The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus - potential role in modulation of glucose uptake in neurones?

It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin‐responsive glucose transporter GLUT4 in specialised v...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The European journal of neuroscience Ročník 28; číslo 3; s. 588 - 598
Hlavní autori: Fernando, Ruani N., Albiston, Anthony L., Chai, Siew Y.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.08.2008
Predmet:
ISSN:0953-816X, 1460-9568, 1460-9568
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin‐responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin‐responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium‐induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV‐hemorphin 7 enhanced this activity‐dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV‐hemorphin 7 is region‐specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity‐dependent glucose uptake in hippocampal neurones.
AbstractList It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV-hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin-responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin-responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium-induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV-hemorphin 7 enhanced this activity-dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV-hemorphin 7 is region-specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity-dependent glucose uptake in hippocampal neurones.It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV-hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin-responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin-responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium-induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV-hemorphin 7 enhanced this activity-dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV-hemorphin 7 is region-specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity-dependent glucose uptake in hippocampal neurones.
It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensinIV and LVV-hemorphin7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin-responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and-or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin-responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium-induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. AngiotensinIV and LVV-hemorphin7 enhanced this activity-dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensinIV and LVV-hemorphin7 is region-specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity-dependent glucose uptake in hippocampal neurones.
It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin‐responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin‐responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium‐induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV‐hemorphin 7 enhanced this activity‐dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV‐hemorphin 7 is region‐specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity‐dependent glucose uptake in hippocampal neurones.
Author Albiston, Anthony L.
Chai, Siew Y.
Fernando, Ruani N.
Author_xml – sequence: 1
  givenname: Ruani N.
  surname: Fernando
  fullname: Fernando, Ruani N.
  organization: Howard Florey Institute, The University of Melbourne, Parkville, Vic. 3010, Australia
– sequence: 2
  givenname: Anthony L.
  surname: Albiston
  fullname: Albiston, Anthony L.
  organization: Howard Florey Institute, The University of Melbourne, Parkville, Vic. 3010, Australia
– sequence: 3
  givenname: Siew Y.
  surname: Chai
  fullname: Chai, Siew Y.
  organization: Howard Florey Institute, The University of Melbourne, Parkville, Vic. 3010, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18702730$$D View this record in MEDLINE/PubMed
BookMark eNqNkd9u0zAUxi00xLrBKyBfcZdg54_tXACaqtFuqgZCneDO8pyT1Z0Th9jRulfhaXHaMSRumCXLls7v-47O-U7QUec6QAhTktJ43m9TWjCSVCUTaUaISAnLC57uXqDZU-EIzUhV5omg7McxOvF-SyLJivIVOqaCk4znZIZ-rTeATedHa7pkgNvRqgA1Vq3pXA99MLXygC--nX3FxmPtrNPKGh-RexM2eLG6XhdRj0O0ad0Y2Y3p-wi1_ehxgnsXoAtGWTw4O3WKVD01Ma7DrsG3dtQuqsY-qLt9vYNxiNP6T6_Ry0ZZD28e31N0_fl8PV8mqy-Li_nZKtFFzniiSiKaJt4CMsZ5xm8EpzWFpmENKK4pkFwzRYnSZVmwLKtANxWhShSqqoTOT9G7g28_uJ8j-CBb4zVYqzqIE0lWxT5E5P8FMyJ4VhIawbeP4HjTQi37wbRqeJB_1h4BcQD04LwfoPmLEDklLLdyClJOQcopYblPWO6i9OM_Um3Cfp1hUMY-x-DDweDeWHh4dmN5fnk1_aI-OeiND7B70qvhTjKe81J-v1pIuuSX6_l8KUX-GzNk0JM
CitedBy_id crossref_primary_10_1016_j_mce_2016_03_035
crossref_primary_10_3389_fendo_2024_1293221
crossref_primary_10_1007_s13205_021_02738_3
crossref_primary_10_1016_j_ejphar_2010_05_041
crossref_primary_10_1042_BST0390891
crossref_primary_10_3390_cells9051114
crossref_primary_10_1016_j_physbeh_2012_04_019
crossref_primary_10_1208_s12248_010_9217_x
crossref_primary_10_3389_fendo_2022_1021796
crossref_primary_10_1146_annurev_anchem_061417_125619
crossref_primary_10_3390_ijms252212016
crossref_primary_10_1016_j_npep_2015_09_004
crossref_primary_10_1111_jnc_14880
crossref_primary_10_1016_j_phrs_2020_104855
crossref_primary_10_1016_j_pneurobio_2011_07_001
crossref_primary_10_1007_s00424_012_1102_2
crossref_primary_10_1021_acs_jcim_5c00869
crossref_primary_10_1111_j_1476_5381_2011_01402_x
crossref_primary_10_3233_JAD_180707
crossref_primary_10_1084_jem_20160534
crossref_primary_10_1124_pr_114_010454
crossref_primary_10_1002_jnr_24064
crossref_primary_10_1016_j_ijcard_2016_10_069
crossref_primary_10_1007_s00406_016_0757_7
crossref_primary_10_1016_j_bbr_2018_12_042
crossref_primary_10_3389_fnins_2020_586314
crossref_primary_10_3390_cancers12113252
crossref_primary_10_1016_j_jns_2012_03_002
crossref_primary_10_1097_XCE_0000000000000087
crossref_primary_10_1007_s11906_014_0440_1
crossref_primary_10_1016_j_mce_2011_03_005
crossref_primary_10_1016_j_nbd_2014_04_018
crossref_primary_10_1016_j_brainres_2009_08_005
crossref_primary_10_1155_2012_789671
crossref_primary_10_3389_fmolb_2021_685101
crossref_primary_10_2337_db16_0917
crossref_primary_10_1124_mol_115_102533
crossref_primary_10_1172_JCI59903
crossref_primary_10_1016_j_brainresbull_2020_12_008
crossref_primary_10_1007_s40336_019_00339_y
crossref_primary_10_1016_j_pneurobio_2014_11_004
crossref_primary_10_3389_fmolb_2020_00094
crossref_primary_10_1016_j_neuint_2020_104707
crossref_primary_10_1002_pro_2604
crossref_primary_10_1111_febs_15540
crossref_primary_10_1089_neu_2011_1824
crossref_primary_10_1007_s13311_023_01435_8
crossref_primary_10_1523_JNEUROSCI_0858_09_2009
crossref_primary_10_1523_JNEUROSCI_1700_16_2016
crossref_primary_10_1016_j_neuron_2016_12_020
crossref_primary_10_1016_j_tcb_2020_05_007
crossref_primary_10_1016_j_jep_2023_116475
crossref_primary_10_1016_j_mce_2009_07_020
crossref_primary_10_1016_j_peptides_2010_02_019
crossref_primary_10_3390_life14121547
crossref_primary_10_1016_j_nlm_2009_07_011
crossref_primary_10_1016_j_expneurol_2019_113076
crossref_primary_10_1016_j_lfs_2015_04_023
crossref_primary_10_1007_s13238_013_3005_1
crossref_primary_10_1016_j_ejphar_2012_02_048
crossref_primary_10_1016_j_nlm_2016_09_017
crossref_primary_10_1016_j_seizure_2011_04_015
crossref_primary_10_1002_j_2040_4603_2012_tb00424_x
crossref_primary_10_1016_j_regpep_2010_09_003
crossref_primary_10_1096_fj_08_112227
crossref_primary_10_3390_antiox10050740
crossref_primary_10_1016_j_mce_2008_11_015
crossref_primary_10_1016_j_jocn_2017_08_055
Cites_doi 10.1523/JNEUROSCI.19-10-03952.1999
10.1172/JCI200316888
10.1073/pnas.050583697
10.1016/0361-9230(93)90297-O
10.1006/nlme.1997.3769
10.1210/en.2005-1464
10.1016/0006-8993(95)01454-3
10.1074/jbc.275.7.4787
10.1002/cne.10368
10.1002/(SICI)1096-9861(19981005)399:4<492::AID-CNE4>3.0.CO;2-X
10.1016/S0306-4522(01)00619-4
10.1046/j.1471-4159.2003.01852.x
10.1002/cne.20585
10.1016/0304-3940(90)90469-P
10.1074/jbc.C100512200
10.1523/JNEUROSCI.0671-06.2006
10.1016/j.pharmthera.2007.07.006
10.1016/j.bbr.2004.02.012
10.1038/sj.jcbfm.9600281
10.2741/2306
10.1128/MCB.21.15.5276-5285.2001
10.1016/j.neuroscience.2003.12.006
10.1523/JNEUROSCI.1882-04.2004
10.1152/ajpendo.1999.277.2.E259
10.1016/S0167-0115(98)00028-7
10.1111/j.1471-4159.2007.04659.x
10.1210/en.2007-1045
10.1523/JNEUROSCI.18-04-01595.1998
10.1016/j.coph.2007.10.009
10.1007/s00125-003-1080-1
10.1210/endo-107-6-1827
10.1016/j.neuroscience.2006.03.065
10.1016/S0021-9258(19)50530-0
10.1093/ajcn/67.4.764S
10.1074/jbc.272.37.23323
10.1016/S0304-3940(99)00876-9
10.1074/jbc.270.40.23612
ContentType Journal Article
Copyright The Authors (2008). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd
Copyright_xml – notice: The Authors (2008). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1111/j.1460-9568.2008.06347.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 598
ExternalDocumentID 18702730
10_1111_j_1460_9568_2008_06347_x
EJN6347
ark_67375_WNG_1H7JTCCH_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RIG
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c4367-a508ff08f4e267727b871d1eff6fea7c1e03c6a10ac5546229ecf901a84a998c3
IEDL.DBID DRFUL
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258154800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0953-816X
1460-9568
IngestDate Sun Nov 09 12:15:25 EST 2025
Sun Nov 09 11:00:24 EST 2025
Mon Jul 21 06:00:57 EDT 2025
Sat Nov 29 06:08:50 EST 2025
Tue Nov 18 21:08:26 EST 2025
Wed Jan 22 16:58:44 EST 2025
Sun Sep 21 06:18:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4367-a508ff08f4e267727b871d1eff6fea7c1e03c6a10ac5546229ecf901a84a998c3
Notes istex:1EF88E659618099A00AC189EBC0BE1C9FD7CB8F7
ark:/67375/WNG-1H7JTCCH-8
ArticleID:EJN6347
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18702730
PQID 20872501
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_69436083
proquest_miscellaneous_20872501
pubmed_primary_18702730
crossref_primary_10_1111_j_1460_9568_2008_06347_x
crossref_citationtrail_10_1111_j_1460_9568_2008_06347_x
wiley_primary_10_1111_j_1460_9568_2008_06347_x_EJN6347
istex_primary_ark_67375_WNG_1H7JTCCH_8
PublicationCentury 2000
PublicationDate 2008-08
August 2008
2008-08-00
2008-Aug
20080801
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2008
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Dash, P.K., Orsi, S.A. & Moore, A.N. (2006) Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-Mammalian target of rapamycin pathway. J. Neurosci., 26, 8048-8056.
Wright, J.W., Clemens, J.A., Panetta, J.A., Smalstig, E.B., Weatherly, L.A., Kramar, E.A., Pederson, E.S., Mungall, B.H. & Harding, J.W. (1996) Effects of LY231617 and angiotensin IV on ischemia-induced deficits in circular water maze and passive avoidance performance in rats. Brain Res., 717, 1-11.
Choeiri, C., Staines, W. & Messier, C. (2002) Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience, 111, 19-34.
Subtil, A., Lampson, M.A., Keller, S.R. & McGraw, T.E. (2000) Characterization of the insulin-regulated endocytic recycling mechanism in 3T3-L1 adipocytes using a novel reporter molecule. J. Biol. Chem., 275, 4787-4795.
Wright, J.W., Stubley, L., Pederson, E.S., Kramar, E.A., Hanesworth, J.M. & Harding, J.W. (1999) Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J. Neurosci., 19, 3952-3961.
Lee, J., Albiston, A.L., Allen, A.M., Mendelsohn, F.A., Ping, S.E., Barrett, G.L., Murphy, M., Morris, M.J., McDowall, S.G. & Chai, S.Y. (2004) Effect of I.C.V. injection of AT(4) receptor ligands, NLE(1)-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience, 124, 341-349.
Parent, M.B., Leaurey, P.T., Wilkniss, S. & Gold, P.E. (1997) Intraseptal infusions of muscimol impair spontaneous alternation performance: infusions of glucose into the hippocampus, but not the medial septum, reverse the deficit. Neurobiol. Learn. Mem., 68, 75-85.
Yu, B., Poirier, L.A. & Nagy, L.E. (1999) Mobilization of GLUT-4 from intracellular vesicles by insulin and K(+) depolarization in cultured H9c2 myotubes. Am. J. Physiol., 277, E259-E267.
Benomar, Y., Naour, N., Aubourg, A., Bailleux, V., Gertler, A., Djiane, J., Guerre-Millo, M. & Taouis, M. (2006) Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism. Endocrinology, 147, 2550-2556.
Rudich, A., Konrad, D., Torok, D., Ben-Romano, R., Huang, C., Niu, W., Garg, R.R., Wijesekara, N., Germinario, R.J., Bilan, P.J. & Klip, A. (2003) Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia, 46, 649-658.
Waters, S.B., D'Auria, M., Martin, S.S., Nguyen, C., Kozma, L.M. & Luskey, K.L. (1997) The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes. J. Biol. Chem., 272, 23323-23327.
McNay, E.C., Fries, T.M. & Gold, P.E. (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl Acad. Sci. USA, 97, 2881-2885.
Lew, R.A., Mustafa, T., Ye, S., McDowall, S.G., Chai, S.Y. & Albiston, A.L. (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J. Neurochem., 86, 344-350.
Wright, J.W., Miller-Wing, A.V., Shaffer, M.J., Higginson, C., Wright, D.E., Hanesworth, J.M. & Harding, J.W. (1993) Angiotensin II(3-8) (ANG IV) hippocampal binding: potential role in the facilitation of memory. Brain Res. Bull., 32, 497-502.
Albiston, A.L., McDowall, S.G., Matsacos, D., Sim, P., Clune, E., Mustafa, T., Lee, J., Mendelsohn, F.A., Simpson, R.J., Connolly, L.M. & Chai, S.Y. (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin- regulated aminopeptidase. J. Biol. Chem., 276, 48623-48626.
McNay, E.C. (2007) Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr. Opin. Pharmacol., 7, 628-632.
Bak, L.K., Schousboe, A., Sonnewald, U. & Waagepetersen, H.S. (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J. Cereb. Blood Flow Metab., 26, 1285-1297.
Keller, S.R., Scott, H.M., Mastick, C.C., Aebersold, R. & Lienhard, G.E. (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J. Biol. Chem., 270, 23612-23618.
Roher, N., Samokhvalov, V., Diaz, M., Mackenzie, S., Klip, A. & Planas, J.V. (2008) The proinflammatory cytokine tumor necrosis factor-{alpha} increases the amount of glucose transporter-4 at the surface of muscle cells independently of changes in interleukin-6. Endocrinology, 149, 1880-1889.
Lawrence, J.T. & Birnbaum, M.J. (2001) ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3-L1 adipocytes. Mol. Cell. Biol., 21, 5276-5285.
Kelada, A.S., Macaulay, S.L. & Proietto, J. (1992) Cyclic AMP acutely stimulates translocation of the major insulin-regulatable glucose transporter GLUT4. J. Biol. Chem., 267, 7021-7025.
Fernando, R.N., Larm, J., Albiston, A.L. & Chai, S.Y. (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. J. Comp. Neurol., 487, 372-390.
Piroli, G.G., Grillo, C.A., Hoskin, E.K., Znamensky, V., Katz, E.B., Milner, T.A., McEwen, B.S., Charron, M.J. & Reagan, L.P. (2002) Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J. Comp. Neurol., 452, 103-114.
Porras, O.H., Loaiza, A. & Barros, L.F. (2004) Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J. Neurosci., 24, 9669-9673.
Marfaing, P., Penicaud, L., Broer, Y., Mraovitch, S., Calando, Y. & Picon, L. (1990) Effects of hyperinsulinemia on local cerebral insulin binding and glucose utilization in normoglycemic awake rats. Neurosci. Lett., 115, 279-285.
Ragozzino, M.E., Pal, S.N., Unick, K., Stefani, M.R. & Gold, P.E. (1998) Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. J. Neurosci., 18, 1595-1601.
Goodner, C.J., Hom, F.G. & Berrie, M.A. (1980) Investigation of the effect of insulin upon regional brain glucose metabolism in the rat in vivo. Endocrinology, 107, 1827-1832.
Albiston, A.L., Peck, G.R., Yeatman, H.R., Fernando, R., Ye, S. & Chai, S.Y. (2007) Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails? Pharmacol. Ther., 116, 417-427.
Davila, D., Piriz, J., Trejo, J.L., Nunez, A. & Torres-Aleman, I. (2007) Insulin and insulin-like growth factor I signalling in neurons. Front Biosci., 12, 3194-3202.
Albiston, A.L., Pederson, E.S., Burns, P., Purcell, B., Wright, J.W., Harding, J.W., Mendelsohn, F.A., Weisinger, R.S. & Chai, S.Y. (2004) Attenuation of scopolamine-induced learning deficits by LVV-hemorphin-7 in rats in the passive avoidance and water maze paradigms. Behav. Brain Res., 154, 239-243.
Pederson, E.S., Harding, J.W. & Wright, J.W. (1998) Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regul. Pept., 74, 97-103.
Orzi, F., Morisco, C., Colangelo, V., Di Grezia, R. & Lembo, G. (2000) Lack of effect of insulin on glucose utilization of the hypothalamus in normotensive and hypertensive rats. Neurosci. Lett., 278, 29-32.
Burcelin, R., Crivelli, V., Perrin, C., Da Costa, A., Mu, J., Kahn, B.B., Birnbaum, M.J., Kahn, C.R., Vollenweider, P. & Thorens, B. (2003) GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization. J. Clin. Invest., 111, 1555-1562.
Korol, D.L. & Gold, P.E. (1998) Glucose, memory, and aging. Am. J. Clin. Nutr., 67, 764S-771S.
Morgenthaler, F.D., Kraftsik, R., Catsicas, S., Magistretti, P.J. & Chatton, J.Y. (2006) Glucose and lactate are equally effective in energizing activity-dependent synaptic vesicle turnover in purified cortical neurons. Neuroscience, 141, 157-165.
El Messari, S., Leloup, C., Quignon, M., Brisorgueil, M.J., Penicaud, L. & Arluison, M. (1998) Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J. Comp. Neurol., 399, 492-512.
Fernando, R.N., Luff, S.E., Albiston, A.L. & Chai, S.Y. (2007) Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. J. Neurochem., 102, 967-976.
2007; 102
2004; 124
2000; 278
1997; 272
1992; 267
2002; 111
1997; 68
2002; 452
2004; 24
2008; 149
2000; 275
1998; 399
2007; 12
2003; 111
1998; 67
1995; 270
2001; 21
2001; 276
1996; 717
2004; 154
1998; 18
1980; 107
2007; 116
1990; 115
1999; 19
2005; 487
1993; 32
2006; 26
2000; 97
2006; 141
2003; 46
2007; 7
1999; 277
1998; 74
2003; 86
2006; 147
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
Kelada A.S. (e_1_2_7_15_1) 1992; 267
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – reference: Bak, L.K., Schousboe, A., Sonnewald, U. & Waagepetersen, H.S. (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J. Cereb. Blood Flow Metab., 26, 1285-1297.
– reference: Roher, N., Samokhvalov, V., Diaz, M., Mackenzie, S., Klip, A. & Planas, J.V. (2008) The proinflammatory cytokine tumor necrosis factor-{alpha} increases the amount of glucose transporter-4 at the surface of muscle cells independently of changes in interleukin-6. Endocrinology, 149, 1880-1889.
– reference: Marfaing, P., Penicaud, L., Broer, Y., Mraovitch, S., Calando, Y. & Picon, L. (1990) Effects of hyperinsulinemia on local cerebral insulin binding and glucose utilization in normoglycemic awake rats. Neurosci. Lett., 115, 279-285.
– reference: Parent, M.B., Leaurey, P.T., Wilkniss, S. & Gold, P.E. (1997) Intraseptal infusions of muscimol impair spontaneous alternation performance: infusions of glucose into the hippocampus, but not the medial septum, reverse the deficit. Neurobiol. Learn. Mem., 68, 75-85.
– reference: Benomar, Y., Naour, N., Aubourg, A., Bailleux, V., Gertler, A., Djiane, J., Guerre-Millo, M. & Taouis, M. (2006) Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism. Endocrinology, 147, 2550-2556.
– reference: Korol, D.L. & Gold, P.E. (1998) Glucose, memory, and aging. Am. J. Clin. Nutr., 67, 764S-771S.
– reference: Wright, J.W., Miller-Wing, A.V., Shaffer, M.J., Higginson, C., Wright, D.E., Hanesworth, J.M. & Harding, J.W. (1993) Angiotensin II(3-8) (ANG IV) hippocampal binding: potential role in the facilitation of memory. Brain Res. Bull., 32, 497-502.
– reference: Fernando, R.N., Larm, J., Albiston, A.L. & Chai, S.Y. (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. J. Comp. Neurol., 487, 372-390.
– reference: Keller, S.R., Scott, H.M., Mastick, C.C., Aebersold, R. & Lienhard, G.E. (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J. Biol. Chem., 270, 23612-23618.
– reference: Burcelin, R., Crivelli, V., Perrin, C., Da Costa, A., Mu, J., Kahn, B.B., Birnbaum, M.J., Kahn, C.R., Vollenweider, P. & Thorens, B. (2003) GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization. J. Clin. Invest., 111, 1555-1562.
– reference: McNay, E.C. (2007) Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr. Opin. Pharmacol., 7, 628-632.
– reference: Dash, P.K., Orsi, S.A. & Moore, A.N. (2006) Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-Mammalian target of rapamycin pathway. J. Neurosci., 26, 8048-8056.
– reference: Wright, J.W., Clemens, J.A., Panetta, J.A., Smalstig, E.B., Weatherly, L.A., Kramar, E.A., Pederson, E.S., Mungall, B.H. & Harding, J.W. (1996) Effects of LY231617 and angiotensin IV on ischemia-induced deficits in circular water maze and passive avoidance performance in rats. Brain Res., 717, 1-11.
– reference: McNay, E.C., Fries, T.M. & Gold, P.E. (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl Acad. Sci. USA, 97, 2881-2885.
– reference: Morgenthaler, F.D., Kraftsik, R., Catsicas, S., Magistretti, P.J. & Chatton, J.Y. (2006) Glucose and lactate are equally effective in energizing activity-dependent synaptic vesicle turnover in purified cortical neurons. Neuroscience, 141, 157-165.
– reference: Subtil, A., Lampson, M.A., Keller, S.R. & McGraw, T.E. (2000) Characterization of the insulin-regulated endocytic recycling mechanism in 3T3-L1 adipocytes using a novel reporter molecule. J. Biol. Chem., 275, 4787-4795.
– reference: Choeiri, C., Staines, W. & Messier, C. (2002) Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience, 111, 19-34.
– reference: El Messari, S., Leloup, C., Quignon, M., Brisorgueil, M.J., Penicaud, L. & Arluison, M. (1998) Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J. Comp. Neurol., 399, 492-512.
– reference: Wright, J.W., Stubley, L., Pederson, E.S., Kramar, E.A., Hanesworth, J.M. & Harding, J.W. (1999) Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J. Neurosci., 19, 3952-3961.
– reference: Piroli, G.G., Grillo, C.A., Hoskin, E.K., Znamensky, V., Katz, E.B., Milner, T.A., McEwen, B.S., Charron, M.J. & Reagan, L.P. (2002) Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J. Comp. Neurol., 452, 103-114.
– reference: Rudich, A., Konrad, D., Torok, D., Ben-Romano, R., Huang, C., Niu, W., Garg, R.R., Wijesekara, N., Germinario, R.J., Bilan, P.J. & Klip, A. (2003) Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia, 46, 649-658.
– reference: Yu, B., Poirier, L.A. & Nagy, L.E. (1999) Mobilization of GLUT-4 from intracellular vesicles by insulin and K(+) depolarization in cultured H9c2 myotubes. Am. J. Physiol., 277, E259-E267.
– reference: Kelada, A.S., Macaulay, S.L. & Proietto, J. (1992) Cyclic AMP acutely stimulates translocation of the major insulin-regulatable glucose transporter GLUT4. J. Biol. Chem., 267, 7021-7025.
– reference: Lee, J., Albiston, A.L., Allen, A.M., Mendelsohn, F.A., Ping, S.E., Barrett, G.L., Murphy, M., Morris, M.J., McDowall, S.G. & Chai, S.Y. (2004) Effect of I.C.V. injection of AT(4) receptor ligands, NLE(1)-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience, 124, 341-349.
– reference: Waters, S.B., D'Auria, M., Martin, S.S., Nguyen, C., Kozma, L.M. & Luskey, K.L. (1997) The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes. J. Biol. Chem., 272, 23323-23327.
– reference: Lew, R.A., Mustafa, T., Ye, S., McDowall, S.G., Chai, S.Y. & Albiston, A.L. (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J. Neurochem., 86, 344-350.
– reference: Pederson, E.S., Harding, J.W. & Wright, J.W. (1998) Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regul. Pept., 74, 97-103.
– reference: Porras, O.H., Loaiza, A. & Barros, L.F. (2004) Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J. Neurosci., 24, 9669-9673.
– reference: Albiston, A.L., Pederson, E.S., Burns, P., Purcell, B., Wright, J.W., Harding, J.W., Mendelsohn, F.A., Weisinger, R.S. & Chai, S.Y. (2004) Attenuation of scopolamine-induced learning deficits by LVV-hemorphin-7 in rats in the passive avoidance and water maze paradigms. Behav. Brain Res., 154, 239-243.
– reference: Fernando, R.N., Luff, S.E., Albiston, A.L. & Chai, S.Y. (2007) Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. J. Neurochem., 102, 967-976.
– reference: Davila, D., Piriz, J., Trejo, J.L., Nunez, A. & Torres-Aleman, I. (2007) Insulin and insulin-like growth factor I signalling in neurons. Front Biosci., 12, 3194-3202.
– reference: Lawrence, J.T. & Birnbaum, M.J. (2001) ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3-L1 adipocytes. Mol. Cell. Biol., 21, 5276-5285.
– reference: Albiston, A.L., McDowall, S.G., Matsacos, D., Sim, P., Clune, E., Mustafa, T., Lee, J., Mendelsohn, F.A., Simpson, R.J., Connolly, L.M. & Chai, S.Y. (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin- regulated aminopeptidase. J. Biol. Chem., 276, 48623-48626.
– reference: Goodner, C.J., Hom, F.G. & Berrie, M.A. (1980) Investigation of the effect of insulin upon regional brain glucose metabolism in the rat in vivo. Endocrinology, 107, 1827-1832.
– reference: Ragozzino, M.E., Pal, S.N., Unick, K., Stefani, M.R. & Gold, P.E. (1998) Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. J. Neurosci., 18, 1595-1601.
– reference: Orzi, F., Morisco, C., Colangelo, V., Di Grezia, R. & Lembo, G. (2000) Lack of effect of insulin on glucose utilization of the hypothalamus in normotensive and hypertensive rats. Neurosci. Lett., 278, 29-32.
– reference: Albiston, A.L., Peck, G.R., Yeatman, H.R., Fernando, R., Ye, S. & Chai, S.Y. (2007) Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails? Pharmacol. Ther., 116, 417-427.
– volume: 67
  start-page: 764S
  year: 1998
  end-page: 771S
  article-title: Glucose, memory, and aging
  publication-title: Am. J. Clin. Nutr.
– volume: 124
  start-page: 341
  year: 2004
  end-page: 349
  article-title: Effect of I.C.V. injection of AT(4) receptor ligands, NLE(1)‐angiotensin IV and LVV‐hemorphin 7, on spatial learning in rats
  publication-title: Neuroscience
– volume: 149
  start-page: 1880
  year: 2008
  end-page: 1889
  article-title: The proinflammatory cytokine tumor necrosis factor‐{alpha} increases the amount of glucose transporter‐4 at the surface of muscle cells independently of changes in interleukin‐6
  publication-title: Endocrinology
– volume: 102
  start-page: 967
  year: 2007
  end-page: 976
  article-title: Sub‐cellular localization of insulin‐regulated membrane aminopeptidase, IRAP to vesicles in neurons
  publication-title: J. Neurochem.
– volume: 278
  start-page: 29
  year: 2000
  end-page: 32
  article-title: Lack of effect of insulin on glucose utilization of the hypothalamus in normotensive and hypertensive rats
  publication-title: Neurosci. Lett.
– volume: 26
  start-page: 1285
  year: 2006
  end-page: 1297
  article-title: Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 272
  start-page: 23323
  year: 1997
  end-page: 23327
  article-title: The amino terminus of insulin‐responsive aminopeptidase causes Glut4 translocation in 3T3‐L1 adipocytes
  publication-title: J. Biol. Chem.
– volume: 147
  start-page: 2550
  year: 2006
  end-page: 2556
  article-title: Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3‐kinase‐ dependent mechanism
  publication-title: Endocrinology
– volume: 18
  start-page: 1595
  year: 1998
  end-page: 1601
  article-title: Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections
  publication-title: J. Neurosci.
– volume: 154
  start-page: 239
  year: 2004
  end-page: 243
  article-title: Attenuation of scopolamine‐induced learning deficits by LVV‐hemorphin‐7 in rats in the passive avoidance and water maze paradigms
  publication-title: Behav. Brain Res.
– volume: 277
  start-page: E259
  year: 1999
  end-page: E267
  article-title: Mobilization of GLUT‐4 from intracellular vesicles by insulin and K(+) depolarization in cultured H9c2 myotubes
  publication-title: Am. J. Physiol.
– volume: 111
  start-page: 1555
  year: 2003
  end-page: 1562
  article-title: GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor‐stimulated muscle glucose utilization
  publication-title: J. Clin. Invest.
– volume: 46
  start-page: 649
  year: 2003
  end-page: 658
  article-title: Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues
  publication-title: Diabetologia
– volume: 24
  start-page: 9669
  year: 2004
  end-page: 9673
  article-title: Glutamate mediates acute glucose transport inhibition in hippocampal neurons
  publication-title: J. Neurosci.
– volume: 452
  start-page: 103
  year: 2002
  end-page: 114
  article-title: Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus
  publication-title: J. Comp. Neurol.
– volume: 267
  start-page: 7021
  year: 1992
  end-page: 7025
  article-title: Cyclic AMP acutely stimulates translocation of the major insulin‐regulatable glucose transporter GLUT4
  publication-title: J. Biol. Chem.
– volume: 111
  start-page: 19
  year: 2002
  end-page: 34
  article-title: Immunohistochemical localization and quantification of glucose transporters in the mouse brain
  publication-title: Neuroscience
– volume: 7
  start-page: 628
  year: 2007
  end-page: 632
  article-title: Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function
  publication-title: Curr. Opin. Pharmacol.
– volume: 86
  start-page: 344
  year: 2003
  end-page: 350
  article-title: Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP)
  publication-title: J. Neurochem.
– volume: 276
  start-page: 48623
  year: 2001
  end-page: 48626
  article-title: Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin‐ regulated aminopeptidase
  publication-title: J. Biol. Chem.
– volume: 19
  start-page: 3952
  year: 1999
  end-page: 3961
  article-title: Contributions of the brain angiotensin IV‐AT4 receptor subtype system to spatial learning
  publication-title: J. Neurosci.
– volume: 107
  start-page: 1827
  year: 1980
  end-page: 1832
  article-title: Investigation of the effect of insulin upon regional brain glucose metabolism in the rat in vivo
  publication-title: Endocrinology
– volume: 141
  start-page: 157
  year: 2006
  end-page: 165
  article-title: Glucose and lactate are equally effective in energizing activity‐dependent synaptic vesicle turnover in purified cortical neurons
  publication-title: Neuroscience
– volume: 68
  start-page: 75
  year: 1997
  end-page: 85
  article-title: Intraseptal infusions of muscimol impair spontaneous alternation performance: infusions of glucose into the hippocampus, but not the medial septum, reverse the deficit
  publication-title: Neurobiol. Learn. Mem.
– volume: 270
  start-page: 23612
  year: 1995
  end-page: 23618
  article-title: Cloning and characterization of a novel insulin‐regulated membrane aminopeptidase from Glut4 vesicles
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 497
  year: 1993
  end-page: 502
  article-title: Angiotensin II(3‐8) (ANG IV) hippocampal binding: potential role in the facilitation of memory
  publication-title: Brain Res. Bull.
– volume: 26
  start-page: 8048
  year: 2006
  end-page: 8056
  article-title: Spatial memory formation and memory‐enhancing effect of glucose involves activation of the tuberous sclerosis complex‐Mammalian target of rapamycin pathway
  publication-title: J. Neurosci.
– volume: 12
  start-page: 3194
  year: 2007
  end-page: 3202
  article-title: Insulin and insulin‐like growth factor I signalling in neurons
  publication-title: Front Biosci.
– volume: 97
  start-page: 2881
  year: 2000
  end-page: 2885
  article-title: Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 21
  start-page: 5276
  year: 2001
  end-page: 5285
  article-title: ADP‐ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3‐L1 adipocytes
  publication-title: Mol. Cell. Biol.
– volume: 116
  start-page: 417
  year: 2007
  end-page: 427
  article-title: Therapeutic targeting of insulin‐regulated aminopeptidase: heads and tails?
  publication-title: Pharmacol. Ther.
– volume: 717
  start-page: 1
  year: 1996
  end-page: 11
  article-title: Effects of LY231617 and angiotensin IV on ischemia‐induced deficits in circular water maze and passive avoidance performance in rats
  publication-title: Brain Res.
– volume: 399
  start-page: 492
  year: 1998
  end-page: 512
  article-title: Immunocytochemical localization of the insulin‐responsive glucose transporter 4 (Glut4) in the rat central nervous system
  publication-title: J. Comp. Neurol.
– volume: 115
  start-page: 279
  year: 1990
  end-page: 285
  article-title: Effects of hyperinsulinemia on local cerebral insulin binding and glucose utilization in normoglycemic awake rats
  publication-title: Neurosci. Lett.
– volume: 74
  start-page: 97
  year: 1998
  end-page: 103
  article-title: Attenuation of scopolamine‐induced spatial learning impairments by an angiotensin IV analog
  publication-title: Regul. Pept.
– volume: 487
  start-page: 372
  year: 2005
  end-page: 390
  article-title: Distribution and cellular localization of insulin‐regulated aminopeptidase in the rat central nervous system
  publication-title: J. Comp. Neurol.
– volume: 275
  start-page: 4787
  year: 2000
  end-page: 4795
  article-title: Characterization of the insulin‐regulated endocytic recycling mechanism in 3T3‐L1 adipocytes using a novel reporter molecule
  publication-title: J. Biol. Chem.
– ident: e_1_2_7_37_1
  doi: 10.1523/JNEUROSCI.19-10-03952.1999
– ident: e_1_2_7_7_1
  doi: 10.1172/JCI200316888
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.050583697
– ident: e_1_2_7_35_1
  doi: 10.1016/0361-9230(93)90297-O
– ident: e_1_2_7_26_1
  doi: 10.1006/nlme.1997.3769
– ident: e_1_2_7_6_1
  doi: 10.1210/en.2005-1464
– ident: e_1_2_7_36_1
  doi: 10.1016/0006-8993(95)01454-3
– ident: e_1_2_7_33_1
  doi: 10.1074/jbc.275.7.4787
– ident: e_1_2_7_28_1
  doi: 10.1002/cne.10368
– ident: e_1_2_7_11_1
  doi: 10.1002/(SICI)1096-9861(19981005)399:4<492::AID-CNE4>3.0.CO;2-X
– ident: e_1_2_7_8_1
  doi: 10.1016/S0306-4522(01)00619-4
– ident: e_1_2_7_20_1
  doi: 10.1046/j.1471-4159.2003.01852.x
– ident: e_1_2_7_12_1
  doi: 10.1002/cne.20585
– ident: e_1_2_7_21_1
  doi: 10.1016/0304-3940(90)90469-P
– ident: e_1_2_7_2_1
  doi: 10.1074/jbc.C100512200
– ident: e_1_2_7_9_1
  doi: 10.1523/JNEUROSCI.0671-06.2006
– ident: e_1_2_7_4_1
  doi: 10.1016/j.pharmthera.2007.07.006
– ident: e_1_2_7_3_1
  doi: 10.1016/j.bbr.2004.02.012
– ident: e_1_2_7_5_1
  doi: 10.1038/sj.jcbfm.9600281
– ident: e_1_2_7_10_1
  doi: 10.2741/2306
– ident: e_1_2_7_18_1
  doi: 10.1128/MCB.21.15.5276-5285.2001
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroscience.2003.12.006
– ident: e_1_2_7_29_1
  doi: 10.1523/JNEUROSCI.1882-04.2004
– ident: e_1_2_7_38_1
  doi: 10.1152/ajpendo.1999.277.2.E259
– ident: e_1_2_7_27_1
  doi: 10.1016/S0167-0115(98)00028-7
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1471-4159.2007.04659.x
– ident: e_1_2_7_31_1
  doi: 10.1210/en.2007-1045
– ident: e_1_2_7_30_1
  doi: 10.1523/JNEUROSCI.18-04-01595.1998
– ident: e_1_2_7_22_1
  doi: 10.1016/j.coph.2007.10.009
– ident: e_1_2_7_32_1
  doi: 10.1007/s00125-003-1080-1
– ident: e_1_2_7_14_1
  doi: 10.1210/endo-107-6-1827
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroscience.2006.03.065
– volume: 267
  start-page: 7021
  year: 1992
  ident: e_1_2_7_15_1
  article-title: Cyclic AMP acutely stimulates translocation of the major insulin‐regulatable glucose transporter GLUT4
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50530-0
– ident: e_1_2_7_17_1
  doi: 10.1093/ajcn/67.4.764S
– ident: e_1_2_7_34_1
  doi: 10.1074/jbc.272.37.23323
– ident: e_1_2_7_25_1
  doi: 10.1016/S0304-3940(99)00876-9
– ident: e_1_2_7_16_1
  doi: 10.1074/jbc.270.40.23612
SSID ssj0008645
Score 2.2336168
Snippet It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory...
It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV-hemorphin 7, which have facilitatory...
It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensinIV and LVV-hemorphin7, which have facilitatory...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 588
SubjectTerms Angiotensin II - analogs & derivatives
Angiotensin II - metabolism
Animals
Cerebellum - cytology
Cerebellum - metabolism
Cystinyl Aminopeptidase - metabolism
Deoxyglucose - metabolism
Glucose - metabolism
Glucose Transport Proteins, Facilitative - metabolism
glucose transporter
Glucose Transporter Type 3 - metabolism
Glucose Transporter Type 4 - metabolism
Hemoglobins - metabolism
Hippocampus - cytology
Hippocampus - metabolism
Humans
Insulin - metabolism
Male
memory
Mice
Mice, Inbred C57BL
Mice, Knockout
Neurons - cytology
Neurons - metabolism
Peptide Fragments - metabolism
Title The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus - potential role in modulation of glucose uptake in neurones?
URI https://api.istex.fr/ark:/67375/WNG-1H7JTCCH-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2008.06347.x
https://www.ncbi.nlm.nih.gov/pubmed/18702730
https://www.proquest.com/docview/20872501
https://www.proquest.com/docview/69436083
Volume 28
WOSCitedRecordID wos000258154800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1460-9568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008645
  issn: 0953-816X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbMthedml38S6dHkbfPGxLteSnEbKmWSmhlITlzciyREMXx-Qyurf-hMHe9-P6S3aOrGRkdFDGHgwGS7JsnXN0jvTpfIS8O0h0xKzBTVZbhCAUUVgwzkIFc0tSWFmykjuyCTEYyPE4O_X4JzwL0-SH2Cy4oWY4e40KrorFn0oehXjczUMiU8bFe_An23jGirdI--NZb3SyscsydZTFmGAtlHE63sb13NjW1mTVxv9-eZMnuu3Yupmp9-h_ftNj8tD7p7TTCNQTcsdUO2S3U0FsPv1G96lDjLql-B1yv7tmi9slP0HeqAe2X199nzcU96akajqpZjViZ0qYMOmns84pnSwoJsvWmHwRiuBaMD06GQ05tEDBI6W4HmHo-aSuodC0Xi3o9dUPWs-WiG2C7iEmEstOZ6WnH6MzSz38nq7qpbpwz122TjDmH56SUe9w2O2Hnvsh1JyB7VbgOFoLFzdJChGAKCCyK2NjbWqNEjo2EdOpiiOlEWeXJJnRFnwbJbmCCFKzZ6RVwQteEFpkMRMFK5MiibmGiL-MCi5kViKZYSSzgIj1IOfaJ0ZHfo4v-VaAFOU4LJ62E4clvwxIvKlZN8lBblFn38nRpoKaXyC4ThzknwdHedwXx8Nut5_LgLxdC1oOY4n7OKoy8PuhOSlAqeK_l0gzjp_GAvK8kdDf3QP7DB5rFJDUCeKt-50fHg_w7uW_VnxFHjRYGwRPviat5Xxl3pB7-utyspjvkbtiLPe8yv4Cmdk_Jg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjGXQv3dbuw_uqHkbfPGxLseynEbKmaZeFUhKWNyPLEgtdHJOP0r31TxjsfX9c_5LdyUpGRgdl7MFgsCTL1t3p7vzz_Qh524pUwIzGj6wm90EoAj9nnPkS9pYoN0nBCm7JJsRgkIzH6ZmjA8J_Yer6EJuEG2qGtdeo4JiQ_lPLAx__d3OYyJhx8Q4cyiaPmWg1SPPDeXfU3xjmJLacxVhhzU_CeLwN7Ll1rK3dqokv_uo2V3Tbs7VbU_fhf32oR2TXeai0XYvUY3JPl3tkv11CdD79Rg-pxYzaZPwe2ems-eL2yU-QOOqg7TfX3-c1yb0uqJxOylmF6JkCtkx6ct4-o5MFxXLZCssvQhPMBtPj_mjIYQQKPinFjISmXyZVBY2m1WpBb65_0Gq2RHQTTA9Rkdh2OiscARmdGeoA-HRVLeWFvW7rdYI5f_-EjLpHw07Pd-wPvuIMrLcE19EYOLiOYogBRA6xXRFqY2KjpVChDpiKZRhIhUi7KEq1MuDdyIRLiCEVe0oaJdzgOaF5GjKRsyLKo5AriPmLIOciSQukMwyS1CNivcqZcqXRkaHja7YVIgUZLosj7sRlya48Em56VnV5kDv0ObSCtOkg5xcIrxOt7PPgOAt74nTY6fSyxCMHa0nLYC3xS44sNbx-GC4RoFbh31vEKcdHYx55Vovo7-mBhQafNfBIbCXxzvPOjk4HePbiXzsekJ3e8FM_658MPr4kD2rkDUIpX5HGcr7Sr8l9dbmcLOZvnOb-Ai3mQi4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6KXdpe-kj6UF_ZQ8lNRdKu9TgV48RxUmNMsKlvy2of1KSWhR8lveUnFHrvj8sv6cxKdnFJIZQeDAbvrlfamdlvVp_mI-RdK1IBswYfstrcB6MI_Jxx5kvYW6Lcpppp7sQmksEgnUyyYS0HhO_CVPUhtgdu6BkuXqODm1LbP7088PF9t5oTGTOevAdA2eQtAA4N0jw6747728Ccxk6zGCus-WkYT3aJPTeOtbNbNfHGX94ERXeRrduauo_-60U9Jg9rhErblUk9IXdMsUf22wVk57Nv9JA6zqg7jN8j9zsbvbh98hMsjtbU9uur74tK5N5oKmfTYl4ie0bDlklPz9tDOl1SLJetsPwiNMHTYHrSH484jEABk1I8kTD087QsodGsXC_p9dUPWs5XyG6C6SErEtvO5roWIKNzS2sCPl2XK3nhfnf1OiGcf3hKxt3jUafn1-oPvuIMorcE6GgtfLiJYsgBkhxyOx0aa2NrZKJCEzAVyzCQCpl2UZQZZQHdyJRLyCEVe0YaBfzBC0LzLGRJznSURyFXkPPrIOdJmmmUMwzSzCPJZpWFqkujo0LHF7GTIgUCl6UW7sRlEZceCbc9y6o8yC36HDpD2naQiwuk1yUt8WlwIsJecjbqdHoi9cjBxtIErCU-yZGFgdsPw6UJuFX49xZxxvHSmEeeVyb6e3oQoQGzBh6JnSXeet7i-GyA317-a8cDcm941BX908HHV-RBRbxBJuVr0lgt1uYNuau-rqbLxdvacX8BVhJBqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+insulin-regulated+aminopeptidase+IRAP+is+colocalised+with+GLUT4+in+the+mouse+hippocampus--potential+role+in+modulation+of+glucose+uptake+in+neurones%3F&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Fernando%2C+Ruani+N&rft.au=Albiston%2C+Anthony+L&rft.au=Chai%2C+Siew+Y&rft.date=2008-08-01&rft.issn=1460-9568&rft.eissn=1460-9568&rft.volume=28&rft.issue=3&rft.spage=588&rft_id=info:doi/10.1111%2Fj.1460-9568.2008.06347.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon