A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads
•A multi-objective framework for smart grid management considering minimum reserve.•The min. reserve is incorporated in the model in addition to the cost minimization.•The day-ahead model for VPP aims to increase reliability and reduce uncertainty.•Two-stage weighted sum approach using distributed a...
Uloženo v:
| Vydáno v: | Applied energy Ročník 162; s. 1074 - 1088 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.01.2016
|
| Témata: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A multi-objective framework for smart grid management considering minimum reserve.•The min. reserve is incorporated in the model in addition to the cost minimization.•The day-ahead model for VPP aims to increase reliability and reduce uncertainty.•Two-stage weighted sum approach using distributed and parallel computing.
In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power Player (VPP) manages the day-ahead energy resource scheduling in the smart grid, considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G), while maintaining a highly reliable power for the sensitive loads. This work considers high penetration of sensitive loads, i.e. loads such as some industrial processes that require high power quality, high reliability and few interruptions. The weighted-sum approach is used with the distributed and parallel computing techniques to efficiently solve the multi-objective problem. A two-stage optimization method is proposed using a Particle Swarm Optimization (PSO) and a deterministic technique based on Mixed-Integer Linear Programming (MILP). A realistic mathematical formulation considering the electric network constraints for the day-ahead scheduling model is described. The execution time of the large-scale problem can be reduced by using a parallel and distributed computing platform. A Pareto front algorithm is applied to determine the set of non-dominated solutions. The maximization of the minimum available reserve is incorporated in the mathematical formulation in addition to the cost minimization, to take into account the reliability requirements of sensitive and vulnerable loads. A case study with a 180-bus distribution network and a fleet of 1000 gridable Electric Vehicles (EVs) is used to illustrate the performance of the proposed method. The execution time to solve the optimization problem is reduced by using distributed computing. |
|---|---|
| AbstractList | In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power Player (VPP) manages the day-ahead energy resource scheduling in the smart grid, considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G), while maintaining a highly reliable power for the sensitive loads. This work considers high penetration of sensitive loads, i.e. loads such as some industrial processes that require high power quality, high reliability and few interruptions. The weighted-sum approach is used with the distributed and parallel computing techniques to efficiently solve the multi-objective problem. A two-stage optimization method is proposed using a Particle Swarm Optimization (PSO) and a deterministic technique based on Mixed-Integer Linear Programming (MILP). A realistic mathematical formulation considering the electric network constraints for the day-ahead scheduling model is described. The execution time of the large-scale problem can be reduced by using a parallel and distributed computing platform. A Pareto front algorithm is applied to determine the set of non-dominated solutions. The maximization of the minimum available reserve is incorporated in the mathematical formulation in addition to the cost minimization, to take into account the reliability requirements of sensitive and vulnerable loads. A case study with a 180-bus distribution network and a fleet of 1000 gridable Electric Vehicles (EVs) is used to illustrate the performance of the proposed method. The execution time to solve the optimization problem is reduced by using distributed computing. •A multi-objective framework for smart grid management considering minimum reserve.•The min. reserve is incorporated in the model in addition to the cost minimization.•The day-ahead model for VPP aims to increase reliability and reduce uncertainty.•Two-stage weighted sum approach using distributed and parallel computing. In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power Player (VPP) manages the day-ahead energy resource scheduling in the smart grid, considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G), while maintaining a highly reliable power for the sensitive loads. This work considers high penetration of sensitive loads, i.e. loads such as some industrial processes that require high power quality, high reliability and few interruptions. The weighted-sum approach is used with the distributed and parallel computing techniques to efficiently solve the multi-objective problem. A two-stage optimization method is proposed using a Particle Swarm Optimization (PSO) and a deterministic technique based on Mixed-Integer Linear Programming (MILP). A realistic mathematical formulation considering the electric network constraints for the day-ahead scheduling model is described. The execution time of the large-scale problem can be reduced by using a parallel and distributed computing platform. A Pareto front algorithm is applied to determine the set of non-dominated solutions. The maximization of the minimum available reserve is incorporated in the mathematical formulation in addition to the cost minimization, to take into account the reliability requirements of sensitive and vulnerable loads. A case study with a 180-bus distribution network and a fleet of 1000 gridable Electric Vehicles (EVs) is used to illustrate the performance of the proposed method. The execution time to solve the optimization problem is reduced by using distributed computing. |
| Author | de Moura Oliveira, P.B. Vale, Zita Soares, João Fotouhi Ghazvini, Mohammad Ali |
| Author_xml | – sequence: 1 givenname: João orcidid: 0000-0002-4172-4502 surname: Soares fullname: Soares, João email: joaps@isep.ipp.pt organization: GECAD – Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (IPP), 4200-072 Porto, Portugal – sequence: 2 givenname: Mohammad Ali surname: Fotouhi Ghazvini fullname: Fotouhi Ghazvini, Mohammad Ali organization: GECAD – Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (IPP), 4200-072 Porto, Portugal – sequence: 3 givenname: Zita surname: Vale fullname: Vale, Zita organization: GECAD – Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (IPP), 4200-072 Porto, Portugal – sequence: 4 givenname: P.B. surname: de Moura Oliveira fullname: de Moura Oliveira, P.B. organization: INESC TEC – INESC Technology and Science, UTAD University, 5001-801 Vila Real, Portugal |
| BookMark | eNqFkT9PwzAQxS0EEqXwFZBHlhTbaZxEYqBC_JMqscBsXexL4yqNi-2AOvDdSVpYWJhOOr337u53Z-S4cx0ScsnZjDMur9cz2GKHfrWbCcaz2dgv-BGZ8CIXScl5cUwmLGUyEZKXp-QshDVjTHDBJuRrQTd9G23iqjXqaD-QbpzBltbO09ggNbBLoEEw9DCDegyu9xpp0A2avrXdirqaAg0b8JGuvDX008aGNnbV0HGz6CFa142qgF2w-ymtAxPOyUkNbcCLnzolbw_3r3dPyfLl8flusUz0PJUxEVnGc8zSOaCoU8zzKhWYZ3OTQ8a0rGVVZkzOSybBQF0ASmYqAVXGRAFc6nRKrg65W-_eewxRbWzQ2LbQoeuDEgOPlItclIP05iDV3oXgsVbaxv3-wxm2VZypkbpaq1_qaqS-7xd8sMs_9q23A5jd_8bbgxEHDh8WvQraYqfRWD88Rhln_4v4BlOCpRQ |
| CitedBy_id | crossref_primary_10_3390_electricity3010005 crossref_primary_10_1016_j_apenergy_2016_10_022 crossref_primary_10_3390_su141912486 crossref_primary_10_1016_j_apenergy_2018_12_078 crossref_primary_10_1016_j_apenergy_2016_05_074 crossref_primary_10_1016_j_apenergy_2017_03_025 crossref_primary_10_1002_etep_2238 crossref_primary_10_3390_en11040894 crossref_primary_10_3390_en9100807 crossref_primary_10_1109_TSG_2017_2655461 crossref_primary_10_1016_j_apenergy_2018_06_153 crossref_primary_10_1016_j_rser_2019_05_059 crossref_primary_10_3390_en15228525 crossref_primary_10_1016_j_energy_2019_07_145 crossref_primary_10_1109_TIA_2017_2723339 crossref_primary_10_3390_a14100275 crossref_primary_10_1016_j_jclepro_2018_03_254 crossref_primary_10_3390_en11020384 crossref_primary_10_3390_a17090416 crossref_primary_10_1016_j_apenergy_2017_12_119 crossref_primary_10_1016_j_apenergy_2019_01_227 crossref_primary_10_1016_j_apenergy_2023_121742 crossref_primary_10_1088_1755_1315_168_1_012015 crossref_primary_10_3390_en13061507 crossref_primary_10_1016_j_apenergy_2018_02_084 crossref_primary_10_1016_j_enbuild_2019_04_023 crossref_primary_10_1049_iet_est_2018_5023 crossref_primary_10_3390_en13174541 crossref_primary_10_1016_j_jclepro_2019_119106 crossref_primary_10_1016_j_epsr_2016_10_056 crossref_primary_10_1016_j_seta_2022_102066 crossref_primary_10_1016_j_est_2025_115496 crossref_primary_10_1109_ACCESS_2021_3112157 crossref_primary_10_1109_TPWRS_2018_2861325 crossref_primary_10_1016_j_apenergy_2016_12_127 crossref_primary_10_3389_fenrg_2021_739527 crossref_primary_10_1016_j_rser_2016_12_063 crossref_primary_10_3390_wevj14110303 crossref_primary_10_1016_j_apenergy_2017_02_051 crossref_primary_10_1002_er_6207 crossref_primary_10_1016_j_egyr_2022_11_195 crossref_primary_10_1016_j_apenergy_2016_07_078 crossref_primary_10_1016_j_rser_2023_113541 crossref_primary_10_1016_j_apenergy_2019_05_027 crossref_primary_10_3390_su16062491 crossref_primary_10_3390_pr7080499 crossref_primary_10_1016_j_apenergy_2016_03_020 crossref_primary_10_1016_j_ijepes_2024_110410 crossref_primary_10_1007_s40565_019_0508_7 crossref_primary_10_1016_j_ijepes_2021_107670 crossref_primary_10_1016_j_est_2021_102245 |
| Cites_doi | 10.1109/TEVC.2012.2185702 10.1109/PESGM.2012.6344637 10.1016/j.energy.2012.11.035 10.7551/mitpress/2887.003.0018 10.1016/j.apenergy.2015.05.048 10.1016/j.enconman.2014.09.062 10.1109/TPWRS.2008.919201 10.1016/j.asoc.2011.07.005 10.1016/j.apenergy.2011.01.042 10.1016/j.energy.2012.06.049 10.1109/TIE.2012.2188873 10.1049/iet-rpg.2010.0052 10.1016/j.apenergy.2015.07.070 10.1109/CEC.2008.4631121 10.1109/ISAP.2005.1599236 10.1016/j.asoc.2013.04.015 10.1016/j.energy.2011.07.054 10.1016/j.enconman.2015.08.059 10.1016/j.enconman.2014.06.044 10.1016/j.apenergy.2012.04.017 10.1109/TEVC.2006.880326 10.1016/j.asoc.2013.07.003 10.1016/j.apenergy.2011.11.015 10.1016/j.apenergy.2011.04.019 10.1016/j.rser.2004.11.004 10.1016/S0378-7796(98)00150-3 10.1016/j.enconman.2014.03.022 10.1109/PESA.2011.5982911 10.1109/PESGM.2012.6345358 10.1109/CIASG.2011.5953342 10.1016/j.energy.2012.03.022 10.3390/en5061881 10.1007/s12053-013-9223-9 10.1109/CIASG.2013.6611510 10.1016/j.epsr.2008.05.011 10.1016/j.apenergy.2015.01.145 10.1016/j.asoc.2013.09.015 10.1016/j.apenergy.2012.01.053 10.1016/j.energy.2013.04.048 10.1109/TSG.2013.2280645 10.1109/JSYST.2011.2163012 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2015.10.181 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 1088 |
| ExternalDocumentID | 10_1016_j_apenergy_2015_10_181 S0306261915014312 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c436t-25517e534ae2f3e77b32e754d7a50c6f6b95064906adaf8ae60db2ab5028a16c3 |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000367631000093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 01:48:29 EDT 2025 Sat Nov 29 07:19:50 EST 2025 Tue Nov 18 21:30:45 EST 2025 Fri Feb 23 02:32:52 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Pareto front Electric vehicles Parallel computing Multi-objective optimization Particle swarm optimization Smart grid |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c436t-25517e534ae2f3e77b32e754d7a50c6f6b95064906adaf8ae60db2ab5028a16c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4172-4502 |
| OpenAccessLink | http://hdl.handle.net/10400.22/9392 |
| PQID | 2000312729 |
| PQPubID | 24069 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2000312729 crossref_citationtrail_10_1016_j_apenergy_2015_10_181 crossref_primary_10_1016_j_apenergy_2015_10_181 elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_10_181 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-15 |
| PublicationDateYYYYMMDD | 2016-01-15 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Soares, Canizes, Lobo, Vale, Morais (b0260) 2012; 5 Soares J, Sousa T, Morais H, Vale Z, Faria P. An optimal scheduling problem in distribution networks considering V2G. In: Computational Intelligence Applications In Smart Grid (CIASG), 2011 IEEE Symposium on; 2011. p. 1–8. Rahwan T, Jennings N. Coalition structure generation: dynamic programming meets anytime optimisation. In: Proc 23rd conference on AI (AAAI); 2008. p. 156–61. Niknam, Azizipanah-Abarghooee, Narimani (b0105) 2012; 99 Electricity Advisory Committee. Keeping the Lights On in a New World. 2009. Fotouhi Ghazvini, Morais, Vale (b0050) 2012; 96 Pavić, Capuder, Kuzle (b0075) 2015; 157 Su, Wang, Roh (b0095) 2014; 5 Ishibuchi H, Tsukamoto N, Nojima Y. Evolutionary many-objective optimization: a short review. 2008 IEEE Congress on Evolutionary Computation, vols. 1–8; 2008. p. 2419–26. Alanne, Saari (b0020) 2006; 10 Zervos A, Lins C, Muth J. RE-thinking 2050: a 100% renewable energy vision for the European Union: EREC; 2010. Aghaei, Alizadeh (b0115) 2013; 55 Poli (b0180) 2008; 2008 Blumsack, Fernandez (b0010) 2012; 37 Dufo-Lopez, Bernal-Agustin, Yusta-Loyo, Dominguez-Navarro, Ramirez-Rosado, Lujano (b0235) 2011; 88 Li, Zhou, Xie, Xiong (b0175) 2008; 23 Chen, Duan, Cai, Liu, Hu (b0080) 2011; 5 Nagi, Yap, Nagi, Tiong, Ahmed (b0150) 2011; 11 Crnko (b0165) 2012 Motevasel, Seifi (b0130) 2014; 83 Canizes, Soares, Vale, Lobo (b0155) 2013 Canizes, Soares, Vale, Khodr (b0170) 2012; 45 Coello Coello, Lamont, Van Veldhuizen (b0215) 2007 Ali, Khan (b0210) 2013; 13 Bernal-Agustin, Dufo-Lopez (b0220) 2009; 79 Sivasubramani S. Economic operation of power systems using hybrid optimization techniques [PhD]. Indian Institute of Technology Madras; 2011. Soares, Vale, Morais (b0160) 2013 NIST. Smart grid: a beginner’s guide. National Institute of Standards and Technology (NIST); 2011. p. 7. Soares J, Vale Z, Canizes B, Morais H. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling. In: Computational Intelligence Applications In Smart Grid (CIASG), 2013 IEEE symposium on; 2013. p. 138–45. Wissner (b0015) 2011; 88 Tang, Wang (b0195) 2013; 17 Sousa T, Morais H, Vale Z, Faria P, Soares J. Intelligent energy resource management considering vehicle-to-grid: a simulated annealing approach. IEEE Transaction on Smart Grid, Special Issue on Transportation Electrification and Vehicle-to-Grid Applications; 2012. Saber, Venayagamoorthy (b0145) 2012; 6 Motevasel, Seifi, Niknam (b0110) 2013; 51 Joorabian, Afzalan (b0200) 2014; 14 Honarmand, Zakariazadeh, Jadid (b0090) 2014; 86 Miranda V. Evolutionary algorithms with particle swarm movements. In: Intelligent systems application to power systems, 2005 proceedings of the 13th international conference on; 2005. p. 6–21. Osorio, Rodrigues, Lujano-Rojas, Matias, Catalao (b0070) 2015; 154 Jian-hua Z. BYD EV charging challenges solutions. In: Power Electronics Systems and Applications (PESA), 2011 4th international conference on: IEEE; 2011. p. 1–4. Soares, Silva, Sousa, Vale, Morais (b0250) 2012; 42 Chaouachi, Kamel, Andoulsi, Nagasaka (b0120) 2013; 60 AlRashidi, El-Hawary (b0185) 2009; 13 Korkas, Baldi, Michailidis, Kosmatopoulos (b0100) 2015; 149 MathWorks. MATLAB – The language of technical computing. Soares, Sousa, Morais, Vale, Canizes, Silva (b0045) 2013; 13 Soares J, Morais H, Vale Z, IEEE. Particle swarm optimization based approaches to vehicle-to-grid scheduling. In: 2012 IEEE power and energy society general meeting; 2012. Arif, Javed, Arshad (b0135) 2014; 7 Sousa, Morais, Soares, Vale (b0025) 2012; 96 Zakariazadeh, Jadid, Siano (b0085) 2015; 89 Thukaram, Banda, Jerome (b0225) 1999; 50 Aghajani, Shayanfar, Shayeghi (b0125) 2015; 106 Michalewicz Z. A survey of constraint handling techniques in evolutionary computation methods. In: Evolutionary programming IV: proceedings of the fourth annual conference on evolutionary programming; 1995. p. 135–55. TOMLAB. TOMLAB optimization; 2015. Morais, Castanheira, Vale (b0040) 2006; 1 Soares (10.1016/j.apenergy.2015.10.181_b0250) 2012; 42 Zakariazadeh (10.1016/j.apenergy.2015.10.181_b0085) 2015; 89 Pavić (10.1016/j.apenergy.2015.10.181_b0075) 2015; 157 Chaouachi (10.1016/j.apenergy.2015.10.181_b0120) 2013; 60 Li (10.1016/j.apenergy.2015.10.181_b0175) 2008; 23 10.1016/j.apenergy.2015.10.181_b0255 10.1016/j.apenergy.2015.10.181_b0055 Honarmand (10.1016/j.apenergy.2015.10.181_b0090) 2014; 86 Arif (10.1016/j.apenergy.2015.10.181_b0135) 2014; 7 Sousa (10.1016/j.apenergy.2015.10.181_b0025) 2012; 96 Joorabian (10.1016/j.apenergy.2015.10.181_b0200) 2014; 14 Dufo-Lopez (10.1016/j.apenergy.2015.10.181_b0235) 2011; 88 Ali (10.1016/j.apenergy.2015.10.181_b0210) 2013; 13 Motevasel (10.1016/j.apenergy.2015.10.181_b0110) 2013; 51 Canizes (10.1016/j.apenergy.2015.10.181_b0170) 2012; 45 10.1016/j.apenergy.2015.10.181_b0060 Canizes (10.1016/j.apenergy.2015.10.181_b0155) 2013 Soares (10.1016/j.apenergy.2015.10.181_b0160) 2013 Saber (10.1016/j.apenergy.2015.10.181_b0145) 2012; 6 Coello Coello (10.1016/j.apenergy.2015.10.181_b0215) 2007 Su (10.1016/j.apenergy.2015.10.181_b0095) 2014; 5 Motevasel (10.1016/j.apenergy.2015.10.181_b0130) 2014; 83 10.1016/j.apenergy.2015.10.181_b0265 Blumsack (10.1016/j.apenergy.2015.10.181_b0010) 2012; 37 10.1016/j.apenergy.2015.10.181_b0140 10.1016/j.apenergy.2015.10.181_b0065 Morais (10.1016/j.apenergy.2015.10.181_b0040) 2006; 1 Nagi (10.1016/j.apenergy.2015.10.181_b0150) 2011; 11 Thukaram (10.1016/j.apenergy.2015.10.181_b0225) 1999; 50 Soares (10.1016/j.apenergy.2015.10.181_b0260) 2012; 5 10.1016/j.apenergy.2015.10.181_b0270 10.1016/j.apenergy.2015.10.181_b0190 Soares (10.1016/j.apenergy.2015.10.181_b0045) 2013; 13 AlRashidi (10.1016/j.apenergy.2015.10.181_b0185) 2009; 13 10.1016/j.apenergy.2015.10.181_b0035 Bernal-Agustin (10.1016/j.apenergy.2015.10.181_b0220) 2009; 79 10.1016/j.apenergy.2015.10.181_b0230 10.1016/j.apenergy.2015.10.181_b0030 Crnko (10.1016/j.apenergy.2015.10.181_b0165) 2012 Wissner (10.1016/j.apenergy.2015.10.181_b0015) 2011; 88 Alanne (10.1016/j.apenergy.2015.10.181_b0020) 2006; 10 Tang (10.1016/j.apenergy.2015.10.181_b0195) 2013; 17 Aghajani (10.1016/j.apenergy.2015.10.181_b0125) 2015; 106 Chen (10.1016/j.apenergy.2015.10.181_b0080) 2011; 5 Aghaei (10.1016/j.apenergy.2015.10.181_b0115) 2013; 55 Korkas (10.1016/j.apenergy.2015.10.181_b0100) 2015; 149 Niknam (10.1016/j.apenergy.2015.10.181_b0105) 2012; 99 10.1016/j.apenergy.2015.10.181_b0245 Osorio (10.1016/j.apenergy.2015.10.181_b0070) 2015; 154 10.1016/j.apenergy.2015.10.181_b0240 Poli (10.1016/j.apenergy.2015.10.181_b0180) 2008; 2008 10.1016/j.apenergy.2015.10.181_b0205 10.1016/j.apenergy.2015.10.181_b0005 Fotouhi Ghazvini (10.1016/j.apenergy.2015.10.181_b0050) 2012; 96 |
| References_xml | – volume: 42 start-page: 466 year: 2012 end-page: 476 ident: b0250 article-title: Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization publication-title: Energy – volume: 96 start-page: 183 year: 2012 end-page: 193 ident: b0025 article-title: Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints publication-title: Appl Energy – volume: 13 start-page: 4264 year: 2013 end-page: 4280 ident: b0045 article-title: Application-specific modified particle swarm optimization for energy resource scheduling considering vehicle-to-grid publication-title: Appl Soft Comput – year: 2013 ident: b0160 article-title: Decision support tool for virtual power players: hybrid particle swarm optimization applied to day-ahead vehicle-to-grid scheduling – volume: 106 start-page: 308 year: 2015 end-page: 321 ident: b0125 article-title: Presenting a multi-objective generation scheduling model for pricing demand response rate in micro-grid energy management publication-title: Energy Convers Manag – volume: 13 start-page: 3903 year: 2013 end-page: 3921 ident: b0210 article-title: Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks publication-title: Appl Soft Comput – reference: MathWorks. MATLAB – The language of technical computing. – volume: 2008 start-page: 1 year: 2008 end-page: 10 ident: b0180 article-title: Analysis of the publications on the applications of particle swarm optimisation publication-title: J Artif Evol App – volume: 51 start-page: 123 year: 2013 end-page: 136 ident: b0110 article-title: Multi-objective energy management of CHP (combined heat and power)-based micro-grid publication-title: Energy – reference: TOMLAB. TOMLAB optimization; 2015. – volume: 99 start-page: 455 year: 2012 end-page: 470 ident: b0105 article-title: An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation publication-title: Appl Energy – reference: Rahwan T, Jennings N. Coalition structure generation: dynamic programming meets anytime optimisation. In: Proc 23rd conference on AI (AAAI); 2008. p. 156–61. – volume: 14 start-page: 623 year: 2014 end-page: 633 ident: b0200 article-title: Optimal power flow under both normal and contingent operation conditions using the hybrid fuzzy particle swarm optimisation and Nelder–Mead algorithm (HFPSO-NM) publication-title: Appl Soft Comput – volume: 6 start-page: 103 year: 2012 end-page: 109 ident: b0145 article-title: Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles publication-title: IEEE Syst J – year: 2013 ident: b0155 article-title: DC Fuzzy multicriteria approach to increase the probability of delivering power in distribution networks – volume: 149 start-page: 194 year: 2015 end-page: 203 ident: b0100 article-title: Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule publication-title: Appl Energy – volume: 60 start-page: 1688 year: 2013 end-page: 1699 ident: b0120 article-title: Multiobjective intelligent energy management for a microgrid publication-title: IEEE Trans Ind Electron – volume: 11 start-page: 4773 year: 2011 end-page: 4788 ident: b0150 article-title: A computational intelligence scheme for the prediction of the daily peak load publication-title: Appl Soft Comput – year: 2007 ident: b0215 article-title: Evolutionary algorithms for solving multi-objective problems – volume: 37 start-page: 61 year: 2012 end-page: 68 ident: b0010 article-title: Ready or not, here comes the smart grid! publication-title: Energy – volume: 83 start-page: 58 year: 2014 end-page: 72 ident: b0130 article-title: Expert energy management of a micro-grid considering wind energy uncertainty publication-title: Energy Convers Manage – volume: 23 start-page: 336 year: 2008 end-page: 343 ident: b0175 article-title: Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation publication-title: IEEE Tans Power Syst – volume: 157 start-page: 60 year: 2015 end-page: 74 ident: b0075 article-title: Value of flexible electric vehicles in providing spinning reserve services publication-title: Appl Energy – volume: 5 start-page: 1881 year: 2012 end-page: 1899 ident: b0260 article-title: Electric vehicle scenario simulator tool for smart grid operators publication-title: Energies – reference: Ishibuchi H, Tsukamoto N, Nojima Y. Evolutionary many-objective optimization: a short review. 2008 IEEE Congress on Evolutionary Computation, vols. 1–8; 2008. p. 2419–26. – reference: Miranda V. Evolutionary algorithms with particle swarm movements. In: Intelligent systems application to power systems, 2005 proceedings of the 13th international conference on; 2005. p. 6–21. – volume: 10 start-page: 539 year: 2006 end-page: 558 ident: b0020 article-title: Distributed energy generation and sustainable development publication-title: Renew Sustain Energy Rev – reference: Soares J, Morais H, Vale Z, IEEE. Particle swarm optimization based approaches to vehicle-to-grid scheduling. In: 2012 IEEE power and energy society general meeting; 2012. – volume: 55 start-page: 1044 year: 2013 end-page: 1054 ident: b0115 article-title: Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems) publication-title: Energy – reference: Electricity Advisory Committee. Keeping the Lights On in a New World. 2009. – volume: 7 start-page: 271 year: 2014 end-page: 284 ident: b0135 article-title: Integrating renewables economic dispatch with demand side management in micro-grids: a genetic algorithm-based approach publication-title: Energy Efficiency – volume: 96 start-page: 281 year: 2012 end-page: 291 ident: b0050 article-title: Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems publication-title: Appl Energy – reference: Jian-hua Z. BYD EV charging challenges solutions. In: Power Electronics Systems and Applications (PESA), 2011 4th international conference on: IEEE; 2011. p. 1–4. – volume: 50 start-page: 227 year: 1999 end-page: 236 ident: b0225 article-title: A robust three phase power flow algorithm for radial distribution systems publication-title: Electr Pow Syst Res – volume: 5 start-page: 1876 year: 2014 end-page: 1883 ident: b0095 article-title: Stochastic energy scheduling in microgrids with intermittent renewable energy resources publication-title: IEEE Trans Smart Grid – volume: 88 start-page: 4033 year: 2011 end-page: 4041 ident: b0235 article-title: Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage publication-title: Appl Energy – reference: Sivasubramani S. Economic operation of power systems using hybrid optimization techniques [PhD]. Indian Institute of Technology Madras; 2011. – reference: Soares J, Vale Z, Canizes B, Morais H. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling. In: Computational Intelligence Applications In Smart Grid (CIASG), 2013 IEEE symposium on; 2013. p. 138–45. – year: 2012 ident: b0165 article-title: Life safety loads depend on reliable power systems – volume: 89 start-page: 99 year: 2015 end-page: 110 ident: b0085 article-title: Integrated operation of electric vehicles and renewable generation in a smart distribution system publication-title: Energy Conv Manag – reference: Soares J, Sousa T, Morais H, Vale Z, Faria P. An optimal scheduling problem in distribution networks considering V2G. In: Computational Intelligence Applications In Smart Grid (CIASG), 2011 IEEE Symposium on; 2011. p. 1–8. – reference: NIST. Smart grid: a beginner’s guide. National Institute of Standards and Technology (NIST); 2011. p. 7. – volume: 1 start-page: 1358 year: 2006 end-page: 1365 ident: b0040 article-title: Producers remuneration by virtual power producers publication-title: WSEAS Transact Power Syst – volume: 5 start-page: 258 year: 2011 end-page: 267 ident: b0080 article-title: Smart energy management system for optimal microgrid economic operation publication-title: IET Renew Power Gener – volume: 154 start-page: 459 year: 2015 end-page: 470 ident: b0070 article-title: New control strategy for the weekly scheduling of insular power systems with a battery energy storage system publication-title: Appl Energy – reference: Sousa T, Morais H, Vale Z, Faria P, Soares J. Intelligent energy resource management considering vehicle-to-grid: a simulated annealing approach. IEEE Transaction on Smart Grid, Special Issue on Transportation Electrification and Vehicle-to-Grid Applications; 2012. – volume: 88 start-page: 2509 year: 2011 end-page: 2518 ident: b0015 article-title: The smart grid – a saucerful of secrets? publication-title: Appl Energy – reference: Zervos A, Lins C, Muth J. RE-thinking 2050: a 100% renewable energy vision for the European Union: EREC; 2010. – volume: 79 start-page: 170 year: 2009 end-page: 180 ident: b0220 article-title: Multi-objective design and control of hybrid systems minimizing costs and unmet load publication-title: Electr Pow Syst Res – volume: 86 start-page: 745 year: 2014 end-page: 755 ident: b0090 article-title: Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid publication-title: Energy Conv Manag – volume: 13 start-page: 913 year: 2009 end-page: 918 ident: b0185 article-title: A survey of particle swarm optimization applications in electric power systems publication-title: Evolut Comput, IEEE Trans – volume: 45 start-page: 1007 year: 2012 end-page: 1017 ident: b0170 article-title: Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems publication-title: Energy – volume: 17 start-page: 20 year: 2013 end-page: 45 ident: b0195 article-title: A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems publication-title: Evolut Comput, IEEE Trans – reference: Michalewicz Z. A survey of constraint handling techniques in evolutionary computation methods. In: Evolutionary programming IV: proceedings of the fourth annual conference on evolutionary programming; 1995. p. 135–55. – volume: 17 start-page: 20 year: 2013 ident: 10.1016/j.apenergy.2015.10.181_b0195 article-title: A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems publication-title: Evolut Comput, IEEE Trans doi: 10.1109/TEVC.2012.2185702 – ident: 10.1016/j.apenergy.2015.10.181_b0055 doi: 10.1109/PESGM.2012.6344637 – volume: 51 start-page: 123 year: 2013 ident: 10.1016/j.apenergy.2015.10.181_b0110 article-title: Multi-objective energy management of CHP (combined heat and power)-based micro-grid publication-title: Energy doi: 10.1016/j.energy.2012.11.035 – ident: 10.1016/j.apenergy.2015.10.181_b0245 doi: 10.7551/mitpress/2887.003.0018 – ident: 10.1016/j.apenergy.2015.10.181_b0270 – volume: 154 start-page: 459 year: 2015 ident: 10.1016/j.apenergy.2015.10.181_b0070 article-title: New control strategy for the weekly scheduling of insular power systems with a battery energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.048 – volume: 89 start-page: 99 year: 2015 ident: 10.1016/j.apenergy.2015.10.181_b0085 article-title: Integrated operation of electric vehicles and renewable generation in a smart distribution system publication-title: Energy Conv Manag doi: 10.1016/j.enconman.2014.09.062 – volume: 23 start-page: 336 year: 2008 ident: 10.1016/j.apenergy.2015.10.181_b0175 article-title: Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation publication-title: IEEE Tans Power Syst doi: 10.1109/TPWRS.2008.919201 – volume: 11 start-page: 4773 year: 2011 ident: 10.1016/j.apenergy.2015.10.181_b0150 article-title: A computational intelligence scheme for the prediction of the daily peak load publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.07.005 – volume: 88 start-page: 2509 year: 2011 ident: 10.1016/j.apenergy.2015.10.181_b0015 article-title: The smart grid – a saucerful of secrets? publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.01.042 – volume: 45 start-page: 1007 year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0170 article-title: Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems publication-title: Energy doi: 10.1016/j.energy.2012.06.049 – year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0165 – volume: 1 start-page: 1358 year: 2006 ident: 10.1016/j.apenergy.2015.10.181_b0040 article-title: Producers remuneration by virtual power producers publication-title: WSEAS Transact Power Syst – year: 2013 ident: 10.1016/j.apenergy.2015.10.181_b0155 – volume: 60 start-page: 1688 year: 2013 ident: 10.1016/j.apenergy.2015.10.181_b0120 article-title: Multiobjective intelligent energy management for a microgrid publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2012.2188873 – volume: 5 start-page: 258 year: 2011 ident: 10.1016/j.apenergy.2015.10.181_b0080 article-title: Smart energy management system for optimal microgrid economic operation publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2010.0052 – volume: 157 start-page: 60 year: 2015 ident: 10.1016/j.apenergy.2015.10.181_b0075 article-title: Value of flexible electric vehicles in providing spinning reserve services publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.070 – ident: 10.1016/j.apenergy.2015.10.181_b0205 doi: 10.1109/CEC.2008.4631121 – year: 2013 ident: 10.1016/j.apenergy.2015.10.181_b0160 – ident: 10.1016/j.apenergy.2015.10.181_b0240 doi: 10.1109/ISAP.2005.1599236 – ident: 10.1016/j.apenergy.2015.10.181_b0030 – volume: 13 start-page: 3903 year: 2013 ident: 10.1016/j.apenergy.2015.10.181_b0210 article-title: Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.04.015 – volume: 37 start-page: 61 year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0010 article-title: Ready or not, here comes the smart grid! publication-title: Energy doi: 10.1016/j.energy.2011.07.054 – volume: 106 start-page: 308 year: 2015 ident: 10.1016/j.apenergy.2015.10.181_b0125 article-title: Presenting a multi-objective generation scheduling model for pricing demand response rate in micro-grid energy management publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.08.059 – volume: 86 start-page: 745 year: 2014 ident: 10.1016/j.apenergy.2015.10.181_b0090 article-title: Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid publication-title: Energy Conv Manag doi: 10.1016/j.enconman.2014.06.044 – volume: 99 start-page: 455 year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0105 article-title: An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.04.017 – volume: 13 start-page: 913 year: 2009 ident: 10.1016/j.apenergy.2015.10.181_b0185 article-title: A survey of particle swarm optimization applications in electric power systems publication-title: Evolut Comput, IEEE Trans doi: 10.1109/TEVC.2006.880326 – volume: 13 start-page: 4264 year: 2013 ident: 10.1016/j.apenergy.2015.10.181_b0045 article-title: Application-specific modified particle swarm optimization for energy resource scheduling considering vehicle-to-grid publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.07.003 – volume: 96 start-page: 281 year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0050 article-title: Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.11.015 – volume: 88 start-page: 4033 year: 2011 ident: 10.1016/j.apenergy.2015.10.181_b0235 article-title: Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.04.019 – ident: 10.1016/j.apenergy.2015.10.181_b0230 – ident: 10.1016/j.apenergy.2015.10.181_b0035 – volume: 10 start-page: 539 year: 2006 ident: 10.1016/j.apenergy.2015.10.181_b0020 article-title: Distributed energy generation and sustainable development publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2004.11.004 – volume: 50 start-page: 227 year: 1999 ident: 10.1016/j.apenergy.2015.10.181_b0225 article-title: A robust three phase power flow algorithm for radial distribution systems publication-title: Electr Pow Syst Res doi: 10.1016/S0378-7796(98)00150-3 – volume: 83 start-page: 58 year: 2014 ident: 10.1016/j.apenergy.2015.10.181_b0130 article-title: Expert energy management of a micro-grid considering wind energy uncertainty publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.03.022 – volume: 2008 start-page: 1 year: 2008 ident: 10.1016/j.apenergy.2015.10.181_b0180 article-title: Analysis of the publications on the applications of particle swarm optimisation publication-title: J Artif Evol App – ident: 10.1016/j.apenergy.2015.10.181_b0065 doi: 10.1109/PESA.2011.5982911 – ident: 10.1016/j.apenergy.2015.10.181_b0255 doi: 10.1109/PESGM.2012.6345358 – ident: 10.1016/j.apenergy.2015.10.181_b0060 doi: 10.1109/CIASG.2011.5953342 – volume: 42 start-page: 466 year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0250 article-title: Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization publication-title: Energy doi: 10.1016/j.energy.2012.03.022 – volume: 5 start-page: 1881 year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0260 article-title: Electric vehicle scenario simulator tool for smart grid operators publication-title: Energies doi: 10.3390/en5061881 – year: 2007 ident: 10.1016/j.apenergy.2015.10.181_b0215 – volume: 7 start-page: 271 year: 2014 ident: 10.1016/j.apenergy.2015.10.181_b0135 article-title: Integrating renewables economic dispatch with demand side management in micro-grids: a genetic algorithm-based approach publication-title: Energy Efficiency doi: 10.1007/s12053-013-9223-9 – ident: 10.1016/j.apenergy.2015.10.181_b0265 – ident: 10.1016/j.apenergy.2015.10.181_b0140 doi: 10.1109/CIASG.2013.6611510 – volume: 79 start-page: 170 year: 2009 ident: 10.1016/j.apenergy.2015.10.181_b0220 article-title: Multi-objective design and control of hybrid systems minimizing costs and unmet load publication-title: Electr Pow Syst Res doi: 10.1016/j.epsr.2008.05.011 – volume: 149 start-page: 194 year: 2015 ident: 10.1016/j.apenergy.2015.10.181_b0100 article-title: Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.145 – volume: 14 start-page: 623 issue: Part C year: 2014 ident: 10.1016/j.apenergy.2015.10.181_b0200 article-title: Optimal power flow under both normal and contingent operation conditions using the hybrid fuzzy particle swarm optimisation and Nelder–Mead algorithm (HFPSO-NM) publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.09.015 – volume: 96 start-page: 183 year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0025 article-title: Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.01.053 – volume: 55 start-page: 1044 year: 2013 ident: 10.1016/j.apenergy.2015.10.181_b0115 article-title: Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems) publication-title: Energy doi: 10.1016/j.energy.2013.04.048 – ident: 10.1016/j.apenergy.2015.10.181_b0005 – volume: 5 start-page: 1876 year: 2014 ident: 10.1016/j.apenergy.2015.10.181_b0095 article-title: Stochastic energy scheduling in microgrids with intermittent renewable energy resources publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2013.2280645 – ident: 10.1016/j.apenergy.2015.10.181_b0190 – volume: 6 start-page: 103 year: 2012 ident: 10.1016/j.apenergy.2015.10.181_b0145 article-title: Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles publication-title: IEEE Syst J doi: 10.1109/JSYST.2011.2163012 |
| SSID | ssj0002120 |
| Score | 2.4433024 |
| Snippet | •A multi-objective framework for smart grid management considering minimum reserve.•The min. reserve is incorporated in the model in addition to the cost... In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1074 |
| SubjectTerms | algorithms case studies computer techniques Electric vehicles energy linear programming Multi-objective optimization Parallel computing Pareto front Particle swarm optimization Smart grid vehicles (equipment) |
| Title | A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads |
| URI | https://dx.doi.org/10.1016/j.apenergy.2015.10.181 https://www.proquest.com/docview/2000312729 |
| Volume | 162 |
| WOSCitedRecordID | wos000367631000093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5FLQc4IChUlE2DxM1y8Dq2jwGF7VB6KCjiYj17bOLIsaM4iQoS_42fxnuesZOGpfTAxYomM-Nx3pe3-S2MPZeAhrSMEhNlnYcGChqsEUhhAi5AZc6D3JFts4ng9DScTKKzweBHlwuzKYOqCi8uosV_JTWOIbEpdfYa5O43xQH8jETHK5Idr_9E-JEKEjTrZKaYmep208cTSvhqArJgaWQq72-pPfgGGrooeEodBw1GM8ftjS_LQkeoU2ljY4GrdKldmtVQAHx7l7IGlTTcF7XVCq66Te_KqSnjSTnu27f0br2VhKt6PS2MN1P4tinaXlPIc6Ywn-NhR2XRzfukY6A_F6teqEhiT-slGB9KPEzRdk8yzoYvh7tuDbt1a6jEzi6dyxImmXeXWLXm3IrZUizpjuC2LdUg8BehoPwTsyEs1ANTQJ8_pG9Ut5jLVbj3pGMfs9iFw83ibp-Y9olpnHL_D53Aj5CvHo7ejSfve23A0aVBu8fZyVL__Yn-pCDtqQqt_nN-h93WhgsfKcDdZYOsOmK3dspZHrHj8TZrEqdqsdHcY99HfA-TvMUkR0xyxCTvMcnVSXmHSb7FJK9zDrzFJCdMcsIkJ0zyHUzSrB6TvMXkffbx9fj81VtT9_0wU88VKxOtXDvIfNeDzMldZBmJ62SB78kAfCsVuUgiKrMYWQIk5CFkwpKJA4mPujLYInWP2UFVV9kDxr0od8MwtaSdC8-3cHoqLDdEvV9kgR2kJ8zvfuw41UXxqTdLGf-d3CfsRb9uocrCXLki6mgZa-VWKa0xwvTKtc864sfI_emVHlRZvW6oiSxKZQct5IfXPtEjdnP7x3vMDlbLdfaE3Ug3q6JZPtU4_gk1LtoS |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+model+for+the+day-ahead+energy+resource+scheduling+of+a+smart+grid+with+high+penetration+of+sensitive+loads&rft.jtitle=Applied+energy&rft.au=Soares%2C+Jo%C3%A3o&rft.au=Fotouhi+Ghazvini%2C+Mohammad+Ali&rft.au=Vale%2C+Zita&rft.au=de+Moura+Oliveira%2C+P.B.&rft.date=2016-01-15&rft.issn=0306-2619&rft.volume=162&rft.spage=1074&rft.epage=1088&rft_id=info:doi/10.1016%2Fj.apenergy.2015.10.181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2015_10_181 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |