Deep Multiple Auto-Encoder-Based Multi-view Clustering
Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous information of different views, has brought along a growth of attention. Multi-view clustering algorithms based on different theories have been proposed and extended in various application...
Gespeichert in:
| Veröffentlicht in: | Data Science and Engineering Jg. 6; H. 3; S. 323 - 338 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Singapore
01.09.2021
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2364-1185, 2364-1541 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous information of different views, has brought along a growth of attention. Multi-view clustering algorithms based on different theories have been proposed and extended in various applications. However, most existing MVC algorithms are shallow models, which learn structure information of multi-view data by mapping multi-view data to low-dimensional representation space directly, ignoring the nonlinear structure information hidden in each view, and thus, the performance of multi-view clustering is weakened to a certain extent. In this paper, we propose a deep multi-view clustering algorithm based on multiple auto-encoder, termed MVC-MAE, to cluster multi-view data. MVC-MAE adopts auto-encoder to capture the nonlinear structure information of each view in a layer-wise manner and incorporate the local invariance within each view and consistent as well as complementary information between any two views together. Besides, we integrate the representation learning and clustering into a unified framework, such that two tasks can be jointly optimized. Extensive experiments on six real-world datasets demonstrate the promising performance of our algorithm compared with 15 baseline algorithms in terms of two evaluation metrics. |
|---|---|
| AbstractList | Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous information of different views, has brought along a growth of attention. Multi-view clustering algorithms based on different theories have been proposed and extended in various applications. However, most existing MVC algorithms are shallow models, which learn structure information of multi-view data by mapping multi-view data to low-dimensional representation space directly, ignoring the nonlinear structure information hidden in each view, and thus, the performance of multi-view clustering is weakened to a certain extent. In this paper, we propose a deep multi-view clustering algorithm based on multiple auto-encoder, termed MVC-MAE, to cluster multi-view data. MVC-MAE adopts auto-encoder to capture the nonlinear structure information of each view in a layer-wise manner and incorporate the local invariance within each view and consistent as well as complementary information between any two views together. Besides, we integrate the representation learning and clustering into a unified framework, such that two tasks can be jointly optimized. Extensive experiments on six real-world datasets demonstrate the promising performance of our algorithm compared with 15 baseline algorithms in terms of two evaluation metrics. |
| Audience | Academic |
| Author | Zhou, Lihua Du, Guowang Wang, Lizhen Lü, Kevin Yang, Yudi |
| Author_xml | – sequence: 1 givenname: Guowang orcidid: 0000-0002-8109-7152 surname: Du fullname: Du, Guowang organization: School of Information Science and Engineer, Yunnan University – sequence: 2 givenname: Lihua surname: Zhou fullname: Zhou, Lihua email: lhzhou@ynu.edu.cn organization: School of Information Science and Engineer, Yunnan University – sequence: 3 givenname: Yudi surname: Yang fullname: Yang, Yudi organization: School of Information Science and Engineer, Yunnan University – sequence: 4 givenname: Kevin surname: Lü fullname: Lü, Kevin organization: Brunel University – sequence: 5 givenname: Lizhen surname: Wang fullname: Wang, Lizhen organization: School of Information Science and Engineer, Yunnan University |
| BookMark | eNp9kctOAyEARYmpiVr7A66auHJB5TmPZa1Vm9SY-FgTBpiGZpwZgfHRr5c6GqOLhgUEzoFw7xEY1E1tADjBaIIRSs89wwjnEBEMEcI8h5s9cEhowiDmDA9-1jjjB2Dk_RqhiOKMseQQJJfGtOPbrgq2rcx42oUGzmvVaOPghfRG92fw1Zq38azqfDDO1qtjsF_KypvR9zwET1fzx9kNXN5dL2bTJVSMJgESrlVaUCkpyQqtC6KJyQqVKlSgvMykzPMip1RHjlOSoCxlWpc0Z4mWHDFMh-C0v7d1zUtnfBDrpnN1fFIQzhPOU8bzSE16aiUrI2xdNsFJFYc2z1bFsEob96dJikhKMEmjcPZHiEww72ElO-_F4uH-L5v1rHKN986UQtkgg42Kk7YSGIltC6JvQcRoxVcLYhNV8k9tnX2W7mO3RHvJt9ukjfv98g7rEwLHmdw |
| CitedBy_id | crossref_primary_10_1007_s41019_022_00190_8 crossref_primary_10_1016_j_cviu_2023_103856 crossref_primary_10_1016_j_knosys_2023_110935 crossref_primary_10_1016_j_eswa_2025_126868 crossref_primary_10_1007_s10044_025_01517_7 crossref_primary_10_1016_j_eswa_2022_118165 crossref_primary_10_1145_3674839 crossref_primary_10_1109_TKDE_2023_3293129 crossref_primary_10_1007_s41019_023_00210_1 crossref_primary_10_1016_j_cosrev_2025_100788 crossref_primary_10_1016_j_engappai_2024_107857 crossref_primary_10_1007_s10044_023_01167_7 crossref_primary_10_1109_ACCESS_2022_3182802 crossref_primary_10_1016_j_neunet_2022_09_017 crossref_primary_10_1007_s13042_023_01883_w crossref_primary_10_1016_j_knosys_2024_111553 crossref_primary_10_1016_j_eswa_2023_121298 crossref_primary_10_1016_j_knosys_2024_111551 crossref_primary_10_1016_j_knosys_2025_114200 crossref_primary_10_1007_s13042_023_02019_w crossref_primary_10_1109_TII_2024_3397357 crossref_primary_10_3390_sym17020161 crossref_primary_10_1016_j_eswa_2024_124258 crossref_primary_10_1109_LSP_2024_3408606 crossref_primary_10_3390_math13091422 crossref_primary_10_1016_j_ins_2022_07_093 crossref_primary_10_1007_s00530_025_01821_6 crossref_primary_10_1109_TMM_2023_3279988 crossref_primary_10_1007_s10462_025_11240_8 crossref_primary_10_1016_j_imavis_2025_105722 crossref_primary_10_1145_3708887 crossref_primary_10_1109_TSMC_2024_3405944 crossref_primary_10_1145_3645108 crossref_primary_10_1016_j_neucom_2025_130225 crossref_primary_10_1016_j_neunet_2024_106842 |
| Cites_doi | 10.1016/j.neucom.2019.12.054 10.1016/j.knosys.2018.10.022 10.1016/j.ijar.2008.11.006 10.1038/44565 10.1162/neco_a_01055 10.1016/j.patcog.2018.11.007 10.1016/j.neucom.2019.08.002 10.1109/TPAMI.2010.231 10.1109/TCYB.2017.2751646 10.1016/j.inffus.2017.12.002 10.1016/j.patcog.2019.107015 10.1109/TKDE.2015.2448542 10.26599/BDMA.2018.9020003 10.1162/neco.2006.18.7.1527 10.1145/2939672.2939753 10.1145/860435.860485 10.1137/1.9781611972832.28 10.24963/ijcai.2017/357 10.1109/ICIP.2015.7351455 10.1145/1646396.1646452 10.1126/science.1127647 10.1609/aaai.v32i1.11617 10.1609/aaai.v28i1.8950 10.1109/CVPR.2017.8 10.1609/aaai.v31i1.10867 10.1109/CVPR.2015.7298657 10.1145/1553374.1553391 10.24963/ijcai.2018/402 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2021 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 7SC 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s41019-021-00159-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Computer Science |
| EISSN | 2364-1541 |
| EndPage | 338 |
| ExternalDocumentID | A670272127 10_1007_s41019_021_00159_z |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61762090; 61966036; 61662086 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX ABJCF AFFHD ARAPS BGLVJ CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS ADMLS ARCSS 7SC 8FD 8FE 8FG ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c436t-25dc7b3aa328bddb2d2e8bc7c0b09f8aa99b933d25d53260874ddf3946da50413 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648398000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2364-1185 |
| IngestDate | Wed Oct 08 14:20:46 EDT 2025 Wed Feb 12 07:10:54 EST 2025 Fri Feb 14 02:26:38 EST 2025 Tue Nov 18 21:33:57 EST 2025 Sat Nov 29 06:46:06 EST 2025 Fri Feb 21 02:48:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Multi-view Clustering Local geometrical information Auto-encoder Consistent information Complementary information |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c436t-25dc7b3aa328bddb2d2e8bc7c0b09f8aa99b933d25d53260874ddf3946da50413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8109-7152 |
| OpenAccessLink | https://link.springer.com/10.1007/s41019-021-00159-z |
| PQID | 2556557459 |
| PQPubID | 4402891 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2556557459 gale_infotracacademiconefile_A670272127 gale_incontextgauss_ISR_A670272127 crossref_citationtrail_10_1007_s41019_021_00159_z crossref_primary_10_1007_s41019_021_00159_z springer_journals_10_1007_s41019_021_00159_z |
| PublicationCentury | 2000 |
| PublicationDate | 20210900 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 9 year: 2021 text: 20210900 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Berlin |
| PublicationTitle | Data Science and Engineering |
| PublicationTitleAbbrev | Data Sci. Eng |
| PublicationYear | 2021 |
| Publisher | Springer Singapore Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer – name: Springer Nature B.V |
| References | CR18 CR17 CR16 Houthuys, Langone, Suykens (CR15) 2018; 44 Huang, Kang, Xu (CR32) 2020; 97 CR14 Maas, Hannun (CR27) 2013; 30 CR12 CR11 CR33 Li, Tang, Chen, Wan, Yan, Liu (CR30) 2019; 370 CR31 Hinton, Osindero, Teh (CR22) 2006; 18 Du, Zhou, Yang, Lü, Wang (CR35) 2020 Wang, Yang, Liu, Fujita (CR1) 2019; 163 Zhan, Shi, Wang, Wang, Xie (CR24) 2018; 30 Lee, Seung (CR21) 1999; 401 CR4 CR3 CR6 CR5 CR8 CR7 Zhan, Zhang, Guan, Wang (CR25) 2017; 48 CR29 CR28 CR9 Salakhutdinov, Hinton (CR19) 2009; 50 CR26 Cai, He, Han, Huang (CR20) 2011; 33 CR23 Li, Zhou, Qiu, Wang, Zhang, Xie (CR34) 2020; 390 Huang, Kang, Tsang, Xu (CR2) 2019; 88 Yang, Wang (CR10) 2018; 1 Guan, Zhang, Peng, Fan (CR13) 2015; 27 159_CR29 S Huang (159_CR32) 2020; 97 AL Maas (159_CR27) 2013; 30 159_CR9 G Du (159_CR35) 2020 H Wang (159_CR1) 2019; 163 159_CR31 DD Lee (159_CR21) 1999; 401 159_CR12 159_CR11 159_CR33 159_CR16 159_CR17 159_CR14 L Houthuys (159_CR15) 2018; 44 Z Li (159_CR30) 2019; 370 159_CR18 K Zhan (159_CR24) 2018; 30 R Salakhutdinov (159_CR19) 2009; 50 GE Hinton (159_CR22) 2006; 18 159_CR4 159_CR3 159_CR6 159_CR5 159_CR8 159_CR7 S Huang (159_CR2) 2019; 88 Y Yang (159_CR10) 2018; 1 Z Guan (159_CR13) 2015; 27 K Zhan (159_CR25) 2017; 48 D Cai (159_CR20) 2011; 33 159_CR23 159_CR28 159_CR26 J Li (159_CR34) 2020; 390 |
| References_xml | – ident: CR18 – volume: 390 start-page: 108 year: 2020 end-page: 116 ident: CR34 article-title: Deep graph regularized non-negative matrix factorization for multi-view clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.054 – volume: 163 start-page: 1009 year: 2019 end-page: 1019 ident: CR1 article-title: A study of graph-based system for multi-view clustering publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.022 – ident: CR4 – ident: CR14 – volume: 50 start-page: 969 issue: 7 year: 2009 end-page: 978 ident: CR19 article-title: Semantic hashing publication-title: Int J Approximate Reasoning doi: 10.1016/j.ijar.2008.11.006 – volume: 401 start-page: 788 issue: 6755 year: 1999 end-page: 791 ident: CR21 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – ident: CR16 – ident: CR12 – ident: CR33 – volume: 30 start-page: 1080 issue: 4 year: 2018 end-page: 1103 ident: CR24 article-title: Adaptive structure concept factorization for multiview clustering publication-title: Neural Comput doi: 10.1162/neco_a_01055 – ident: CR6 – ident: CR29 – ident: CR8 – ident: CR23 – volume: 88 start-page: 174 year: 2019 end-page: 184 ident: CR2 article-title: Auto-weighted multi-view clustering via kernelized graph learning publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.11.007 – volume: 370 start-page: 128 year: 2019 end-page: 139 ident: CR30 article-title: Diversity and consistency learning guided spectral embedding for multi-view clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.002 – volume: 33 start-page: 1548 issue: 8 year: 2011 end-page: 1560 ident: CR20 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.231 – volume: 48 start-page: 2887 issue: 10 year: 2017 end-page: 2895 ident: CR25 article-title: Graph learning for multiview clustering publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2017.2751646 – start-page: 612 year: 2020 end-page: 626 ident: CR35 article-title: Multi-view Clustering via Multiple Auto-Encoder publication-title: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data – ident: CR3 – volume: 44 start-page: 46 year: 2018 end-page: 56 ident: CR15 article-title: Multi-View Kernel Spectral Clustering publication-title: Information Fusion doi: 10.1016/j.inffus.2017.12.002 – volume: 97 start-page: 107015 year: 2020 ident: CR32 article-title: Auto-weighted multi-view clustering via deep matrix decomposition publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.107015 – volume: 27 start-page: 3016 issue: 11 year: 2015 end-page: 3028 ident: CR13 article-title: Multi-view concept learning for data representation publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2448542 – ident: CR17 – ident: CR31 – ident: CR11 – ident: CR9 – ident: CR5 – volume: 1 start-page: 83 issue: 2 year: 2018 end-page: 107 ident: CR10 article-title: Multi-view clustering: A survey publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2018.9020003 – ident: CR7 – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 ident: CR22 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – ident: CR28 – ident: CR26 – volume: 30 start-page: 3 issue: 1 year: 2013 ident: CR27 article-title: Ng AY Rectifier nonlinearities improve neural network acoustic models publication-title: ICML – volume: 163 start-page: 1009 year: 2019 ident: 159_CR1 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.10.022 – ident: 159_CR18 doi: 10.1145/2939672.2939753 – ident: 159_CR28 doi: 10.1145/860435.860485 – ident: 159_CR4 doi: 10.1137/1.9781611972832.28 – ident: 159_CR26 doi: 10.24963/ijcai.2017/357 – volume: 88 start-page: 174 year: 2019 ident: 159_CR2 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.11.007 – ident: 159_CR5 doi: 10.1109/ICIP.2015.7351455 – volume: 33 start-page: 1548 issue: 8 year: 2011 ident: 159_CR20 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.231 – volume: 27 start-page: 3016 issue: 11 year: 2015 ident: 159_CR13 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2448542 – ident: 159_CR33 doi: 10.1145/1646396.1646452 – volume: 48 start-page: 2887 issue: 10 year: 2017 ident: 159_CR25 publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2017.2751646 – ident: 159_CR29 – volume: 370 start-page: 128 year: 2019 ident: 159_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.002 – start-page: 612 volume-title: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data year: 2020 ident: 159_CR35 – ident: 159_CR17 doi: 10.1126/science.1127647 – volume: 50 start-page: 969 issue: 7 year: 2009 ident: 159_CR19 publication-title: Int J Approximate Reasoning doi: 10.1016/j.ijar.2008.11.006 – ident: 159_CR16 – ident: 159_CR11 doi: 10.1609/aaai.v32i1.11617 – ident: 159_CR23 doi: 10.1609/aaai.v28i1.8950 – volume: 97 start-page: 107015 year: 2020 ident: 159_CR32 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2019.107015 – volume: 30 start-page: 3 issue: 1 year: 2013 ident: 159_CR27 publication-title: ICML – volume: 390 start-page: 108 year: 2020 ident: 159_CR34 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.054 – volume: 30 start-page: 1080 issue: 4 year: 2018 ident: 159_CR24 publication-title: Neural Comput doi: 10.1162/neco_a_01055 – ident: 159_CR31 doi: 10.1109/CVPR.2017.8 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 159_CR22 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – ident: 159_CR8 – ident: 159_CR9 doi: 10.1609/aaai.v31i1.10867 – ident: 159_CR3 doi: 10.1109/CVPR.2015.7298657 – ident: 159_CR7 doi: 10.1145/1553374.1553391 – ident: 159_CR12 doi: 10.24963/ijcai.2018/402 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 159_CR21 publication-title: Nature doi: 10.1038/44565 – ident: 159_CR14 – ident: 159_CR6 – volume: 44 start-page: 46 year: 2018 ident: 159_CR15 publication-title: Information Fusion doi: 10.1016/j.inffus.2017.12.002 – volume: 1 start-page: 83 issue: 2 year: 2018 ident: 159_CR10 publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2018.9020003 |
| SSID | ssj0002118446 ssib044734210 ssib048876940 |
| Score | 2.4410331 |
| Snippet | Multi-view clustering (MVC), which aims to explore the underlying structure of data by leveraging heterogeneous information of different views, has brought... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 323 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Analysis Artificial Intelligence Chemistry and Earth Sciences Clustering Coders Computer Science Data Mining and Knowledge Discovery Database Management Physics Representations Statistics for Engineering Systems and Data Security |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4B2wMvMNimFToUTZO2iVlrHDu2n1BhoE1iaBpj4s1K7AQhobQ0LQ_99dy5bhFD8MKzL7GTO9_5znffAXxEEVK8TAVLvcgZWryKaaFLVnOpjZZe8QCk_e9YnZzo83PzOwbc2phWOdeJQVH7gaMY-TeCypJSCWn2hteMukbR7WpsobEMLwglIQ2pe6eLGAs6NxrdnVgrEyrmBIqgYZSXQKcFw6b37NH_WvnB9WiwOkfrz13vK1iL582kPxOQDViqmk3YiDu6TT5H2OkvryH_XlXD5FdMMEz6k_GAHTZU8j5i-2jr_GyM0bzJwdWEEBZwzW_g7Ojw78EPFrsqMCeyfMy49E6VWVFkXJfel9zzSpdOuV7ZM7UuCmNKk2Ue6SSe7XpaCe_rzIjcF7KHNu8trDSDpnoHCfpKqVQVMpVuin2uhXM16oyCy7pGT6QD6fzfWhchx6nzxZVdgCUHfljkhw38sNMO7C6eGc4AN56k_kAss4Rk0VCqzEUxaVv78_SP7ecKXW4CsO_Ap0hUD3B6V8TKA_wIAr-6R9mdM9PGvdzaO0524OtcHO6GH1_c1tNv24ZVHgSREta6sDIeTar38NLdjC_b0U6Q5FtfBPZB priority: 102 providerName: ProQuest |
| Title | Deep Multiple Auto-Encoder-Based Multi-view Clustering |
| URI | https://link.springer.com/article/10.1007/s41019-021-00159-z https://www.proquest.com/docview/2556557459 |
| Volume | 6 |
| WOSCitedRecordID | wos000648398000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734210 issn: 2364-1185 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: K7- dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: M7S dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: C24 dateStart: 20160301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BBtJeGCtMK2xVhJAAgaXGsWP7ses6McGqagM0nqzEThDSlE5Nu4c97G_nLnVajS8JXvyQXGT7fL7z5e5-BniJIqR4HgsWe5EytHgF00LnrORSGy294g2Q9pePajzWFxdmEorC6jbbvQ1JNpp6VewmUHoMo5QCMvSG3dyHTRlrQ4l8wzXmuBAqEXxt1FBCVdqCxJF-RpdHC7G8dS7FQaLFCtU0v-_mjsX6WW__EkBt7NLx9v_N6DE8CufQaLAUnB24V1Qd2G7veIjClu_AwyZF1NUd2AnP6uh1wKp-8wTSo6K4ik5DVmI0WMynbFRRnfyMHaKB9Mt3jAIQ0fByQbAMOMSn8Pl49Gn4noWrGJgTSTpnXHqn8iTLEq5z73PueaFzp1w_75tSZ5kxuUkSj3QSD4R9rYT3ZWJE6jPZR0O5CxvVtCr2IEIHK5aqQEmg8LJPtXCuREWTcVmW6L50IW7ZbV3AKafrMi7tCmG54ZtFvtmGb_amC29X31wtUTr-Sv2CVtES_EVF-TXfskVd25PzMztIFfrphHrfhVeBqJxi9y4L5Qo4CULMukO530qDDQqgtoTsJqUS0nThXbv669d_HtyzfyN_Dlu8ESDKetuHjflsURzAA3c9_17PerB5OBpPznrNBuk1_xuw_aBYj3Jcz6m9HSHV5OR08vUHJZIFzg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgQQvwPgQhQ0iBAIEFqljx_YDQmUfWtWuQjDQ3kxiJwhpSkvTgrY_an_j7lKn00DsbQ8823Fs3893PvvuZ4BnCCHF865gXS9ShhavYFronJVcaqOlV7wh0v46VKORPjgwH1fgpM2FobDKVic2itqPHZ2RvyWqLCmVkOb95CejV6PodrV9QmMBi0Fx9Btdtvpdfwvl-5zzne39zV0WXhVgTiTpjHHpncqTLEu4zr3PueeFzp1ycR6bUmeZMTl6-R7rSdzbxFoJ78vEiNRnMkadj-1egasi0YrW1UCx5ZkOOlMa3auQm9Nk6AmEvGEUB0G7E8OOz9m_P63AX9exjZXbufW_zc9tuBn201FvsQDWYKWo7sBa0Fh19DLQar-6C-lWUUyivRBAGfXmszHbriilf8o-oC33izJG44w2D-fEIIFzdA--XEr_78NqNa6KBxChL9iVqkDQ0k24T7VwrkSdmHFZluhpdaDbytK6QKlOL3sc2iUZdCN_i_K3jfztcQdeL7-ZLAhFLqz9lCBiiamjolCg79m8rm3_8yfbS1XMFRH0d-BFqFSO8fcuC5kVOAgi9zpXc70Fjw26qrZnyOnAmxZ-Z8X_7tzDi1t7Atd39_eGdtgfDR7BDd4sAgrOW4fV2XRebMA192v2o54-blZRBN8uG5anNnxTsA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BgGkvjJVNFAZECAkQWGsdO7YfS7eKiVFNfGlvVmInE9KUVk26h_313CVOy_iSEK_xRbYvv9zZurvfATxHCCmeDQUbepEw9Hg500JnrOBSGy294g2R9tcTNZ3qszNz-kMVf5Pt3oUk25oGYmkq64O5Lw5WhW8CkWQYpReQ0zfs6ibcoogUYXy85h8XQsWCrx0colUlHWEc2Wq8_mgh2g50CS4YvVeorPn9NNe81882_JdgauOjJtv_v7t7cDecT6NRC6gduJGXPdjuej9EwRT04E6TOuqqHuyEZ1X0MnBYv7oPyWGez6MPIVsxGi3rGTsqqX5-wd6i4_TtGKPARDS-WBJdAy53F75Mjj6P37HQooE5ESc149I7lcVpGnOdeZ9xz3OdOeUG2cAUOk2NyUwce5STeFAcaCW8L2IjEp_KATrQPdgoZ2X-ACK8eA2lyhEhFHb2iRbOFWiAUi6LAq81fRh2qrcu8JdTG40Lu2JebvRmUW-20Zu96sPr1Tvzlr3jr9LP6ItaosUoKe_mPF1WlT3-9NGOEoX3d2LD78OLIFTMcHqXhjIG3AQxaV2T3O-QYYNhqCwxvkmphDR9eNMhYT3858U9_Dfxp7B5ejixJ8fT949gizdYosS4fdioF8v8Mdx2l_W3avGk-V--AzyDCl0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Multiple+Auto-Encoder-Based+Multi-view+Clustering&rft.jtitle=Data+science+and+engineering&rft.au=Du%2C+Guowang&rft.au=Zhou%2C+Lihua&rft.au=Yang%2C+Yudi&rft.au=L%C3%BC%2C+Kevin&rft.date=2021-09-01&rft.issn=2364-1185&rft.eissn=2364-1541&rft.volume=6&rft.issue=3&rft.spage=323&rft.epage=338&rft_id=info:doi/10.1007%2Fs41019-021-00159-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41019_021_00159_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |