A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads

•A multi-objective framework for smart grid management considering minimum reserve.•The min. reserve is incorporated in the model in addition to the cost minimization.•The day-ahead model for VPP aims to increase reliability and reduce uncertainty.•Two-stage weighted sum approach using distributed a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 162; s. 1074 - 1088
Hlavní autoři: Soares, João, Fotouhi Ghazvini, Mohammad Ali, Vale, Zita, de Moura Oliveira, P.B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.01.2016
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A multi-objective framework for smart grid management considering minimum reserve.•The min. reserve is incorporated in the model in addition to the cost minimization.•The day-ahead model for VPP aims to increase reliability and reduce uncertainty.•Two-stage weighted sum approach using distributed and parallel computing. In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power Player (VPP) manages the day-ahead energy resource scheduling in the smart grid, considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G), while maintaining a highly reliable power for the sensitive loads. This work considers high penetration of sensitive loads, i.e. loads such as some industrial processes that require high power quality, high reliability and few interruptions. The weighted-sum approach is used with the distributed and parallel computing techniques to efficiently solve the multi-objective problem. A two-stage optimization method is proposed using a Particle Swarm Optimization (PSO) and a deterministic technique based on Mixed-Integer Linear Programming (MILP). A realistic mathematical formulation considering the electric network constraints for the day-ahead scheduling model is described. The execution time of the large-scale problem can be reduced by using a parallel and distributed computing platform. A Pareto front algorithm is applied to determine the set of non-dominated solutions. The maximization of the minimum available reserve is incorporated in the mathematical formulation in addition to the cost minimization, to take into account the reliability requirements of sensitive and vulnerable loads. A case study with a 180-bus distribution network and a fleet of 1000 gridable Electric Vehicles (EVs) is used to illustrate the performance of the proposed method. The execution time to solve the optimization problem is reduced by using distributed computing.
AbstractList In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power Player (VPP) manages the day-ahead energy resource scheduling in the smart grid, considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G), while maintaining a highly reliable power for the sensitive loads. This work considers high penetration of sensitive loads, i.e. loads such as some industrial processes that require high power quality, high reliability and few interruptions. The weighted-sum approach is used with the distributed and parallel computing techniques to efficiently solve the multi-objective problem. A two-stage optimization method is proposed using a Particle Swarm Optimization (PSO) and a deterministic technique based on Mixed-Integer Linear Programming (MILP). A realistic mathematical formulation considering the electric network constraints for the day-ahead scheduling model is described. The execution time of the large-scale problem can be reduced by using a parallel and distributed computing platform. A Pareto front algorithm is applied to determine the set of non-dominated solutions. The maximization of the minimum available reserve is incorporated in the mathematical formulation in addition to the cost minimization, to take into account the reliability requirements of sensitive and vulnerable loads. A case study with a 180-bus distribution network and a fleet of 1000 gridable Electric Vehicles (EVs) is used to illustrate the performance of the proposed method. The execution time to solve the optimization problem is reduced by using distributed computing.
•A multi-objective framework for smart grid management considering minimum reserve.•The min. reserve is incorporated in the model in addition to the cost minimization.•The day-ahead model for VPP aims to increase reliability and reduce uncertainty.•Two-stage weighted sum approach using distributed and parallel computing. In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power Player (VPP) manages the day-ahead energy resource scheduling in the smart grid, considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G), while maintaining a highly reliable power for the sensitive loads. This work considers high penetration of sensitive loads, i.e. loads such as some industrial processes that require high power quality, high reliability and few interruptions. The weighted-sum approach is used with the distributed and parallel computing techniques to efficiently solve the multi-objective problem. A two-stage optimization method is proposed using a Particle Swarm Optimization (PSO) and a deterministic technique based on Mixed-Integer Linear Programming (MILP). A realistic mathematical formulation considering the electric network constraints for the day-ahead scheduling model is described. The execution time of the large-scale problem can be reduced by using a parallel and distributed computing platform. A Pareto front algorithm is applied to determine the set of non-dominated solutions. The maximization of the minimum available reserve is incorporated in the mathematical formulation in addition to the cost minimization, to take into account the reliability requirements of sensitive and vulnerable loads. A case study with a 180-bus distribution network and a fleet of 1000 gridable Electric Vehicles (EVs) is used to illustrate the performance of the proposed method. The execution time to solve the optimization problem is reduced by using distributed computing.
Author de Moura Oliveira, P.B.
Vale, Zita
Soares, João
Fotouhi Ghazvini, Mohammad Ali
Author_xml – sequence: 1
  givenname: João
  orcidid: 0000-0002-4172-4502
  surname: Soares
  fullname: Soares, João
  email: joaps@isep.ipp.pt
  organization: GECAD – Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (IPP), 4200-072 Porto, Portugal
– sequence: 2
  givenname: Mohammad Ali
  surname: Fotouhi Ghazvini
  fullname: Fotouhi Ghazvini, Mohammad Ali
  organization: GECAD – Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (IPP), 4200-072 Porto, Portugal
– sequence: 3
  givenname: Zita
  surname: Vale
  fullname: Vale, Zita
  organization: GECAD – Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto (IPP), 4200-072 Porto, Portugal
– sequence: 4
  givenname: P.B.
  surname: de Moura Oliveira
  fullname: de Moura Oliveira, P.B.
  organization: INESC TEC – INESC Technology and Science, UTAD University, 5001-801 Vila Real, Portugal
BookMark eNqFkT9PwzAQxS0EEqXwFZBHlhTbaZxEYqBC_JMqscBsXexL4yqNi-2AOvDdSVpYWJhOOr337u53Z-S4cx0ScsnZjDMur9cz2GKHfrWbCcaz2dgv-BGZ8CIXScl5cUwmLGUyEZKXp-QshDVjTHDBJuRrQTd9G23iqjXqaD-QbpzBltbO09ggNbBLoEEw9DCDegyu9xpp0A2avrXdirqaAg0b8JGuvDX008aGNnbV0HGz6CFa142qgF2w-ymtAxPOyUkNbcCLnzolbw_3r3dPyfLl8flusUz0PJUxEVnGc8zSOaCoU8zzKhWYZ3OTQ8a0rGVVZkzOSybBQF0ASmYqAVXGRAFc6nRKrg65W-_eewxRbWzQ2LbQoeuDEgOPlItclIP05iDV3oXgsVbaxv3-wxm2VZypkbpaq1_qaqS-7xd8sMs_9q23A5jd_8bbgxEHDh8WvQraYqfRWD88Rhln_4v4BlOCpRQ
CitedBy_id crossref_primary_10_3390_electricity3010005
crossref_primary_10_1016_j_apenergy_2016_10_022
crossref_primary_10_3390_su141912486
crossref_primary_10_1016_j_apenergy_2018_12_078
crossref_primary_10_1016_j_apenergy_2016_05_074
crossref_primary_10_1016_j_apenergy_2017_03_025
crossref_primary_10_1002_etep_2238
crossref_primary_10_3390_en11040894
crossref_primary_10_3390_en9100807
crossref_primary_10_1109_TSG_2017_2655461
crossref_primary_10_1016_j_apenergy_2018_06_153
crossref_primary_10_1016_j_rser_2019_05_059
crossref_primary_10_3390_en15228525
crossref_primary_10_1016_j_energy_2019_07_145
crossref_primary_10_1109_TIA_2017_2723339
crossref_primary_10_3390_a14100275
crossref_primary_10_1016_j_jclepro_2018_03_254
crossref_primary_10_3390_en11020384
crossref_primary_10_3390_a17090416
crossref_primary_10_1016_j_apenergy_2017_12_119
crossref_primary_10_1016_j_apenergy_2019_01_227
crossref_primary_10_1016_j_apenergy_2023_121742
crossref_primary_10_1088_1755_1315_168_1_012015
crossref_primary_10_3390_en13061507
crossref_primary_10_1016_j_apenergy_2018_02_084
crossref_primary_10_1016_j_enbuild_2019_04_023
crossref_primary_10_1049_iet_est_2018_5023
crossref_primary_10_3390_en13174541
crossref_primary_10_1016_j_jclepro_2019_119106
crossref_primary_10_1016_j_epsr_2016_10_056
crossref_primary_10_1016_j_seta_2022_102066
crossref_primary_10_1016_j_est_2025_115496
crossref_primary_10_1109_ACCESS_2021_3112157
crossref_primary_10_1109_TPWRS_2018_2861325
crossref_primary_10_1016_j_apenergy_2016_12_127
crossref_primary_10_3389_fenrg_2021_739527
crossref_primary_10_1016_j_rser_2016_12_063
crossref_primary_10_3390_wevj14110303
crossref_primary_10_1016_j_apenergy_2017_02_051
crossref_primary_10_1002_er_6207
crossref_primary_10_1016_j_egyr_2022_11_195
crossref_primary_10_1016_j_apenergy_2016_07_078
crossref_primary_10_1016_j_rser_2023_113541
crossref_primary_10_1016_j_apenergy_2019_05_027
crossref_primary_10_3390_su16062491
crossref_primary_10_3390_pr7080499
crossref_primary_10_1016_j_apenergy_2016_03_020
crossref_primary_10_1016_j_ijepes_2024_110410
crossref_primary_10_1007_s40565_019_0508_7
crossref_primary_10_1016_j_ijepes_2021_107670
crossref_primary_10_1016_j_est_2021_102245
Cites_doi 10.1109/TEVC.2012.2185702
10.1109/PESGM.2012.6344637
10.1016/j.energy.2012.11.035
10.7551/mitpress/2887.003.0018
10.1016/j.apenergy.2015.05.048
10.1016/j.enconman.2014.09.062
10.1109/TPWRS.2008.919201
10.1016/j.asoc.2011.07.005
10.1016/j.apenergy.2011.01.042
10.1016/j.energy.2012.06.049
10.1109/TIE.2012.2188873
10.1049/iet-rpg.2010.0052
10.1016/j.apenergy.2015.07.070
10.1109/CEC.2008.4631121
10.1109/ISAP.2005.1599236
10.1016/j.asoc.2013.04.015
10.1016/j.energy.2011.07.054
10.1016/j.enconman.2015.08.059
10.1016/j.enconman.2014.06.044
10.1016/j.apenergy.2012.04.017
10.1109/TEVC.2006.880326
10.1016/j.asoc.2013.07.003
10.1016/j.apenergy.2011.11.015
10.1016/j.apenergy.2011.04.019
10.1016/j.rser.2004.11.004
10.1016/S0378-7796(98)00150-3
10.1016/j.enconman.2014.03.022
10.1109/PESA.2011.5982911
10.1109/PESGM.2012.6345358
10.1109/CIASG.2011.5953342
10.1016/j.energy.2012.03.022
10.3390/en5061881
10.1007/s12053-013-9223-9
10.1109/CIASG.2013.6611510
10.1016/j.epsr.2008.05.011
10.1016/j.apenergy.2015.01.145
10.1016/j.asoc.2013.09.015
10.1016/j.apenergy.2012.01.053
10.1016/j.energy.2013.04.048
10.1109/TSG.2013.2280645
10.1109/JSYST.2011.2163012
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2015.10.181
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 1088
ExternalDocumentID 10_1016_j_apenergy_2015_10_181
S0306261915014312
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c436t-25517e534ae2f3e77b32e754d7a50c6f6b95064906adaf8ae60db2ab5028a16c3
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000367631000093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 01:48:29 EDT 2025
Sat Nov 29 07:19:50 EST 2025
Tue Nov 18 21:30:45 EST 2025
Fri Feb 23 02:32:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pareto front
Electric vehicles
Parallel computing
Multi-objective optimization
Particle swarm optimization
Smart grid
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c436t-25517e534ae2f3e77b32e754d7a50c6f6b95064906adaf8ae60db2ab5028a16c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4172-4502
OpenAccessLink http://hdl.handle.net/10400.22/9392
PQID 2000312729
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2000312729
crossref_citationtrail_10_1016_j_apenergy_2015_10_181
crossref_primary_10_1016_j_apenergy_2015_10_181
elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_10_181
PublicationCentury 2000
PublicationDate 2016-01-15
PublicationDateYYYYMMDD 2016-01-15
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Soares, Canizes, Lobo, Vale, Morais (b0260) 2012; 5
Soares J, Sousa T, Morais H, Vale Z, Faria P. An optimal scheduling problem in distribution networks considering V2G. In: Computational Intelligence Applications In Smart Grid (CIASG), 2011 IEEE Symposium on; 2011. p. 1–8.
Rahwan T, Jennings N. Coalition structure generation: dynamic programming meets anytime optimisation. In: Proc 23rd conference on AI (AAAI); 2008. p. 156–61.
Niknam, Azizipanah-Abarghooee, Narimani (b0105) 2012; 99
Electricity Advisory Committee. Keeping the Lights On in a New World. 2009.
Fotouhi Ghazvini, Morais, Vale (b0050) 2012; 96
Pavić, Capuder, Kuzle (b0075) 2015; 157
Su, Wang, Roh (b0095) 2014; 5
Ishibuchi H, Tsukamoto N, Nojima Y. Evolutionary many-objective optimization: a short review. 2008 IEEE Congress on Evolutionary Computation, vols. 1–8; 2008. p. 2419–26.
Alanne, Saari (b0020) 2006; 10
Zervos A, Lins C, Muth J. RE-thinking 2050: a 100% renewable energy vision for the European Union: EREC; 2010.
Aghaei, Alizadeh (b0115) 2013; 55
Poli (b0180) 2008; 2008
Blumsack, Fernandez (b0010) 2012; 37
Dufo-Lopez, Bernal-Agustin, Yusta-Loyo, Dominguez-Navarro, Ramirez-Rosado, Lujano (b0235) 2011; 88
Li, Zhou, Xie, Xiong (b0175) 2008; 23
Chen, Duan, Cai, Liu, Hu (b0080) 2011; 5
Nagi, Yap, Nagi, Tiong, Ahmed (b0150) 2011; 11
Crnko (b0165) 2012
Motevasel, Seifi (b0130) 2014; 83
Canizes, Soares, Vale, Lobo (b0155) 2013
Canizes, Soares, Vale, Khodr (b0170) 2012; 45
Coello Coello, Lamont, Van Veldhuizen (b0215) 2007
Ali, Khan (b0210) 2013; 13
Bernal-Agustin, Dufo-Lopez (b0220) 2009; 79
Sivasubramani S. Economic operation of power systems using hybrid optimization techniques [PhD]. Indian Institute of Technology Madras; 2011.
Soares, Vale, Morais (b0160) 2013
NIST. Smart grid: a beginner’s guide. National Institute of Standards and Technology (NIST); 2011. p. 7.
Soares J, Vale Z, Canizes B, Morais H. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling. In: Computational Intelligence Applications In Smart Grid (CIASG), 2013 IEEE symposium on; 2013. p. 138–45.
Wissner (b0015) 2011; 88
Tang, Wang (b0195) 2013; 17
Sousa T, Morais H, Vale Z, Faria P, Soares J. Intelligent energy resource management considering vehicle-to-grid: a simulated annealing approach. IEEE Transaction on Smart Grid, Special Issue on Transportation Electrification and Vehicle-to-Grid Applications; 2012.
Saber, Venayagamoorthy (b0145) 2012; 6
Motevasel, Seifi, Niknam (b0110) 2013; 51
Joorabian, Afzalan (b0200) 2014; 14
Honarmand, Zakariazadeh, Jadid (b0090) 2014; 86
Miranda V. Evolutionary algorithms with particle swarm movements. In: Intelligent systems application to power systems, 2005 proceedings of the 13th international conference on; 2005. p. 6–21.
Osorio, Rodrigues, Lujano-Rojas, Matias, Catalao (b0070) 2015; 154
Jian-hua Z. BYD EV charging challenges solutions. In: Power Electronics Systems and Applications (PESA), 2011 4th international conference on: IEEE; 2011. p. 1–4.
Soares, Silva, Sousa, Vale, Morais (b0250) 2012; 42
Chaouachi, Kamel, Andoulsi, Nagasaka (b0120) 2013; 60
AlRashidi, El-Hawary (b0185) 2009; 13
Korkas, Baldi, Michailidis, Kosmatopoulos (b0100) 2015; 149
MathWorks. MATLAB – The language of technical computing.
Soares, Sousa, Morais, Vale, Canizes, Silva (b0045) 2013; 13
Soares J, Morais H, Vale Z, IEEE. Particle swarm optimization based approaches to vehicle-to-grid scheduling. In: 2012 IEEE power and energy society general meeting; 2012.
Arif, Javed, Arshad (b0135) 2014; 7
Sousa, Morais, Soares, Vale (b0025) 2012; 96
Zakariazadeh, Jadid, Siano (b0085) 2015; 89
Thukaram, Banda, Jerome (b0225) 1999; 50
Aghajani, Shayanfar, Shayeghi (b0125) 2015; 106
Michalewicz Z. A survey of constraint handling techniques in evolutionary computation methods. In: Evolutionary programming IV: proceedings of the fourth annual conference on evolutionary programming; 1995. p. 135–55.
TOMLAB. TOMLAB optimization; 2015.
Morais, Castanheira, Vale (b0040) 2006; 1
Soares (10.1016/j.apenergy.2015.10.181_b0250) 2012; 42
Zakariazadeh (10.1016/j.apenergy.2015.10.181_b0085) 2015; 89
Pavić (10.1016/j.apenergy.2015.10.181_b0075) 2015; 157
Chaouachi (10.1016/j.apenergy.2015.10.181_b0120) 2013; 60
Li (10.1016/j.apenergy.2015.10.181_b0175) 2008; 23
10.1016/j.apenergy.2015.10.181_b0255
10.1016/j.apenergy.2015.10.181_b0055
Honarmand (10.1016/j.apenergy.2015.10.181_b0090) 2014; 86
Arif (10.1016/j.apenergy.2015.10.181_b0135) 2014; 7
Sousa (10.1016/j.apenergy.2015.10.181_b0025) 2012; 96
Joorabian (10.1016/j.apenergy.2015.10.181_b0200) 2014; 14
Dufo-Lopez (10.1016/j.apenergy.2015.10.181_b0235) 2011; 88
Ali (10.1016/j.apenergy.2015.10.181_b0210) 2013; 13
Motevasel (10.1016/j.apenergy.2015.10.181_b0110) 2013; 51
Canizes (10.1016/j.apenergy.2015.10.181_b0170) 2012; 45
10.1016/j.apenergy.2015.10.181_b0060
Canizes (10.1016/j.apenergy.2015.10.181_b0155) 2013
Soares (10.1016/j.apenergy.2015.10.181_b0160) 2013
Saber (10.1016/j.apenergy.2015.10.181_b0145) 2012; 6
Coello Coello (10.1016/j.apenergy.2015.10.181_b0215) 2007
Su (10.1016/j.apenergy.2015.10.181_b0095) 2014; 5
Motevasel (10.1016/j.apenergy.2015.10.181_b0130) 2014; 83
10.1016/j.apenergy.2015.10.181_b0265
Blumsack (10.1016/j.apenergy.2015.10.181_b0010) 2012; 37
10.1016/j.apenergy.2015.10.181_b0140
10.1016/j.apenergy.2015.10.181_b0065
Morais (10.1016/j.apenergy.2015.10.181_b0040) 2006; 1
Nagi (10.1016/j.apenergy.2015.10.181_b0150) 2011; 11
Thukaram (10.1016/j.apenergy.2015.10.181_b0225) 1999; 50
Soares (10.1016/j.apenergy.2015.10.181_b0260) 2012; 5
10.1016/j.apenergy.2015.10.181_b0270
10.1016/j.apenergy.2015.10.181_b0190
Soares (10.1016/j.apenergy.2015.10.181_b0045) 2013; 13
AlRashidi (10.1016/j.apenergy.2015.10.181_b0185) 2009; 13
10.1016/j.apenergy.2015.10.181_b0035
Bernal-Agustin (10.1016/j.apenergy.2015.10.181_b0220) 2009; 79
10.1016/j.apenergy.2015.10.181_b0230
10.1016/j.apenergy.2015.10.181_b0030
Crnko (10.1016/j.apenergy.2015.10.181_b0165) 2012
Wissner (10.1016/j.apenergy.2015.10.181_b0015) 2011; 88
Alanne (10.1016/j.apenergy.2015.10.181_b0020) 2006; 10
Tang (10.1016/j.apenergy.2015.10.181_b0195) 2013; 17
Aghajani (10.1016/j.apenergy.2015.10.181_b0125) 2015; 106
Chen (10.1016/j.apenergy.2015.10.181_b0080) 2011; 5
Aghaei (10.1016/j.apenergy.2015.10.181_b0115) 2013; 55
Korkas (10.1016/j.apenergy.2015.10.181_b0100) 2015; 149
Niknam (10.1016/j.apenergy.2015.10.181_b0105) 2012; 99
10.1016/j.apenergy.2015.10.181_b0245
Osorio (10.1016/j.apenergy.2015.10.181_b0070) 2015; 154
10.1016/j.apenergy.2015.10.181_b0240
Poli (10.1016/j.apenergy.2015.10.181_b0180) 2008; 2008
10.1016/j.apenergy.2015.10.181_b0205
10.1016/j.apenergy.2015.10.181_b0005
Fotouhi Ghazvini (10.1016/j.apenergy.2015.10.181_b0050) 2012; 96
References_xml – volume: 42
  start-page: 466
  year: 2012
  end-page: 476
  ident: b0250
  article-title: Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization
  publication-title: Energy
– volume: 96
  start-page: 183
  year: 2012
  end-page: 193
  ident: b0025
  article-title: Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints
  publication-title: Appl Energy
– volume: 13
  start-page: 4264
  year: 2013
  end-page: 4280
  ident: b0045
  article-title: Application-specific modified particle swarm optimization for energy resource scheduling considering vehicle-to-grid
  publication-title: Appl Soft Comput
– year: 2013
  ident: b0160
  article-title: Decision support tool for virtual power players: hybrid particle swarm optimization applied to day-ahead vehicle-to-grid scheduling
– volume: 106
  start-page: 308
  year: 2015
  end-page: 321
  ident: b0125
  article-title: Presenting a multi-objective generation scheduling model for pricing demand response rate in micro-grid energy management
  publication-title: Energy Convers Manag
– volume: 13
  start-page: 3903
  year: 2013
  end-page: 3921
  ident: b0210
  article-title: Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks
  publication-title: Appl Soft Comput
– reference: MathWorks. MATLAB – The language of technical computing.
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 10
  ident: b0180
  article-title: Analysis of the publications on the applications of particle swarm optimisation
  publication-title: J Artif Evol App
– volume: 51
  start-page: 123
  year: 2013
  end-page: 136
  ident: b0110
  article-title: Multi-objective energy management of CHP (combined heat and power)-based micro-grid
  publication-title: Energy
– reference: TOMLAB. TOMLAB optimization; 2015.
– volume: 99
  start-page: 455
  year: 2012
  end-page: 470
  ident: b0105
  article-title: An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation
  publication-title: Appl Energy
– reference: Rahwan T, Jennings N. Coalition structure generation: dynamic programming meets anytime optimisation. In: Proc 23rd conference on AI (AAAI); 2008. p. 156–61.
– volume: 14
  start-page: 623
  year: 2014
  end-page: 633
  ident: b0200
  article-title: Optimal power flow under both normal and contingent operation conditions using the hybrid fuzzy particle swarm optimisation and Nelder–Mead algorithm (HFPSO-NM)
  publication-title: Appl Soft Comput
– volume: 6
  start-page: 103
  year: 2012
  end-page: 109
  ident: b0145
  article-title: Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles
  publication-title: IEEE Syst J
– year: 2013
  ident: b0155
  article-title: DC Fuzzy multicriteria approach to increase the probability of delivering power in distribution networks
– volume: 149
  start-page: 194
  year: 2015
  end-page: 203
  ident: b0100
  article-title: Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule
  publication-title: Appl Energy
– volume: 60
  start-page: 1688
  year: 2013
  end-page: 1699
  ident: b0120
  article-title: Multiobjective intelligent energy management for a microgrid
  publication-title: IEEE Trans Ind Electron
– volume: 11
  start-page: 4773
  year: 2011
  end-page: 4788
  ident: b0150
  article-title: A computational intelligence scheme for the prediction of the daily peak load
  publication-title: Appl Soft Comput
– year: 2007
  ident: b0215
  article-title: Evolutionary algorithms for solving multi-objective problems
– volume: 37
  start-page: 61
  year: 2012
  end-page: 68
  ident: b0010
  article-title: Ready or not, here comes the smart grid!
  publication-title: Energy
– volume: 83
  start-page: 58
  year: 2014
  end-page: 72
  ident: b0130
  article-title: Expert energy management of a micro-grid considering wind energy uncertainty
  publication-title: Energy Convers Manage
– volume: 23
  start-page: 336
  year: 2008
  end-page: 343
  ident: b0175
  article-title: Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation
  publication-title: IEEE Tans Power Syst
– volume: 157
  start-page: 60
  year: 2015
  end-page: 74
  ident: b0075
  article-title: Value of flexible electric vehicles in providing spinning reserve services
  publication-title: Appl Energy
– volume: 5
  start-page: 1881
  year: 2012
  end-page: 1899
  ident: b0260
  article-title: Electric vehicle scenario simulator tool for smart grid operators
  publication-title: Energies
– reference: Ishibuchi H, Tsukamoto N, Nojima Y. Evolutionary many-objective optimization: a short review. 2008 IEEE Congress on Evolutionary Computation, vols. 1–8; 2008. p. 2419–26.
– reference: Miranda V. Evolutionary algorithms with particle swarm movements. In: Intelligent systems application to power systems, 2005 proceedings of the 13th international conference on; 2005. p. 6–21.
– volume: 10
  start-page: 539
  year: 2006
  end-page: 558
  ident: b0020
  article-title: Distributed energy generation and sustainable development
  publication-title: Renew Sustain Energy Rev
– reference: Soares J, Morais H, Vale Z, IEEE. Particle swarm optimization based approaches to vehicle-to-grid scheduling. In: 2012 IEEE power and energy society general meeting; 2012.
– volume: 55
  start-page: 1044
  year: 2013
  end-page: 1054
  ident: b0115
  article-title: Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)
  publication-title: Energy
– reference: Electricity Advisory Committee. Keeping the Lights On in a New World. 2009.
– volume: 7
  start-page: 271
  year: 2014
  end-page: 284
  ident: b0135
  article-title: Integrating renewables economic dispatch with demand side management in micro-grids: a genetic algorithm-based approach
  publication-title: Energy Efficiency
– volume: 96
  start-page: 281
  year: 2012
  end-page: 291
  ident: b0050
  article-title: Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems
  publication-title: Appl Energy
– reference: Jian-hua Z. BYD EV charging challenges solutions. In: Power Electronics Systems and Applications (PESA), 2011 4th international conference on: IEEE; 2011. p. 1–4.
– volume: 50
  start-page: 227
  year: 1999
  end-page: 236
  ident: b0225
  article-title: A robust three phase power flow algorithm for radial distribution systems
  publication-title: Electr Pow Syst Res
– volume: 5
  start-page: 1876
  year: 2014
  end-page: 1883
  ident: b0095
  article-title: Stochastic energy scheduling in microgrids with intermittent renewable energy resources
  publication-title: IEEE Trans Smart Grid
– volume: 88
  start-page: 4033
  year: 2011
  end-page: 4041
  ident: b0235
  article-title: Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage
  publication-title: Appl Energy
– reference: Sivasubramani S. Economic operation of power systems using hybrid optimization techniques [PhD]. Indian Institute of Technology Madras; 2011.
– reference: Soares J, Vale Z, Canizes B, Morais H. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling. In: Computational Intelligence Applications In Smart Grid (CIASG), 2013 IEEE symposium on; 2013. p. 138–45.
– year: 2012
  ident: b0165
  article-title: Life safety loads depend on reliable power systems
– volume: 89
  start-page: 99
  year: 2015
  end-page: 110
  ident: b0085
  article-title: Integrated operation of electric vehicles and renewable generation in a smart distribution system
  publication-title: Energy Conv Manag
– reference: Soares J, Sousa T, Morais H, Vale Z, Faria P. An optimal scheduling problem in distribution networks considering V2G. In: Computational Intelligence Applications In Smart Grid (CIASG), 2011 IEEE Symposium on; 2011. p. 1–8.
– reference: NIST. Smart grid: a beginner’s guide. National Institute of Standards and Technology (NIST); 2011. p. 7.
– volume: 1
  start-page: 1358
  year: 2006
  end-page: 1365
  ident: b0040
  article-title: Producers remuneration by virtual power producers
  publication-title: WSEAS Transact Power Syst
– volume: 5
  start-page: 258
  year: 2011
  end-page: 267
  ident: b0080
  article-title: Smart energy management system for optimal microgrid economic operation
  publication-title: IET Renew Power Gener
– volume: 154
  start-page: 459
  year: 2015
  end-page: 470
  ident: b0070
  article-title: New control strategy for the weekly scheduling of insular power systems with a battery energy storage system
  publication-title: Appl Energy
– reference: Sousa T, Morais H, Vale Z, Faria P, Soares J. Intelligent energy resource management considering vehicle-to-grid: a simulated annealing approach. IEEE Transaction on Smart Grid, Special Issue on Transportation Electrification and Vehicle-to-Grid Applications; 2012.
– volume: 88
  start-page: 2509
  year: 2011
  end-page: 2518
  ident: b0015
  article-title: The smart grid – a saucerful of secrets?
  publication-title: Appl Energy
– reference: Zervos A, Lins C, Muth J. RE-thinking 2050: a 100% renewable energy vision for the European Union: EREC; 2010.
– volume: 79
  start-page: 170
  year: 2009
  end-page: 180
  ident: b0220
  article-title: Multi-objective design and control of hybrid systems minimizing costs and unmet load
  publication-title: Electr Pow Syst Res
– volume: 86
  start-page: 745
  year: 2014
  end-page: 755
  ident: b0090
  article-title: Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid
  publication-title: Energy Conv Manag
– volume: 13
  start-page: 913
  year: 2009
  end-page: 918
  ident: b0185
  article-title: A survey of particle swarm optimization applications in electric power systems
  publication-title: Evolut Comput, IEEE Trans
– volume: 45
  start-page: 1007
  year: 2012
  end-page: 1017
  ident: b0170
  article-title: Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems
  publication-title: Energy
– volume: 17
  start-page: 20
  year: 2013
  end-page: 45
  ident: b0195
  article-title: A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems
  publication-title: Evolut Comput, IEEE Trans
– reference: Michalewicz Z. A survey of constraint handling techniques in evolutionary computation methods. In: Evolutionary programming IV: proceedings of the fourth annual conference on evolutionary programming; 1995. p. 135–55.
– volume: 17
  start-page: 20
  year: 2013
  ident: 10.1016/j.apenergy.2015.10.181_b0195
  article-title: A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems
  publication-title: Evolut Comput, IEEE Trans
  doi: 10.1109/TEVC.2012.2185702
– ident: 10.1016/j.apenergy.2015.10.181_b0055
  doi: 10.1109/PESGM.2012.6344637
– volume: 51
  start-page: 123
  year: 2013
  ident: 10.1016/j.apenergy.2015.10.181_b0110
  article-title: Multi-objective energy management of CHP (combined heat and power)-based micro-grid
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.035
– ident: 10.1016/j.apenergy.2015.10.181_b0245
  doi: 10.7551/mitpress/2887.003.0018
– ident: 10.1016/j.apenergy.2015.10.181_b0270
– volume: 154
  start-page: 459
  year: 2015
  ident: 10.1016/j.apenergy.2015.10.181_b0070
  article-title: New control strategy for the weekly scheduling of insular power systems with a battery energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.048
– volume: 89
  start-page: 99
  year: 2015
  ident: 10.1016/j.apenergy.2015.10.181_b0085
  article-title: Integrated operation of electric vehicles and renewable generation in a smart distribution system
  publication-title: Energy Conv Manag
  doi: 10.1016/j.enconman.2014.09.062
– volume: 23
  start-page: 336
  year: 2008
  ident: 10.1016/j.apenergy.2015.10.181_b0175
  article-title: Power system risk assessment using a hybrid method of fuzzy set and Monte Carlo simulation
  publication-title: IEEE Tans Power Syst
  doi: 10.1109/TPWRS.2008.919201
– volume: 11
  start-page: 4773
  year: 2011
  ident: 10.1016/j.apenergy.2015.10.181_b0150
  article-title: A computational intelligence scheme for the prediction of the daily peak load
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.07.005
– volume: 88
  start-page: 2509
  year: 2011
  ident: 10.1016/j.apenergy.2015.10.181_b0015
  article-title: The smart grid – a saucerful of secrets?
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.042
– volume: 45
  start-page: 1007
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0170
  article-title: Hybrid fuzzy Monte Carlo technique for reliability assessment in transmission power systems
  publication-title: Energy
  doi: 10.1016/j.energy.2012.06.049
– year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0165
– volume: 1
  start-page: 1358
  year: 2006
  ident: 10.1016/j.apenergy.2015.10.181_b0040
  article-title: Producers remuneration by virtual power producers
  publication-title: WSEAS Transact Power Syst
– year: 2013
  ident: 10.1016/j.apenergy.2015.10.181_b0155
– volume: 60
  start-page: 1688
  year: 2013
  ident: 10.1016/j.apenergy.2015.10.181_b0120
  article-title: Multiobjective intelligent energy management for a microgrid
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2012.2188873
– volume: 5
  start-page: 258
  year: 2011
  ident: 10.1016/j.apenergy.2015.10.181_b0080
  article-title: Smart energy management system for optimal microgrid economic operation
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2010.0052
– volume: 157
  start-page: 60
  year: 2015
  ident: 10.1016/j.apenergy.2015.10.181_b0075
  article-title: Value of flexible electric vehicles in providing spinning reserve services
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.07.070
– ident: 10.1016/j.apenergy.2015.10.181_b0205
  doi: 10.1109/CEC.2008.4631121
– year: 2013
  ident: 10.1016/j.apenergy.2015.10.181_b0160
– ident: 10.1016/j.apenergy.2015.10.181_b0240
  doi: 10.1109/ISAP.2005.1599236
– ident: 10.1016/j.apenergy.2015.10.181_b0030
– volume: 13
  start-page: 3903
  year: 2013
  ident: 10.1016/j.apenergy.2015.10.181_b0210
  article-title: Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.04.015
– volume: 37
  start-page: 61
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0010
  article-title: Ready or not, here comes the smart grid!
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.054
– volume: 106
  start-page: 308
  year: 2015
  ident: 10.1016/j.apenergy.2015.10.181_b0125
  article-title: Presenting a multi-objective generation scheduling model for pricing demand response rate in micro-grid energy management
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.08.059
– volume: 86
  start-page: 745
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.181_b0090
  article-title: Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid
  publication-title: Energy Conv Manag
  doi: 10.1016/j.enconman.2014.06.044
– volume: 99
  start-page: 455
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0105
  article-title: An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.04.017
– volume: 13
  start-page: 913
  year: 2009
  ident: 10.1016/j.apenergy.2015.10.181_b0185
  article-title: A survey of particle swarm optimization applications in electric power systems
  publication-title: Evolut Comput, IEEE Trans
  doi: 10.1109/TEVC.2006.880326
– volume: 13
  start-page: 4264
  year: 2013
  ident: 10.1016/j.apenergy.2015.10.181_b0045
  article-title: Application-specific modified particle swarm optimization for energy resource scheduling considering vehicle-to-grid
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.07.003
– volume: 96
  start-page: 281
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0050
  article-title: Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.11.015
– volume: 88
  start-page: 4033
  year: 2011
  ident: 10.1016/j.apenergy.2015.10.181_b0235
  article-title: Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.04.019
– ident: 10.1016/j.apenergy.2015.10.181_b0230
– ident: 10.1016/j.apenergy.2015.10.181_b0035
– volume: 10
  start-page: 539
  year: 2006
  ident: 10.1016/j.apenergy.2015.10.181_b0020
  article-title: Distributed energy generation and sustainable development
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2004.11.004
– volume: 50
  start-page: 227
  year: 1999
  ident: 10.1016/j.apenergy.2015.10.181_b0225
  article-title: A robust three phase power flow algorithm for radial distribution systems
  publication-title: Electr Pow Syst Res
  doi: 10.1016/S0378-7796(98)00150-3
– volume: 83
  start-page: 58
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.181_b0130
  article-title: Expert energy management of a micro-grid considering wind energy uncertainty
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.03.022
– volume: 2008
  start-page: 1
  year: 2008
  ident: 10.1016/j.apenergy.2015.10.181_b0180
  article-title: Analysis of the publications on the applications of particle swarm optimisation
  publication-title: J Artif Evol App
– ident: 10.1016/j.apenergy.2015.10.181_b0065
  doi: 10.1109/PESA.2011.5982911
– ident: 10.1016/j.apenergy.2015.10.181_b0255
  doi: 10.1109/PESGM.2012.6345358
– ident: 10.1016/j.apenergy.2015.10.181_b0060
  doi: 10.1109/CIASG.2011.5953342
– volume: 42
  start-page: 466
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0250
  article-title: Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.022
– volume: 5
  start-page: 1881
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0260
  article-title: Electric vehicle scenario simulator tool for smart grid operators
  publication-title: Energies
  doi: 10.3390/en5061881
– year: 2007
  ident: 10.1016/j.apenergy.2015.10.181_b0215
– volume: 7
  start-page: 271
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.181_b0135
  article-title: Integrating renewables economic dispatch with demand side management in micro-grids: a genetic algorithm-based approach
  publication-title: Energy Efficiency
  doi: 10.1007/s12053-013-9223-9
– ident: 10.1016/j.apenergy.2015.10.181_b0265
– ident: 10.1016/j.apenergy.2015.10.181_b0140
  doi: 10.1109/CIASG.2013.6611510
– volume: 79
  start-page: 170
  year: 2009
  ident: 10.1016/j.apenergy.2015.10.181_b0220
  article-title: Multi-objective design and control of hybrid systems minimizing costs and unmet load
  publication-title: Electr Pow Syst Res
  doi: 10.1016/j.epsr.2008.05.011
– volume: 149
  start-page: 194
  year: 2015
  ident: 10.1016/j.apenergy.2015.10.181_b0100
  article-title: Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.145
– volume: 14
  start-page: 623
  issue: Part C
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.181_b0200
  article-title: Optimal power flow under both normal and contingent operation conditions using the hybrid fuzzy particle swarm optimisation and Nelder–Mead algorithm (HFPSO-NM)
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.09.015
– volume: 96
  start-page: 183
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0025
  article-title: Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.01.053
– volume: 55
  start-page: 1044
  year: 2013
  ident: 10.1016/j.apenergy.2015.10.181_b0115
  article-title: Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.048
– ident: 10.1016/j.apenergy.2015.10.181_b0005
– volume: 5
  start-page: 1876
  year: 2014
  ident: 10.1016/j.apenergy.2015.10.181_b0095
  article-title: Stochastic energy scheduling in microgrids with intermittent renewable energy resources
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2280645
– ident: 10.1016/j.apenergy.2015.10.181_b0190
– volume: 6
  start-page: 103
  year: 2012
  ident: 10.1016/j.apenergy.2015.10.181_b0145
  article-title: Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2011.2163012
SSID ssj0002120
Score 2.4433024
Snippet •A multi-objective framework for smart grid management considering minimum reserve.•The min. reserve is incorporated in the model in addition to the cost...
In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1074
SubjectTerms algorithms
case studies
computer techniques
Electric vehicles
energy
linear programming
Multi-objective optimization
Parallel computing
Pareto front
Particle swarm optimization
Smart grid
vehicles (equipment)
Title A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads
URI https://dx.doi.org/10.1016/j.apenergy.2015.10.181
https://www.proquest.com/docview/2000312729
Volume 162
WOSCitedRecordID wos000367631000093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5FLQc4IChUlE2DxM1y8Dq2jwGF7VB6KCjiYj17bOLIsaM4iQoS_42fxnuesZOGpfTAxYomM-Nx3pe3-S2MPZeAhrSMEhNlnYcGChqsEUhhAi5AZc6D3JFts4ng9DScTKKzweBHlwuzKYOqCi8uosV_JTWOIbEpdfYa5O43xQH8jETHK5Idr_9E-JEKEjTrZKaYmep208cTSvhqArJgaWQq72-pPfgGGrooeEodBw1GM8ftjS_LQkeoU2ljY4GrdKldmtVQAHx7l7IGlTTcF7XVCq66Te_KqSnjSTnu27f0br2VhKt6PS2MN1P4tinaXlPIc6Ywn-NhR2XRzfukY6A_F6teqEhiT-slGB9KPEzRdk8yzoYvh7tuDbt1a6jEzi6dyxImmXeXWLXm3IrZUizpjuC2LdUg8BehoPwTsyEs1ANTQJ8_pG9Ut5jLVbj3pGMfs9iFw83ibp-Y9olpnHL_D53Aj5CvHo7ejSfve23A0aVBu8fZyVL__Yn-pCDtqQqt_nN-h93WhgsfKcDdZYOsOmK3dspZHrHj8TZrEqdqsdHcY99HfA-TvMUkR0xyxCTvMcnVSXmHSb7FJK9zDrzFJCdMcsIkJ0zyHUzSrB6TvMXkffbx9fj81VtT9_0wU88VKxOtXDvIfNeDzMldZBmJ62SB78kAfCsVuUgiKrMYWQIk5CFkwpKJA4mPujLYInWP2UFVV9kDxr0od8MwtaSdC8-3cHoqLDdEvV9kgR2kJ8zvfuw41UXxqTdLGf-d3CfsRb9uocrCXLki6mgZa-VWKa0xwvTKtc864sfI_emVHlRZvW6oiSxKZQct5IfXPtEjdnP7x3vMDlbLdfaE3Ug3q6JZPtU4_gk1LtoS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+model+for+the+day-ahead+energy+resource+scheduling+of+a+smart+grid+with+high+penetration+of+sensitive+loads&rft.jtitle=Applied+energy&rft.au=Soares%2C+Jo%C3%A3o&rft.au=Fotouhi+Ghazvini%2C+Mohammad+Ali&rft.au=Vale%2C+Zita&rft.au=de+Moura+Oliveira%2C+P.B.&rft.date=2016-01-15&rft.issn=0306-2619&rft.volume=162&rft.spage=1074&rft.epage=1088&rft_id=info:doi/10.1016%2Fj.apenergy.2015.10.181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2015_10_181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon