 154 start-page: 335 issue: 3 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0012 article-title: Heat transfer in a supercritical fluid: classification of heat transfer regimes publication-title: Nucl. Technol. doi: 10.13182/NT06-A3738 – volume: 10 start-page: 2 issue: 1 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0008 article-title: Studies of mixed convection in vertical tubes publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(89)90049-0 – volume: 99 start-page: 112 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0033 article-title: Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2015.02.001 – volume: 15 start-page: 632 issue: 5 year: 1974 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0010 article-title: Development of secondary free-convection currents in forced turbulent flow in horizontal tubes publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1007/BF00851521 – volume: 45 start-page: 5025 issue: 25 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0024 article-title: An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(02)00206-5 – volume: 100 start-page: 49 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0017 article-title: Experimental study of the heat transfer characteristics of supercritical pressure R134a in a horizontal tube publication-title: Exper. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2018.08.027 – volume: 178 start-page: 126 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0015 article-title: Improved gas heaters for supercritical CO2 rankine cycles: considerations on forced and mixed convection heat transfer enhancement publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.018 – volume: 131 start-page: 977 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0020 article-title: A brief review on the buoyancy criteria for supercritical fluids publication-title: Appl. Therm Eng. doi: 10.1016/j.applthermaleng.2017.12.042 – volume: 151 start-page: 376 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0003 article-title: Thermodynamic optimization of heat transfer process in thermal systems using CO2 as the working fluid based on temperature glide matching publication-title: Energy doi: 10.1016/j.energy.2018.03.009 – volume: 52 start-page: 713 issue: 4 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0018 article-title: Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube publication-title: Heat Mass Transfer doi: 10.1007/s00231-015-1580-9 – start-page: 495 year: 1982 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0037 article-title: Mixed convection heat transfer to supercritical pressure water – volume: 125 start-page: 274 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0030 article-title: The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.033 – volume: 48 start-page: 434 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0002 article-title: Review and future trends of supercritical CO2 rankine cycle for low-grade heat conversion publication-title: Renew. Susta. Energy Rev. doi: 10.1016/j.rser.2015.04.039 – volume: 176 start-page: 7650 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0039 article-title: The heat transfer of supercritical CO2 in helically coiled tube: trade-off between curvature and buoyancy effect publication-title: Energy doi: 10.1016/j.energy.2019.03.150 – volume: 241 start-page: 3164 issue: 8 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2019.119074_bib0042 article-title: Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel publication-title: Nuclear Eng. Design doi: 10.1016/j.nucengdes.2011.06.016 |
| SSID | ssj0017046 |
| Score | 2.5438378 |
| Snippet | •SCO2 heat transfer behaviors in various channels are comparatively studied.•The coupling relationship of buoyancy effect and flow characteristics is... For the different flow orientations and physical models, the influence of buoyancy effect on flow characteristics exist essential difference, the heat transfer... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119074 |
| SubjectTerms | Buoyancy Buoyancy effect Carbon dioxide Comparative study Computer simulation Deterioration Flow characteristics Heat flux Heat transfer Heat transfer deterioration Heating Helical-coiled tube Mass flow rate Mathematical models Supercritical CO2 Tubes |
| Title | Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119074 https://www.proquest.com/docview/2354306461 |
| Volume | 149 |
| WOSCitedRecordID | wos000538009600099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLqy4IJ5iYUE-IMQlqHk0jk9oVXUFqOpy6KLcrMRJRKqSlrapur-A38c_YiZ-JLsLK3rg0KhyZMfOfBmPx59nCHnjcgZGtAwdL5OwQAn8vsMlLxzpupJLCSuWpIkzO2aTSRTH_Euv98uchdnOWVVFux1f_ldRQxkIG4_O7iFu2ygUwH8QOlxB7HD9J8GPujH70S1e1WpXZq4J5zrpYGNyoirGNBFgvOYre2ZfxW1O68Ul6t4u52NdQ-PSpEcYnnvoL9lCm8ikxcaa01d1qpmJs5Yn37odO8Eqmsfjs76DDW_7cdOZ_a2clRaBcY1lcZksdvCzjKKy1vSB60VxWe10fHHt3oC1rOV3KZ-bPXfztavGYWrlvubD5kpzR4w7YK_wK6pdhUPVytn945ShvBez9-UMx4zDNaNF4h-HOQX9B-10aSgCk3NxdjEei-konr5d_nAwkRlu-OusLnfIoccGHBTt4emnUfzZbm2xvjo9ZsZwRN61pMPbO_E32-maFdGYRtOH5IFe09BThcVHpJdXj8m9hlss10_Izy4iKUibWkTSFpF0UVBAJMWeUdMtahHZ1DOIpBqRWOcKIikgkpYV1YikGpG0QeRTcnE2mg4_Ojr_hyMDP9w4Pi9k6EZJnvMk5TxjLgsHKffCws2zvp_BGwEDNsMQekXhBUkahmmShZwHLkuCVPrPyEG1qPLnhCawrGB5P8sw2XaQDXgwiGCuZ2CdpZIVwTH5YN6skDo4PuZomQvDgpyJm7IRKBuhZHNMuG1hqQLF7FF3aIQptOGrDFoBIN2jlRODA6G_5LXw_EGATobQfXH77Zfkfvv5nZCDzarOX5G7crsp16vXGsS_Ac3z5xw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+comparison+of+the+heat+transfer+behaviors+and+buoyancy+effects+of+supercritical+CO2+in+various+heating+tubes&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhang%2C+Shijie&rft.au=Xu%2C+Xiaoxiao&rft.au=Liu%2C+Chao&rft.au=Liu%2C+Xinxin&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=149&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.119074&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |