Deep Multiple Auto-Encoder-Based Multi-view Clustering

Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous information of different views, has brought along a growth of attention. Multi-view clustering algorithms based on different theories have been proposed and extended in various application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data Science and Engineering Jg. 6; H. 3; S. 323 - 338
Hauptverfasser: Du, Guowang, Zhou, Lihua, Yang, Yudi, Lü, Kevin, Wang, Lizhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.09.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:2364-1185, 2364-1541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous information of different views, has brought along a growth of attention. Multi-view clustering algorithms based on different theories have been proposed and extended in various applications. However, most existing MVC algorithms are shallow models, which learn structure information of multi-view data by mapping multi-view data to low-dimensional representation space directly, ignoring the nonlinear structure information hidden in each view, and thus, the performance of multi-view clustering is weakened to a certain extent. In this paper, we propose a deep multi-view clustering algorithm based on multiple auto-encoder, termed MVC-MAE, to cluster multi-view data. MVC-MAE adopts auto-encoder to capture the nonlinear structure information of each view in a layer-wise manner and incorporate the local invariance within each view and consistent as well as complementary information between any two views together. Besides, we integrate the representation learning and clustering into a unified framework, such that two tasks can be jointly optimized. Extensive experiments on six real-world datasets demonstrate the promising performance of our algorithm compared with 15 baseline algorithms in terms of two evaluation metrics.
AbstractList Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous information of different views, has brought along a growth of attention. Multi-view clustering algorithms based on different theories have been proposed and extended in various applications. However, most existing MVC algorithms are shallow models, which learn structure information of multi-view data by mapping multi-view data to low-dimensional representation space directly, ignoring the nonlinear structure information hidden in each view, and thus, the performance of multi-view clustering is weakened to a certain extent. In this paper, we propose a deep multi-view clustering algorithm based on multiple auto-encoder, termed MVC-MAE, to cluster multi-view data. MVC-MAE adopts auto-encoder to capture the nonlinear structure information of each view in a layer-wise manner and incorporate the local invariance within each view and consistent as well as complementary information between any two views together. Besides, we integrate the representation learning and clustering into a unified framework, such that two tasks can be jointly optimized. Extensive experiments on six real-world datasets demonstrate the promising performance of our algorithm compared with 15 baseline algorithms in terms of two evaluation metrics.
Audience Academic
Author Zhou, Lihua
Du, Guowang
Wang, Lizhen
Lü, Kevin
Yang, Yudi
Author_xml – sequence: 1
  givenname: Guowang
  orcidid: 0000-0002-8109-7152
  surname: Du
  fullname: Du, Guowang
  organization: School of Information Science and Engineer, Yunnan University
– sequence: 2
  givenname: Lihua
  surname: Zhou
  fullname: Zhou, Lihua
  email: lhzhou@ynu.edu.cn
  organization: School of Information Science and Engineer, Yunnan University
– sequence: 3
  givenname: Yudi
  surname: Yang
  fullname: Yang, Yudi
  organization: School of Information Science and Engineer, Yunnan University
– sequence: 4
  givenname: Kevin
  surname:
  fullname: Lü, Kevin
  organization: Brunel University
– sequence: 5
  givenname: Lizhen
  surname: Wang
  fullname: Wang, Lizhen
  organization: School of Information Science and Engineer, Yunnan University
BookMark eNp9kctOAyEARYmpiVr7A66auHJB5TmPZa1Vm9SY-FgTBpiGZpwZgfHRr5c6GqOLhgUEzoFw7xEY1E1tADjBaIIRSs89wwjnEBEMEcI8h5s9cEhowiDmDA9-1jjjB2Dk_RqhiOKMseQQJJfGtOPbrgq2rcx42oUGzmvVaOPghfRG92fw1Zq38azqfDDO1qtjsF_KypvR9zwET1fzx9kNXN5dL2bTJVSMJgESrlVaUCkpyQqtC6KJyQqVKlSgvMykzPMip1RHjlOSoCxlWpc0Z4mWHDFMh-C0v7d1zUtnfBDrpnN1fFIQzhPOU8bzSE16aiUrI2xdNsFJFYc2z1bFsEob96dJikhKMEmjcPZHiEww72ElO-_F4uH-L5v1rHKN986UQtkgg42Kk7YSGIltC6JvQcRoxVcLYhNV8k9tnX2W7mO3RHvJt9ukjfv98g7rEwLHmdw
CitedBy_id crossref_primary_10_1007_s41019_022_00190_8
crossref_primary_10_1016_j_cviu_2023_103856
crossref_primary_10_1016_j_knosys_2023_110935
crossref_primary_10_1016_j_eswa_2025_126868
crossref_primary_10_1007_s10044_025_01517_7
crossref_primary_10_1016_j_eswa_2022_118165
crossref_primary_10_1145_3674839
crossref_primary_10_1109_TKDE_2023_3293129
crossref_primary_10_1007_s41019_023_00210_1
crossref_primary_10_1016_j_cosrev_2025_100788
crossref_primary_10_1016_j_engappai_2024_107857
crossref_primary_10_1007_s10044_023_01167_7
crossref_primary_10_1109_ACCESS_2022_3182802
crossref_primary_10_1016_j_neunet_2022_09_017
crossref_primary_10_1007_s13042_023_01883_w
crossref_primary_10_1016_j_knosys_2024_111553
crossref_primary_10_1016_j_eswa_2023_121298
crossref_primary_10_1016_j_knosys_2024_111551
crossref_primary_10_1016_j_knosys_2025_114200
crossref_primary_10_1007_s13042_023_02019_w
crossref_primary_10_1109_TII_2024_3397357
crossref_primary_10_3390_sym17020161
crossref_primary_10_1016_j_eswa_2024_124258
crossref_primary_10_1109_LSP_2024_3408606
crossref_primary_10_3390_math13091422
crossref_primary_10_1016_j_ins_2022_07_093
crossref_primary_10_1007_s00530_025_01821_6
crossref_primary_10_1109_TMM_2023_3279988
crossref_primary_10_1007_s10462_025_11240_8
crossref_primary_10_1016_j_imavis_2025_105722
crossref_primary_10_1145_3708887
crossref_primary_10_1109_TSMC_2024_3405944
crossref_primary_10_1145_3645108
crossref_primary_10_1016_j_neucom_2025_130225
crossref_primary_10_1016_j_neunet_2024_106842
Cites_doi 10.1016/j.neucom.2019.12.054
10.1016/j.knosys.2018.10.022
10.1016/j.ijar.2008.11.006
10.1038/44565
10.1162/neco_a_01055
10.1016/j.patcog.2018.11.007
10.1016/j.neucom.2019.08.002
10.1109/TPAMI.2010.231
10.1109/TCYB.2017.2751646
10.1016/j.inffus.2017.12.002
10.1016/j.patcog.2019.107015
10.1109/TKDE.2015.2448542
10.26599/BDMA.2018.9020003
10.1162/neco.2006.18.7.1527
10.1145/2939672.2939753
10.1145/860435.860485
10.1137/1.9781611972832.28
10.24963/ijcai.2017/357
10.1109/ICIP.2015.7351455
10.1145/1646396.1646452
10.1126/science.1127647
10.1609/aaai.v32i1.11617
10.1609/aaai.v28i1.8950
10.1109/CVPR.2017.8
10.1609/aaai.v31i1.10867
10.1109/CVPR.2015.7298657
10.1145/1553374.1553391
10.24963/ijcai.2018/402
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7SC
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s41019-021-00159-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 2364-1541
EndPage 338
ExternalDocumentID A670272127
10_1007_s41019_021_00159_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61762090; 61966036; 61662086
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
IAO
ISR
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
ABJCF
AFFHD
ARAPS
BGLVJ
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ADMLS
ARCSS
7SC
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c436t-25dc7b3aa328bddb2d2e8bc7c0b09f8aa99b933d25d53260874ddf3946da50413
IEDL.DBID C24
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648398000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2364-1185
IngestDate Wed Oct 08 14:20:46 EDT 2025
Wed Feb 12 07:10:54 EST 2025
Fri Feb 14 02:26:38 EST 2025
Tue Nov 18 21:33:57 EST 2025
Sat Nov 29 06:46:06 EST 2025
Fri Feb 21 02:48:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multi-view Clustering
Local geometrical information
Auto-encoder
Consistent information
Complementary information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c436t-25dc7b3aa328bddb2d2e8bc7c0b09f8aa99b933d25d53260874ddf3946da50413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8109-7152
OpenAccessLink https://link.springer.com/10.1007/s41019-021-00159-z
PQID 2556557459
PQPubID 4402891
PageCount 16
ParticipantIDs proquest_journals_2556557459
gale_infotracacademiconefile_A670272127
gale_incontextgauss_ISR_A670272127
crossref_citationtrail_10_1007_s41019_021_00159_z
crossref_primary_10_1007_s41019_021_00159_z
springer_journals_10_1007_s41019_021_00159_z
PublicationCentury 2000
PublicationDate 20210900
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 9
  year: 2021
  text: 20210900
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Berlin
PublicationTitle Data Science and Engineering
PublicationTitleAbbrev Data Sci. Eng
PublicationYear 2021
Publisher Springer Singapore
Springer
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer
– name: Springer Nature B.V
References CR18
CR17
CR16
Houthuys, Langone, Suykens (CR15) 2018; 44
Huang, Kang, Xu (CR32) 2020; 97
CR14
Maas, Hannun (CR27) 2013; 30
CR12
CR11
CR33
Li, Tang, Chen, Wan, Yan, Liu (CR30) 2019; 370
CR31
Hinton, Osindero, Teh (CR22) 2006; 18
Du, Zhou, Yang, Lü, Wang (CR35) 2020
Wang, Yang, Liu, Fujita (CR1) 2019; 163
Zhan, Shi, Wang, Wang, Xie (CR24) 2018; 30
Lee, Seung (CR21) 1999; 401
CR4
CR3
CR6
CR5
CR8
CR7
Zhan, Zhang, Guan, Wang (CR25) 2017; 48
CR29
CR28
CR9
Salakhutdinov, Hinton (CR19) 2009; 50
CR26
Cai, He, Han, Huang (CR20) 2011; 33
CR23
Li, Zhou, Qiu, Wang, Zhang, Xie (CR34) 2020; 390
Huang, Kang, Tsang, Xu (CR2) 2019; 88
Yang, Wang (CR10) 2018; 1
Guan, Zhang, Peng, Fan (CR13) 2015; 27
159_CR29
S Huang (159_CR32) 2020; 97
AL Maas (159_CR27) 2013; 30
159_CR9
G Du (159_CR35) 2020
H Wang (159_CR1) 2019; 163
159_CR31
DD Lee (159_CR21) 1999; 401
159_CR12
159_CR11
159_CR33
159_CR16
159_CR17
159_CR14
L Houthuys (159_CR15) 2018; 44
Z Li (159_CR30) 2019; 370
159_CR18
K Zhan (159_CR24) 2018; 30
R Salakhutdinov (159_CR19) 2009; 50
GE Hinton (159_CR22) 2006; 18
159_CR4
159_CR3
159_CR6
159_CR5
159_CR8
159_CR7
S Huang (159_CR2) 2019; 88
Y Yang (159_CR10) 2018; 1
Z Guan (159_CR13) 2015; 27
K Zhan (159_CR25) 2017; 48
D Cai (159_CR20) 2011; 33
159_CR23
159_CR28
159_CR26
J Li (159_CR34) 2020; 390
References_xml – ident: CR18
– volume: 390
  start-page: 108
  year: 2020
  end-page: 116
  ident: CR34
  article-title: Deep graph regularized non-negative matrix factorization for multi-view clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.054
– volume: 163
  start-page: 1009
  year: 2019
  end-page: 1019
  ident: CR1
  article-title: A study of graph-based system for multi-view clustering
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.022
– ident: CR4
– ident: CR14
– volume: 50
  start-page: 969
  issue: 7
  year: 2009
  end-page: 978
  ident: CR19
  article-title: Semantic hashing
  publication-title: Int J Approximate Reasoning
  doi: 10.1016/j.ijar.2008.11.006
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  end-page: 791
  ident: CR21
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– ident: CR16
– ident: CR12
– ident: CR33
– volume: 30
  start-page: 1080
  issue: 4
  year: 2018
  end-page: 1103
  ident: CR24
  article-title: Adaptive structure concept factorization for multiview clustering
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01055
– ident: CR6
– ident: CR29
– ident: CR8
– ident: CR23
– volume: 88
  start-page: 174
  year: 2019
  end-page: 184
  ident: CR2
  article-title: Auto-weighted multi-view clustering via kernelized graph learning
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.11.007
– volume: 370
  start-page: 128
  year: 2019
  end-page: 139
  ident: CR30
  article-title: Diversity and consistency learning guided spectral embedding for multi-view clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.002
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  end-page: 1560
  ident: CR20
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
– volume: 48
  start-page: 2887
  issue: 10
  year: 2017
  end-page: 2895
  ident: CR25
  article-title: Graph learning for multiview clustering
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2017.2751646
– start-page: 612
  year: 2020
  end-page: 626
  ident: CR35
  article-title: Multi-view Clustering via Multiple Auto-Encoder
  publication-title: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data
– ident: CR3
– volume: 44
  start-page: 46
  year: 2018
  end-page: 56
  ident: CR15
  article-title: Multi-View Kernel Spectral Clustering
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.12.002
– volume: 97
  start-page: 107015
  year: 2020
  ident: CR32
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.107015
– volume: 27
  start-page: 3016
  issue: 11
  year: 2015
  end-page: 3028
  ident: CR13
  article-title: Multi-view concept learning for data representation
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2448542
– ident: CR17
– ident: CR31
– ident: CR11
– ident: CR9
– ident: CR5
– volume: 1
  start-page: 83
  issue: 2
  year: 2018
  end-page: 107
  ident: CR10
  article-title: Multi-view clustering: A survey
  publication-title: Big Data Mining and Analytics
  doi: 10.26599/BDMA.2018.9020003
– ident: CR7
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: CR22
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– ident: CR28
– ident: CR26
– volume: 30
  start-page: 3
  issue: 1
  year: 2013
  ident: CR27
  article-title: Ng AY Rectifier nonlinearities improve neural network acoustic models
  publication-title: ICML
– volume: 163
  start-page: 1009
  year: 2019
  ident: 159_CR1
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.10.022
– ident: 159_CR18
  doi: 10.1145/2939672.2939753
– ident: 159_CR28
  doi: 10.1145/860435.860485
– ident: 159_CR4
  doi: 10.1137/1.9781611972832.28
– ident: 159_CR26
  doi: 10.24963/ijcai.2017/357
– volume: 88
  start-page: 174
  year: 2019
  ident: 159_CR2
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2018.11.007
– ident: 159_CR5
  doi: 10.1109/ICIP.2015.7351455
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  ident: 159_CR20
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
– volume: 27
  start-page: 3016
  issue: 11
  year: 2015
  ident: 159_CR13
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2448542
– ident: 159_CR33
  doi: 10.1145/1646396.1646452
– volume: 48
  start-page: 2887
  issue: 10
  year: 2017
  ident: 159_CR25
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2017.2751646
– ident: 159_CR29
– volume: 370
  start-page: 128
  year: 2019
  ident: 159_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.002
– start-page: 612
  volume-title: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data
  year: 2020
  ident: 159_CR35
– ident: 159_CR17
  doi: 10.1126/science.1127647
– volume: 50
  start-page: 969
  issue: 7
  year: 2009
  ident: 159_CR19
  publication-title: Int J Approximate Reasoning
  doi: 10.1016/j.ijar.2008.11.006
– ident: 159_CR16
– ident: 159_CR11
  doi: 10.1609/aaai.v32i1.11617
– ident: 159_CR23
  doi: 10.1609/aaai.v28i1.8950
– volume: 97
  start-page: 107015
  year: 2020
  ident: 159_CR32
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.107015
– volume: 30
  start-page: 3
  issue: 1
  year: 2013
  ident: 159_CR27
  publication-title: ICML
– volume: 390
  start-page: 108
  year: 2020
  ident: 159_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.054
– volume: 30
  start-page: 1080
  issue: 4
  year: 2018
  ident: 159_CR24
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01055
– ident: 159_CR31
  doi: 10.1109/CVPR.2017.8
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 159_CR22
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– ident: 159_CR8
– ident: 159_CR9
  doi: 10.1609/aaai.v31i1.10867
– ident: 159_CR3
  doi: 10.1109/CVPR.2015.7298657
– ident: 159_CR7
  doi: 10.1145/1553374.1553391
– ident: 159_CR12
  doi: 10.24963/ijcai.2018/402
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 159_CR21
  publication-title: Nature
  doi: 10.1038/44565
– ident: 159_CR14
– ident: 159_CR6
– volume: 44
  start-page: 46
  year: 2018
  ident: 159_CR15
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.12.002
– volume: 1
  start-page: 83
  issue: 2
  year: 2018
  ident: 159_CR10
  publication-title: Big Data Mining and Analytics
  doi: 10.26599/BDMA.2018.9020003
SSID ssj0002118446
ssib044734210
ssib048876940
Score 2.4410331
Snippet Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous information of different views, has brought...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 323
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Analysis
Artificial Intelligence
Chemistry and Earth Sciences
Clustering
Coders
Computer Science
Data Mining and Knowledge Discovery
Database Management
Physics
Representations
Statistics for Engineering
Systems and Data Security
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4B2wMvMNimFToUTZO2iVlrHDu2n1BhoE1iaBpj4s1K7AQhobQ0LQ_99dy5bhFD8MKzL7GTO9_5znffAXxEEVK8TAVLvcgZWryKaaFLVnOpjZZe8QCk_e9YnZzo83PzOwbc2phWOdeJQVH7gaMY-TeCypJSCWn2hteMukbR7WpsobEMLwglIQ2pe6eLGAs6NxrdnVgrEyrmBIqgYZSXQKcFw6b37NH_WvnB9WiwOkfrz13vK1iL582kPxOQDViqmk3YiDu6TT5H2OkvryH_XlXD5FdMMEz6k_GAHTZU8j5i-2jr_GyM0bzJwdWEEBZwzW_g7Ojw78EPFrsqMCeyfMy49E6VWVFkXJfel9zzSpdOuV7ZM7UuCmNKk2Ue6SSe7XpaCe_rzIjcF7KHNu8trDSDpnoHCfpKqVQVMpVuin2uhXM16oyCy7pGT6QD6fzfWhchx6nzxZVdgCUHfljkhw38sNMO7C6eGc4AN56k_kAss4Rk0VCqzEUxaVv78_SP7ecKXW4CsO_Ap0hUD3B6V8TKA_wIAr-6R9mdM9PGvdzaO0524OtcHO6GH1_c1tNv24ZVHgSREta6sDIeTar38NLdjC_b0U6Q5FtfBPZB
  priority: 102
  providerName: ProQuest
Title Deep Multiple Auto-Encoder-Based Multi-view Clustering
URI https://link.springer.com/article/10.1007/s41019-021-00159-z
https://www.proquest.com/docview/2556557459
Volume 6
WOSCitedRecordID wos000648398000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734210
  issn: 2364-1185
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: K7-
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: M7S
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: C24
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BBtJeGCtMK2xVhJAAgaXGsWP7ses6McGqagM0nqzEThDSlE5Nu4c97G_nLnVajS8JXvyQXGT7fL7z5e5-BniJIqR4HgsWe5EytHgF00LnrORSGy294g2Q9pePajzWFxdmEorC6jbbvQ1JNpp6VewmUHoMo5QCMvSG3dyHTRlrQ4l8wzXmuBAqEXxt1FBCVdqCxJF-RpdHC7G8dS7FQaLFCtU0v-_mjsX6WW__EkBt7NLx9v_N6DE8CufQaLAUnB24V1Qd2G7veIjClu_AwyZF1NUd2AnP6uh1wKp-8wTSo6K4ik5DVmI0WMynbFRRnfyMHaKB9Mt3jAIQ0fByQbAMOMSn8Pl49Gn4noWrGJgTSTpnXHqn8iTLEq5z73PueaFzp1w_75tSZ5kxuUkSj3QSD4R9rYT3ZWJE6jPZR0O5CxvVtCr2IEIHK5aqQEmg8LJPtXCuREWTcVmW6L50IW7ZbV3AKafrMi7tCmG54ZtFvtmGb_amC29X31wtUTr-Sv2CVtES_EVF-TXfskVd25PzMztIFfrphHrfhVeBqJxi9y4L5Qo4CULMukO530qDDQqgtoTsJqUS0nThXbv669d_HtyzfyN_Dlu8ESDKetuHjflsURzAA3c9_17PerB5OBpPznrNBuk1_xuw_aBYj3Jcz6m9HSHV5OR08vUHJZIFzg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgQQvwPgQhQ0iBAIEFqljx_YDQmUfWtWuQjDQ3kxiJwhpSkvTgrY_an_j7lKn00DsbQ8823Fs3893PvvuZ4BnCCHF865gXS9ShhavYFronJVcaqOlV7wh0v46VKORPjgwH1fgpM2FobDKVic2itqPHZ2RvyWqLCmVkOb95CejV6PodrV9QmMBi0Fx9Btdtvpdfwvl-5zzne39zV0WXhVgTiTpjHHpncqTLEu4zr3PueeFzp1ycR6bUmeZMTl6-R7rSdzbxFoJ78vEiNRnMkadj-1egasi0YrW1UCx5ZkOOlMa3auQm9Nk6AmEvGEUB0G7E8OOz9m_P63AX9exjZXbufW_zc9tuBn201FvsQDWYKWo7sBa0Fh19DLQar-6C-lWUUyivRBAGfXmszHbriilf8o-oC33izJG44w2D-fEIIFzdA--XEr_78NqNa6KBxChL9iVqkDQ0k24T7VwrkSdmHFZluhpdaDbytK6QKlOL3sc2iUZdCN_i_K3jfztcQdeL7-ZLAhFLqz9lCBiiamjolCg79m8rm3_8yfbS1XMFRH0d-BFqFSO8fcuC5kVOAgi9zpXc70Fjw26qrZnyOnAmxZ-Z8X_7tzDi1t7Atd39_eGdtgfDR7BDd4sAgrOW4fV2XRebMA192v2o54-blZRBN8uG5anNnxTsA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BgGkvjJVNFAZECAkQWGsdO7YfS7eKiVFNfGlvVmInE9KUVk26h_313CVOy_iSEK_xRbYvv9zZurvfATxHCCmeDQUbepEw9Hg500JnrOBSGy294g2R9tcTNZ3qszNz-kMVf5Pt3oUk25oGYmkq64O5Lw5WhW8CkWQYpReQ0zfs6ibcoogUYXy85h8XQsWCrx0colUlHWEc2Wq8_mgh2g50CS4YvVeorPn9NNe81882_JdgauOjJtv_v7t7cDecT6NRC6gduJGXPdjuej9EwRT04E6TOuqqHuyEZ1X0MnBYv7oPyWGez6MPIVsxGi3rGTsqqX5-wd6i4_TtGKPARDS-WBJdAy53F75Mjj6P37HQooE5ESc149I7lcVpGnOdeZ9xz3OdOeUG2cAUOk2NyUwce5STeFAcaCW8L2IjEp_KATrQPdgoZ2X-ACK8eA2lyhEhFHb2iRbOFWiAUi6LAq81fRh2qrcu8JdTG40Lu2JebvRmUW-20Zu96sPr1Tvzlr3jr9LP6ItaosUoKe_mPF1WlT3-9NGOEoX3d2LD78OLIFTMcHqXhjIG3AQxaV2T3O-QYYNhqCwxvkmphDR9eNMhYT3858U9_Dfxp7B5ejixJ8fT949gizdYosS4fdioF8v8Mdx2l_W3avGk-V--AzyDCl0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Multiple+Auto-Encoder-Based+Multi-view+Clustering&rft.jtitle=Data+science+and+engineering&rft.au=Du%2C+Guowang&rft.au=Zhou%2C+Lihua&rft.au=Yang%2C+Yudi&rft.au=L%C3%BC%2C+Kevin&rft.date=2021-09-01&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=6&rft.issue=3&rft.spage=323&rft.epage=338&rft_id=info:doi/10.1007%2Fs41019-021-00159-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41019_021_00159_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon