The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus - potential role in modulation of glucose uptake in neurones?
It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin‐responsive glucose transporter GLUT4 in specialised v...
Uložené v:
| Vydané v: | The European journal of neuroscience Ročník 28; číslo 3; s. 588 - 598 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford, UK
Blackwell Publishing Ltd
01.08.2008
|
| Predmet: | |
| ISSN: | 0953-816X, 1460-9568, 1460-9568 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin‐responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin‐responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium‐induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV‐hemorphin 7 enhanced this activity‐dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV‐hemorphin 7 is region‐specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity‐dependent glucose uptake in hippocampal neurones. |
|---|---|
| AbstractList | It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV-hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin-responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin-responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium-induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV-hemorphin 7 enhanced this activity-dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV-hemorphin 7 is region-specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity-dependent glucose uptake in hippocampal neurones.It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV-hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin-responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin-responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium-induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV-hemorphin 7 enhanced this activity-dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV-hemorphin 7 is region-specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity-dependent glucose uptake in hippocampal neurones. It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensinIV and LVV-hemorphin7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin-responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and-or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin-responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium-induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. AngiotensinIV and LVV-hemorphin7 enhanced this activity-dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensinIV and LVV-hemorphin7 is region-specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity-dependent glucose uptake in hippocampal neurones. It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin‐responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin‐responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium‐induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV‐hemorphin 7 enhanced this activity‐dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV‐hemorphin 7 is region‐specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity‐dependent glucose uptake in hippocampal neurones. |
| Author | Albiston, Anthony L. Chai, Siew Y. Fernando, Ruani N. |
| Author_xml | – sequence: 1 givenname: Ruani N. surname: Fernando fullname: Fernando, Ruani N. organization: Howard Florey Institute, The University of Melbourne, Parkville, Vic. 3010, Australia – sequence: 2 givenname: Anthony L. surname: Albiston fullname: Albiston, Anthony L. organization: Howard Florey Institute, The University of Melbourne, Parkville, Vic. 3010, Australia – sequence: 3 givenname: Siew Y. surname: Chai fullname: Chai, Siew Y. organization: Howard Florey Institute, The University of Melbourne, Parkville, Vic. 3010, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18702730$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkd9u0zAUxi00xLrBKyBfcZdg54_tXACaqtFuqgZCneDO8pyT1Z0Th9jRulfhaXHaMSRumCXLls7v-47O-U7QUec6QAhTktJ43m9TWjCSVCUTaUaISAnLC57uXqDZU-EIzUhV5omg7McxOvF-SyLJivIVOqaCk4znZIZ-rTeATedHa7pkgNvRqgA1Vq3pXA99MLXygC--nX3FxmPtrNPKGh-RexM2eLG6XhdRj0O0ad0Y2Y3p-wi1_ehxgnsXoAtGWTw4O3WKVD01Ma7DrsG3dtQuqsY-qLt9vYNxiNP6T6_Ry0ZZD28e31N0_fl8PV8mqy-Li_nZKtFFzniiSiKaJt4CMsZ5xm8EpzWFpmENKK4pkFwzRYnSZVmwLKtANxWhShSqqoTOT9G7g28_uJ8j-CBb4zVYqzqIE0lWxT5E5P8FMyJ4VhIawbeP4HjTQi37wbRqeJB_1h4BcQD04LwfoPmLEDklLLdyClJOQcopYblPWO6i9OM_Um3Cfp1hUMY-x-DDweDeWHh4dmN5fnk1_aI-OeiND7B70qvhTjKe81J-v1pIuuSX6_l8KUX-GzNk0JM |
| CitedBy_id | crossref_primary_10_1016_j_mce_2016_03_035 crossref_primary_10_3389_fendo_2024_1293221 crossref_primary_10_1007_s13205_021_02738_3 crossref_primary_10_1016_j_ejphar_2010_05_041 crossref_primary_10_1042_BST0390891 crossref_primary_10_3390_cells9051114 crossref_primary_10_1016_j_physbeh_2012_04_019 crossref_primary_10_1208_s12248_010_9217_x crossref_primary_10_3389_fendo_2022_1021796 crossref_primary_10_1146_annurev_anchem_061417_125619 crossref_primary_10_3390_ijms252212016 crossref_primary_10_1016_j_npep_2015_09_004 crossref_primary_10_1111_jnc_14880 crossref_primary_10_1016_j_phrs_2020_104855 crossref_primary_10_1016_j_pneurobio_2011_07_001 crossref_primary_10_1007_s00424_012_1102_2 crossref_primary_10_1021_acs_jcim_5c00869 crossref_primary_10_1111_j_1476_5381_2011_01402_x crossref_primary_10_3233_JAD_180707 crossref_primary_10_1084_jem_20160534 crossref_primary_10_1124_pr_114_010454 crossref_primary_10_1002_jnr_24064 crossref_primary_10_1016_j_ijcard_2016_10_069 crossref_primary_10_1007_s00406_016_0757_7 crossref_primary_10_1016_j_bbr_2018_12_042 crossref_primary_10_3389_fnins_2020_586314 crossref_primary_10_3390_cancers12113252 crossref_primary_10_1016_j_jns_2012_03_002 crossref_primary_10_1097_XCE_0000000000000087 crossref_primary_10_1007_s11906_014_0440_1 crossref_primary_10_1016_j_mce_2011_03_005 crossref_primary_10_1016_j_nbd_2014_04_018 crossref_primary_10_1016_j_brainres_2009_08_005 crossref_primary_10_1155_2012_789671 crossref_primary_10_3389_fmolb_2021_685101 crossref_primary_10_2337_db16_0917 crossref_primary_10_1124_mol_115_102533 crossref_primary_10_1172_JCI59903 crossref_primary_10_1016_j_brainresbull_2020_12_008 crossref_primary_10_1007_s40336_019_00339_y crossref_primary_10_1016_j_pneurobio_2014_11_004 crossref_primary_10_3389_fmolb_2020_00094 crossref_primary_10_1016_j_neuint_2020_104707 crossref_primary_10_1002_pro_2604 crossref_primary_10_1111_febs_15540 crossref_primary_10_1089_neu_2011_1824 crossref_primary_10_1007_s13311_023_01435_8 crossref_primary_10_1523_JNEUROSCI_0858_09_2009 crossref_primary_10_1523_JNEUROSCI_1700_16_2016 crossref_primary_10_1016_j_neuron_2016_12_020 crossref_primary_10_1016_j_tcb_2020_05_007 crossref_primary_10_1016_j_jep_2023_116475 crossref_primary_10_1016_j_mce_2009_07_020 crossref_primary_10_1016_j_peptides_2010_02_019 crossref_primary_10_3390_life14121547 crossref_primary_10_1016_j_nlm_2009_07_011 crossref_primary_10_1016_j_expneurol_2019_113076 crossref_primary_10_1016_j_lfs_2015_04_023 crossref_primary_10_1007_s13238_013_3005_1 crossref_primary_10_1016_j_ejphar_2012_02_048 crossref_primary_10_1016_j_nlm_2016_09_017 crossref_primary_10_1016_j_seizure_2011_04_015 crossref_primary_10_1002_j_2040_4603_2012_tb00424_x crossref_primary_10_1016_j_regpep_2010_09_003 crossref_primary_10_1096_fj_08_112227 crossref_primary_10_3390_antiox10050740 crossref_primary_10_1016_j_mce_2008_11_015 crossref_primary_10_1016_j_jocn_2017_08_055 |
| Cites_doi | 10.1523/JNEUROSCI.19-10-03952.1999 10.1172/JCI200316888 10.1073/pnas.050583697 10.1016/0361-9230(93)90297-O 10.1006/nlme.1997.3769 10.1210/en.2005-1464 10.1016/0006-8993(95)01454-3 10.1074/jbc.275.7.4787 10.1002/cne.10368 10.1002/(SICI)1096-9861(19981005)399:4<492::AID-CNE4>3.0.CO;2-X 10.1016/S0306-4522(01)00619-4 10.1046/j.1471-4159.2003.01852.x 10.1002/cne.20585 10.1016/0304-3940(90)90469-P 10.1074/jbc.C100512200 10.1523/JNEUROSCI.0671-06.2006 10.1016/j.pharmthera.2007.07.006 10.1016/j.bbr.2004.02.012 10.1038/sj.jcbfm.9600281 10.2741/2306 10.1128/MCB.21.15.5276-5285.2001 10.1016/j.neuroscience.2003.12.006 10.1523/JNEUROSCI.1882-04.2004 10.1152/ajpendo.1999.277.2.E259 10.1016/S0167-0115(98)00028-7 10.1111/j.1471-4159.2007.04659.x 10.1210/en.2007-1045 10.1523/JNEUROSCI.18-04-01595.1998 10.1016/j.coph.2007.10.009 10.1007/s00125-003-1080-1 10.1210/endo-107-6-1827 10.1016/j.neuroscience.2006.03.065 10.1016/S0021-9258(19)50530-0 10.1093/ajcn/67.4.764S 10.1074/jbc.272.37.23323 10.1016/S0304-3940(99)00876-9 10.1074/jbc.270.40.23612 |
| ContentType | Journal Article |
| Copyright | The Authors (2008). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd |
| Copyright_xml | – notice: The Authors (2008). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
| DOI | 10.1111/j.1460-9568.2008.06347.x |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1460-9568 |
| EndPage | 598 |
| ExternalDocumentID | 18702730 10_1111_j_1460_9568_2008_06347_x EJN6347 ark_67375_WNG_1H7JTCCH_8 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RIG WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7TK 7X8 |
| ID | FETCH-LOGICAL-c4367-a508ff08f4e267727b871d1eff6fea7c1e03c6a10ac5546229ecf901a84a998c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258154800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0953-816X 1460-9568 |
| IngestDate | Sun Nov 09 12:15:25 EST 2025 Sun Nov 09 11:00:24 EST 2025 Mon Jul 21 06:00:57 EDT 2025 Sat Nov 29 06:08:50 EST 2025 Tue Nov 18 21:08:26 EST 2025 Wed Jan 22 16:58:44 EST 2025 Sun Sep 21 06:18:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4367-a508ff08f4e267727b871d1eff6fea7c1e03c6a10ac5546229ecf901a84a998c3 |
| Notes | istex:1EF88E659618099A00AC189EBC0BE1C9FD7CB8F7 ark:/67375/WNG-1H7JTCCH-8 ArticleID:EJN6347 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 18702730 |
| PQID | 20872501 |
| PQPubID | 23462 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_69436083 proquest_miscellaneous_20872501 pubmed_primary_18702730 crossref_primary_10_1111_j_1460_9568_2008_06347_x crossref_citationtrail_10_1111_j_1460_9568_2008_06347_x wiley_primary_10_1111_j_1460_9568_2008_06347_x_EJN6347 istex_primary_ark_67375_WNG_1H7JTCCH_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-08 August 2008 2008-08-00 2008-Aug 20080801 |
| PublicationDateYYYYMMDD | 2008-08-01 |
| PublicationDate_xml | – month: 08 year: 2008 text: 2008-08 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: France |
| PublicationTitle | The European journal of neuroscience |
| PublicationTitleAlternate | Eur J Neurosci |
| PublicationYear | 2008 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Dash, P.K., Orsi, S.A. & Moore, A.N. (2006) Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-Mammalian target of rapamycin pathway. J. Neurosci., 26, 8048-8056. Wright, J.W., Clemens, J.A., Panetta, J.A., Smalstig, E.B., Weatherly, L.A., Kramar, E.A., Pederson, E.S., Mungall, B.H. & Harding, J.W. (1996) Effects of LY231617 and angiotensin IV on ischemia-induced deficits in circular water maze and passive avoidance performance in rats. Brain Res., 717, 1-11. Choeiri, C., Staines, W. & Messier, C. (2002) Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience, 111, 19-34. Subtil, A., Lampson, M.A., Keller, S.R. & McGraw, T.E. (2000) Characterization of the insulin-regulated endocytic recycling mechanism in 3T3-L1 adipocytes using a novel reporter molecule. J. Biol. Chem., 275, 4787-4795. Wright, J.W., Stubley, L., Pederson, E.S., Kramar, E.A., Hanesworth, J.M. & Harding, J.W. (1999) Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J. Neurosci., 19, 3952-3961. Lee, J., Albiston, A.L., Allen, A.M., Mendelsohn, F.A., Ping, S.E., Barrett, G.L., Murphy, M., Morris, M.J., McDowall, S.G. & Chai, S.Y. (2004) Effect of I.C.V. injection of AT(4) receptor ligands, NLE(1)-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience, 124, 341-349. Parent, M.B., Leaurey, P.T., Wilkniss, S. & Gold, P.E. (1997) Intraseptal infusions of muscimol impair spontaneous alternation performance: infusions of glucose into the hippocampus, but not the medial septum, reverse the deficit. Neurobiol. Learn. Mem., 68, 75-85. Yu, B., Poirier, L.A. & Nagy, L.E. (1999) Mobilization of GLUT-4 from intracellular vesicles by insulin and K(+) depolarization in cultured H9c2 myotubes. Am. J. Physiol., 277, E259-E267. Benomar, Y., Naour, N., Aubourg, A., Bailleux, V., Gertler, A., Djiane, J., Guerre-Millo, M. & Taouis, M. (2006) Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism. Endocrinology, 147, 2550-2556. Rudich, A., Konrad, D., Torok, D., Ben-Romano, R., Huang, C., Niu, W., Garg, R.R., Wijesekara, N., Germinario, R.J., Bilan, P.J. & Klip, A. (2003) Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia, 46, 649-658. Waters, S.B., D'Auria, M., Martin, S.S., Nguyen, C., Kozma, L.M. & Luskey, K.L. (1997) The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes. J. Biol. Chem., 272, 23323-23327. McNay, E.C., Fries, T.M. & Gold, P.E. (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl Acad. Sci. USA, 97, 2881-2885. Lew, R.A., Mustafa, T., Ye, S., McDowall, S.G., Chai, S.Y. & Albiston, A.L. (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J. Neurochem., 86, 344-350. Wright, J.W., Miller-Wing, A.V., Shaffer, M.J., Higginson, C., Wright, D.E., Hanesworth, J.M. & Harding, J.W. (1993) Angiotensin II(3-8) (ANG IV) hippocampal binding: potential role in the facilitation of memory. Brain Res. Bull., 32, 497-502. Albiston, A.L., McDowall, S.G., Matsacos, D., Sim, P., Clune, E., Mustafa, T., Lee, J., Mendelsohn, F.A., Simpson, R.J., Connolly, L.M. & Chai, S.Y. (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin- regulated aminopeptidase. J. Biol. Chem., 276, 48623-48626. McNay, E.C. (2007) Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr. Opin. Pharmacol., 7, 628-632. Bak, L.K., Schousboe, A., Sonnewald, U. & Waagepetersen, H.S. (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J. Cereb. Blood Flow Metab., 26, 1285-1297. Keller, S.R., Scott, H.M., Mastick, C.C., Aebersold, R. & Lienhard, G.E. (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J. Biol. Chem., 270, 23612-23618. Roher, N., Samokhvalov, V., Diaz, M., Mackenzie, S., Klip, A. & Planas, J.V. (2008) The proinflammatory cytokine tumor necrosis factor-{alpha} increases the amount of glucose transporter-4 at the surface of muscle cells independently of changes in interleukin-6. Endocrinology, 149, 1880-1889. Lawrence, J.T. & Birnbaum, M.J. (2001) ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3-L1 adipocytes. Mol. Cell. Biol., 21, 5276-5285. Kelada, A.S., Macaulay, S.L. & Proietto, J. (1992) Cyclic AMP acutely stimulates translocation of the major insulin-regulatable glucose transporter GLUT4. J. Biol. Chem., 267, 7021-7025. Fernando, R.N., Larm, J., Albiston, A.L. & Chai, S.Y. (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. J. Comp. Neurol., 487, 372-390. Piroli, G.G., Grillo, C.A., Hoskin, E.K., Znamensky, V., Katz, E.B., Milner, T.A., McEwen, B.S., Charron, M.J. & Reagan, L.P. (2002) Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J. Comp. Neurol., 452, 103-114. Porras, O.H., Loaiza, A. & Barros, L.F. (2004) Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J. Neurosci., 24, 9669-9673. Marfaing, P., Penicaud, L., Broer, Y., Mraovitch, S., Calando, Y. & Picon, L. (1990) Effects of hyperinsulinemia on local cerebral insulin binding and glucose utilization in normoglycemic awake rats. Neurosci. Lett., 115, 279-285. Ragozzino, M.E., Pal, S.N., Unick, K., Stefani, M.R. & Gold, P.E. (1998) Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. J. Neurosci., 18, 1595-1601. Goodner, C.J., Hom, F.G. & Berrie, M.A. (1980) Investigation of the effect of insulin upon regional brain glucose metabolism in the rat in vivo. Endocrinology, 107, 1827-1832. Albiston, A.L., Peck, G.R., Yeatman, H.R., Fernando, R., Ye, S. & Chai, S.Y. (2007) Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails? Pharmacol. Ther., 116, 417-427. Davila, D., Piriz, J., Trejo, J.L., Nunez, A. & Torres-Aleman, I. (2007) Insulin and insulin-like growth factor I signalling in neurons. Front Biosci., 12, 3194-3202. Albiston, A.L., Pederson, E.S., Burns, P., Purcell, B., Wright, J.W., Harding, J.W., Mendelsohn, F.A., Weisinger, R.S. & Chai, S.Y. (2004) Attenuation of scopolamine-induced learning deficits by LVV-hemorphin-7 in rats in the passive avoidance and water maze paradigms. Behav. Brain Res., 154, 239-243. Pederson, E.S., Harding, J.W. & Wright, J.W. (1998) Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regul. Pept., 74, 97-103. Orzi, F., Morisco, C., Colangelo, V., Di Grezia, R. & Lembo, G. (2000) Lack of effect of insulin on glucose utilization of the hypothalamus in normotensive and hypertensive rats. Neurosci. Lett., 278, 29-32. Burcelin, R., Crivelli, V., Perrin, C., Da Costa, A., Mu, J., Kahn, B.B., Birnbaum, M.J., Kahn, C.R., Vollenweider, P. & Thorens, B. (2003) GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization. J. Clin. Invest., 111, 1555-1562. Korol, D.L. & Gold, P.E. (1998) Glucose, memory, and aging. Am. J. Clin. Nutr., 67, 764S-771S. Morgenthaler, F.D., Kraftsik, R., Catsicas, S., Magistretti, P.J. & Chatton, J.Y. (2006) Glucose and lactate are equally effective in energizing activity-dependent synaptic vesicle turnover in purified cortical neurons. Neuroscience, 141, 157-165. El Messari, S., Leloup, C., Quignon, M., Brisorgueil, M.J., Penicaud, L. & Arluison, M. (1998) Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J. Comp. Neurol., 399, 492-512. Fernando, R.N., Luff, S.E., Albiston, A.L. & Chai, S.Y. (2007) Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. J. Neurochem., 102, 967-976. 2007; 102 2004; 124 2000; 278 1997; 272 1992; 267 2002; 111 1997; 68 2002; 452 2004; 24 2008; 149 2000; 275 1998; 399 2007; 12 2003; 111 1998; 67 1995; 270 2001; 21 2001; 276 1996; 717 2004; 154 1998; 18 1980; 107 2007; 116 1990; 115 1999; 19 2005; 487 1993; 32 2006; 26 2000; 97 2006; 141 2003; 46 2007; 7 1999; 277 1998; 74 2003; 86 2006; 147 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 Kelada A.S. (e_1_2_7_15_1) 1992; 267 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
| References_xml | – reference: Bak, L.K., Schousboe, A., Sonnewald, U. & Waagepetersen, H.S. (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J. Cereb. Blood Flow Metab., 26, 1285-1297. – reference: Roher, N., Samokhvalov, V., Diaz, M., Mackenzie, S., Klip, A. & Planas, J.V. (2008) The proinflammatory cytokine tumor necrosis factor-{alpha} increases the amount of glucose transporter-4 at the surface of muscle cells independently of changes in interleukin-6. Endocrinology, 149, 1880-1889. – reference: Marfaing, P., Penicaud, L., Broer, Y., Mraovitch, S., Calando, Y. & Picon, L. (1990) Effects of hyperinsulinemia on local cerebral insulin binding and glucose utilization in normoglycemic awake rats. Neurosci. Lett., 115, 279-285. – reference: Parent, M.B., Leaurey, P.T., Wilkniss, S. & Gold, P.E. (1997) Intraseptal infusions of muscimol impair spontaneous alternation performance: infusions of glucose into the hippocampus, but not the medial septum, reverse the deficit. Neurobiol. Learn. Mem., 68, 75-85. – reference: Benomar, Y., Naour, N., Aubourg, A., Bailleux, V., Gertler, A., Djiane, J., Guerre-Millo, M. & Taouis, M. (2006) Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism. Endocrinology, 147, 2550-2556. – reference: Korol, D.L. & Gold, P.E. (1998) Glucose, memory, and aging. Am. J. Clin. Nutr., 67, 764S-771S. – reference: Wright, J.W., Miller-Wing, A.V., Shaffer, M.J., Higginson, C., Wright, D.E., Hanesworth, J.M. & Harding, J.W. (1993) Angiotensin II(3-8) (ANG IV) hippocampal binding: potential role in the facilitation of memory. Brain Res. Bull., 32, 497-502. – reference: Fernando, R.N., Larm, J., Albiston, A.L. & Chai, S.Y. (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. J. Comp. Neurol., 487, 372-390. – reference: Keller, S.R., Scott, H.M., Mastick, C.C., Aebersold, R. & Lienhard, G.E. (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J. Biol. Chem., 270, 23612-23618. – reference: Burcelin, R., Crivelli, V., Perrin, C., Da Costa, A., Mu, J., Kahn, B.B., Birnbaum, M.J., Kahn, C.R., Vollenweider, P. & Thorens, B. (2003) GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization. J. Clin. Invest., 111, 1555-1562. – reference: McNay, E.C. (2007) Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr. Opin. Pharmacol., 7, 628-632. – reference: Dash, P.K., Orsi, S.A. & Moore, A.N. (2006) Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-Mammalian target of rapamycin pathway. J. Neurosci., 26, 8048-8056. – reference: Wright, J.W., Clemens, J.A., Panetta, J.A., Smalstig, E.B., Weatherly, L.A., Kramar, E.A., Pederson, E.S., Mungall, B.H. & Harding, J.W. (1996) Effects of LY231617 and angiotensin IV on ischemia-induced deficits in circular water maze and passive avoidance performance in rats. Brain Res., 717, 1-11. – reference: McNay, E.C., Fries, T.M. & Gold, P.E. (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl Acad. Sci. USA, 97, 2881-2885. – reference: Morgenthaler, F.D., Kraftsik, R., Catsicas, S., Magistretti, P.J. & Chatton, J.Y. (2006) Glucose and lactate are equally effective in energizing activity-dependent synaptic vesicle turnover in purified cortical neurons. Neuroscience, 141, 157-165. – reference: Subtil, A., Lampson, M.A., Keller, S.R. & McGraw, T.E. (2000) Characterization of the insulin-regulated endocytic recycling mechanism in 3T3-L1 adipocytes using a novel reporter molecule. J. Biol. Chem., 275, 4787-4795. – reference: Choeiri, C., Staines, W. & Messier, C. (2002) Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience, 111, 19-34. – reference: El Messari, S., Leloup, C., Quignon, M., Brisorgueil, M.J., Penicaud, L. & Arluison, M. (1998) Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J. Comp. Neurol., 399, 492-512. – reference: Wright, J.W., Stubley, L., Pederson, E.S., Kramar, E.A., Hanesworth, J.M. & Harding, J.W. (1999) Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J. Neurosci., 19, 3952-3961. – reference: Piroli, G.G., Grillo, C.A., Hoskin, E.K., Znamensky, V., Katz, E.B., Milner, T.A., McEwen, B.S., Charron, M.J. & Reagan, L.P. (2002) Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J. Comp. Neurol., 452, 103-114. – reference: Rudich, A., Konrad, D., Torok, D., Ben-Romano, R., Huang, C., Niu, W., Garg, R.R., Wijesekara, N., Germinario, R.J., Bilan, P.J. & Klip, A. (2003) Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia, 46, 649-658. – reference: Yu, B., Poirier, L.A. & Nagy, L.E. (1999) Mobilization of GLUT-4 from intracellular vesicles by insulin and K(+) depolarization in cultured H9c2 myotubes. Am. J. Physiol., 277, E259-E267. – reference: Kelada, A.S., Macaulay, S.L. & Proietto, J. (1992) Cyclic AMP acutely stimulates translocation of the major insulin-regulatable glucose transporter GLUT4. J. Biol. Chem., 267, 7021-7025. – reference: Lee, J., Albiston, A.L., Allen, A.M., Mendelsohn, F.A., Ping, S.E., Barrett, G.L., Murphy, M., Morris, M.J., McDowall, S.G. & Chai, S.Y. (2004) Effect of I.C.V. injection of AT(4) receptor ligands, NLE(1)-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats. Neuroscience, 124, 341-349. – reference: Waters, S.B., D'Auria, M., Martin, S.S., Nguyen, C., Kozma, L.M. & Luskey, K.L. (1997) The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes. J. Biol. Chem., 272, 23323-23327. – reference: Lew, R.A., Mustafa, T., Ye, S., McDowall, S.G., Chai, S.Y. & Albiston, A.L. (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J. Neurochem., 86, 344-350. – reference: Pederson, E.S., Harding, J.W. & Wright, J.W. (1998) Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regul. Pept., 74, 97-103. – reference: Porras, O.H., Loaiza, A. & Barros, L.F. (2004) Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J. Neurosci., 24, 9669-9673. – reference: Albiston, A.L., Pederson, E.S., Burns, P., Purcell, B., Wright, J.W., Harding, J.W., Mendelsohn, F.A., Weisinger, R.S. & Chai, S.Y. (2004) Attenuation of scopolamine-induced learning deficits by LVV-hemorphin-7 in rats in the passive avoidance and water maze paradigms. Behav. Brain Res., 154, 239-243. – reference: Fernando, R.N., Luff, S.E., Albiston, A.L. & Chai, S.Y. (2007) Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. J. Neurochem., 102, 967-976. – reference: Davila, D., Piriz, J., Trejo, J.L., Nunez, A. & Torres-Aleman, I. (2007) Insulin and insulin-like growth factor I signalling in neurons. Front Biosci., 12, 3194-3202. – reference: Lawrence, J.T. & Birnbaum, M.J. (2001) ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3-L1 adipocytes. Mol. Cell. Biol., 21, 5276-5285. – reference: Albiston, A.L., McDowall, S.G., Matsacos, D., Sim, P., Clune, E., Mustafa, T., Lee, J., Mendelsohn, F.A., Simpson, R.J., Connolly, L.M. & Chai, S.Y. (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin- regulated aminopeptidase. J. Biol. Chem., 276, 48623-48626. – reference: Goodner, C.J., Hom, F.G. & Berrie, M.A. (1980) Investigation of the effect of insulin upon regional brain glucose metabolism in the rat in vivo. Endocrinology, 107, 1827-1832. – reference: Ragozzino, M.E., Pal, S.N., Unick, K., Stefani, M.R. & Gold, P.E. (1998) Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. J. Neurosci., 18, 1595-1601. – reference: Orzi, F., Morisco, C., Colangelo, V., Di Grezia, R. & Lembo, G. (2000) Lack of effect of insulin on glucose utilization of the hypothalamus in normotensive and hypertensive rats. Neurosci. Lett., 278, 29-32. – reference: Albiston, A.L., Peck, G.R., Yeatman, H.R., Fernando, R., Ye, S. & Chai, S.Y. (2007) Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails? Pharmacol. Ther., 116, 417-427. – volume: 67 start-page: 764S year: 1998 end-page: 771S article-title: Glucose, memory, and aging publication-title: Am. J. Clin. Nutr. – volume: 124 start-page: 341 year: 2004 end-page: 349 article-title: Effect of I.C.V. injection of AT(4) receptor ligands, NLE(1)‐angiotensin IV and LVV‐hemorphin 7, on spatial learning in rats publication-title: Neuroscience – volume: 149 start-page: 1880 year: 2008 end-page: 1889 article-title: The proinflammatory cytokine tumor necrosis factor‐{alpha} increases the amount of glucose transporter‐4 at the surface of muscle cells independently of changes in interleukin‐6 publication-title: Endocrinology – volume: 102 start-page: 967 year: 2007 end-page: 976 article-title: Sub‐cellular localization of insulin‐regulated membrane aminopeptidase, IRAP to vesicles in neurons publication-title: J. Neurochem. – volume: 278 start-page: 29 year: 2000 end-page: 32 article-title: Lack of effect of insulin on glucose utilization of the hypothalamus in normotensive and hypertensive rats publication-title: Neurosci. Lett. – volume: 26 start-page: 1285 year: 2006 end-page: 1297 article-title: Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons publication-title: J. Cereb. Blood Flow Metab. – volume: 272 start-page: 23323 year: 1997 end-page: 23327 article-title: The amino terminus of insulin‐responsive aminopeptidase causes Glut4 translocation in 3T3‐L1 adipocytes publication-title: J. Biol. Chem. – volume: 147 start-page: 2550 year: 2006 end-page: 2556 article-title: Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3‐kinase‐ dependent mechanism publication-title: Endocrinology – volume: 18 start-page: 1595 year: 1998 end-page: 1601 article-title: Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections publication-title: J. Neurosci. – volume: 154 start-page: 239 year: 2004 end-page: 243 article-title: Attenuation of scopolamine‐induced learning deficits by LVV‐hemorphin‐7 in rats in the passive avoidance and water maze paradigms publication-title: Behav. Brain Res. – volume: 277 start-page: E259 year: 1999 end-page: E267 article-title: Mobilization of GLUT‐4 from intracellular vesicles by insulin and K(+) depolarization in cultured H9c2 myotubes publication-title: Am. J. Physiol. – volume: 111 start-page: 1555 year: 2003 end-page: 1562 article-title: GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor‐stimulated muscle glucose utilization publication-title: J. Clin. Invest. – volume: 46 start-page: 649 year: 2003 end-page: 658 article-title: Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues publication-title: Diabetologia – volume: 24 start-page: 9669 year: 2004 end-page: 9673 article-title: Glutamate mediates acute glucose transport inhibition in hippocampal neurons publication-title: J. Neurosci. – volume: 452 start-page: 103 year: 2002 end-page: 114 article-title: Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus publication-title: J. Comp. Neurol. – volume: 267 start-page: 7021 year: 1992 end-page: 7025 article-title: Cyclic AMP acutely stimulates translocation of the major insulin‐regulatable glucose transporter GLUT4 publication-title: J. Biol. Chem. – volume: 111 start-page: 19 year: 2002 end-page: 34 article-title: Immunohistochemical localization and quantification of glucose transporters in the mouse brain publication-title: Neuroscience – volume: 7 start-page: 628 year: 2007 end-page: 632 article-title: Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function publication-title: Curr. Opin. Pharmacol. – volume: 86 start-page: 344 year: 2003 end-page: 350 article-title: Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP) publication-title: J. Neurochem. – volume: 276 start-page: 48623 year: 2001 end-page: 48626 article-title: Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin‐ regulated aminopeptidase publication-title: J. Biol. Chem. – volume: 19 start-page: 3952 year: 1999 end-page: 3961 article-title: Contributions of the brain angiotensin IV‐AT4 receptor subtype system to spatial learning publication-title: J. Neurosci. – volume: 107 start-page: 1827 year: 1980 end-page: 1832 article-title: Investigation of the effect of insulin upon regional brain glucose metabolism in the rat in vivo publication-title: Endocrinology – volume: 141 start-page: 157 year: 2006 end-page: 165 article-title: Glucose and lactate are equally effective in energizing activity‐dependent synaptic vesicle turnover in purified cortical neurons publication-title: Neuroscience – volume: 68 start-page: 75 year: 1997 end-page: 85 article-title: Intraseptal infusions of muscimol impair spontaneous alternation performance: infusions of glucose into the hippocampus, but not the medial septum, reverse the deficit publication-title: Neurobiol. Learn. Mem. – volume: 270 start-page: 23612 year: 1995 end-page: 23618 article-title: Cloning and characterization of a novel insulin‐regulated membrane aminopeptidase from Glut4 vesicles publication-title: J. Biol. Chem. – volume: 32 start-page: 497 year: 1993 end-page: 502 article-title: Angiotensin II(3‐8) (ANG IV) hippocampal binding: potential role in the facilitation of memory publication-title: Brain Res. Bull. – volume: 26 start-page: 8048 year: 2006 end-page: 8056 article-title: Spatial memory formation and memory‐enhancing effect of glucose involves activation of the tuberous sclerosis complex‐Mammalian target of rapamycin pathway publication-title: J. Neurosci. – volume: 12 start-page: 3194 year: 2007 end-page: 3202 article-title: Insulin and insulin‐like growth factor I signalling in neurons publication-title: Front Biosci. – volume: 97 start-page: 2881 year: 2000 end-page: 2885 article-title: Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task publication-title: Proc. Natl Acad. Sci. USA – volume: 21 start-page: 5276 year: 2001 end-page: 5285 article-title: ADP‐ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3‐L1 adipocytes publication-title: Mol. Cell. Biol. – volume: 116 start-page: 417 year: 2007 end-page: 427 article-title: Therapeutic targeting of insulin‐regulated aminopeptidase: heads and tails? publication-title: Pharmacol. Ther. – volume: 717 start-page: 1 year: 1996 end-page: 11 article-title: Effects of LY231617 and angiotensin IV on ischemia‐induced deficits in circular water maze and passive avoidance performance in rats publication-title: Brain Res. – volume: 399 start-page: 492 year: 1998 end-page: 512 article-title: Immunocytochemical localization of the insulin‐responsive glucose transporter 4 (Glut4) in the rat central nervous system publication-title: J. Comp. Neurol. – volume: 115 start-page: 279 year: 1990 end-page: 285 article-title: Effects of hyperinsulinemia on local cerebral insulin binding and glucose utilization in normoglycemic awake rats publication-title: Neurosci. Lett. – volume: 74 start-page: 97 year: 1998 end-page: 103 article-title: Attenuation of scopolamine‐induced spatial learning impairments by an angiotensin IV analog publication-title: Regul. Pept. – volume: 487 start-page: 372 year: 2005 end-page: 390 article-title: Distribution and cellular localization of insulin‐regulated aminopeptidase in the rat central nervous system publication-title: J. Comp. Neurol. – volume: 275 start-page: 4787 year: 2000 end-page: 4795 article-title: Characterization of the insulin‐regulated endocytic recycling mechanism in 3T3‐L1 adipocytes using a novel reporter molecule publication-title: J. Biol. Chem. – ident: e_1_2_7_37_1 doi: 10.1523/JNEUROSCI.19-10-03952.1999 – ident: e_1_2_7_7_1 doi: 10.1172/JCI200316888 – ident: e_1_2_7_23_1 doi: 10.1073/pnas.050583697 – ident: e_1_2_7_35_1 doi: 10.1016/0361-9230(93)90297-O – ident: e_1_2_7_26_1 doi: 10.1006/nlme.1997.3769 – ident: e_1_2_7_6_1 doi: 10.1210/en.2005-1464 – ident: e_1_2_7_36_1 doi: 10.1016/0006-8993(95)01454-3 – ident: e_1_2_7_33_1 doi: 10.1074/jbc.275.7.4787 – ident: e_1_2_7_28_1 doi: 10.1002/cne.10368 – ident: e_1_2_7_11_1 doi: 10.1002/(SICI)1096-9861(19981005)399:4<492::AID-CNE4>3.0.CO;2-X – ident: e_1_2_7_8_1 doi: 10.1016/S0306-4522(01)00619-4 – ident: e_1_2_7_20_1 doi: 10.1046/j.1471-4159.2003.01852.x – ident: e_1_2_7_12_1 doi: 10.1002/cne.20585 – ident: e_1_2_7_21_1 doi: 10.1016/0304-3940(90)90469-P – ident: e_1_2_7_2_1 doi: 10.1074/jbc.C100512200 – ident: e_1_2_7_9_1 doi: 10.1523/JNEUROSCI.0671-06.2006 – ident: e_1_2_7_4_1 doi: 10.1016/j.pharmthera.2007.07.006 – ident: e_1_2_7_3_1 doi: 10.1016/j.bbr.2004.02.012 – ident: e_1_2_7_5_1 doi: 10.1038/sj.jcbfm.9600281 – ident: e_1_2_7_10_1 doi: 10.2741/2306 – ident: e_1_2_7_18_1 doi: 10.1128/MCB.21.15.5276-5285.2001 – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroscience.2003.12.006 – ident: e_1_2_7_29_1 doi: 10.1523/JNEUROSCI.1882-04.2004 – ident: e_1_2_7_38_1 doi: 10.1152/ajpendo.1999.277.2.E259 – ident: e_1_2_7_27_1 doi: 10.1016/S0167-0115(98)00028-7 – ident: e_1_2_7_13_1 doi: 10.1111/j.1471-4159.2007.04659.x – ident: e_1_2_7_31_1 doi: 10.1210/en.2007-1045 – ident: e_1_2_7_30_1 doi: 10.1523/JNEUROSCI.18-04-01595.1998 – ident: e_1_2_7_22_1 doi: 10.1016/j.coph.2007.10.009 – ident: e_1_2_7_32_1 doi: 10.1007/s00125-003-1080-1 – ident: e_1_2_7_14_1 doi: 10.1210/endo-107-6-1827 – ident: e_1_2_7_24_1 doi: 10.1016/j.neuroscience.2006.03.065 – volume: 267 start-page: 7021 year: 1992 ident: e_1_2_7_15_1 article-title: Cyclic AMP acutely stimulates translocation of the major insulin‐regulatable glucose transporter GLUT4 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50530-0 – ident: e_1_2_7_17_1 doi: 10.1093/ajcn/67.4.764S – ident: e_1_2_7_34_1 doi: 10.1074/jbc.272.37.23323 – ident: e_1_2_7_25_1 doi: 10.1016/S0304-3940(99)00876-9 – ident: e_1_2_7_16_1 doi: 10.1074/jbc.270.40.23612 |
| SSID | ssj0008645 |
| Score | 2.2336168 |
| Snippet | It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory... It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV-hemorphin 7, which have facilitatory... It is proposed that insulin-regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensinIV and LVV-hemorphin7, which have facilitatory... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 588 |
| SubjectTerms | Angiotensin II - analogs & derivatives Angiotensin II - metabolism Animals Cerebellum - cytology Cerebellum - metabolism Cystinyl Aminopeptidase - metabolism Deoxyglucose - metabolism Glucose - metabolism Glucose Transport Proteins, Facilitative - metabolism glucose transporter Glucose Transporter Type 3 - metabolism Glucose Transporter Type 4 - metabolism Hemoglobins - metabolism Hippocampus - cytology Hippocampus - metabolism Humans Insulin - metabolism Male memory Mice Mice, Inbred C57BL Mice, Knockout Neurons - cytology Neurons - metabolism Peptide Fragments - metabolism |
| Title | The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus - potential role in modulation of glucose uptake in neurones? |
| URI | https://api.istex.fr/ark:/67375/WNG-1H7JTCCH-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2008.06347.x https://www.ncbi.nlm.nih.gov/pubmed/18702730 https://www.proquest.com/docview/20872501 https://www.proquest.com/docview/69436083 |
| Volume | 28 |
| WOSCitedRecordID | wos000258154800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1460-9568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008645 issn: 0953-816X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbMthedml38S6dHkbfPGxLteSnEbKmWSmhlITlzciyREMXx-Qyurf-hMHe9-P6S3aOrGRkdFDGHgwGS7JsnXN0jvTpfIS8O0h0xKzBTVZbhCAUUVgwzkIFc0tSWFmykjuyCTEYyPE4O_X4JzwL0-SH2Cy4oWY4e40KrorFn0oehXjczUMiU8bFe_An23jGirdI--NZb3SyscsydZTFmGAtlHE63sb13NjW1mTVxv9-eZMnuu3Yupmp9-h_ftNj8tD7p7TTCNQTcsdUO2S3U0FsPv1G96lDjLql-B1yv7tmi9slP0HeqAe2X199nzcU96akajqpZjViZ0qYMOmns84pnSwoJsvWmHwRiuBaMD06GQ05tEDBI6W4HmHo-aSuodC0Xi3o9dUPWs-WiG2C7iEmEstOZ6WnH6MzSz38nq7qpbpwz122TjDmH56SUe9w2O2Hnvsh1JyB7VbgOFoLFzdJChGAKCCyK2NjbWqNEjo2EdOpiiOlEWeXJJnRFnwbJbmCCFKzZ6RVwQteEFpkMRMFK5MiibmGiL-MCi5kViKZYSSzgIj1IOfaJ0ZHfo4v-VaAFOU4LJ62E4clvwxIvKlZN8lBblFn38nRpoKaXyC4ThzknwdHedwXx8Nut5_LgLxdC1oOY4n7OKoy8PuhOSlAqeK_l0gzjp_GAvK8kdDf3QP7DB5rFJDUCeKt-50fHg_w7uW_VnxFHjRYGwRPviat5Xxl3pB7-utyspjvkbtiLPe8yv4Cmdk_Jg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjGXQv3dbuw_uqHkbfPGxLseynEbKmaZeFUhKWNyPLEgtdHJOP0r31TxjsfX9c_5LdyUpGRgdl7MFgsCTL1t3p7vzz_Qh524pUwIzGj6wm90EoAj9nnPkS9pYoN0nBCm7JJsRgkIzH6ZmjA8J_Yer6EJuEG2qGtdeo4JiQ_lPLAx__d3OYyJhx8Q4cyiaPmWg1SPPDeXfU3xjmJLacxVhhzU_CeLwN7Ll1rK3dqokv_uo2V3Tbs7VbU_fhf32oR2TXeai0XYvUY3JPl3tkv11CdD79Rg-pxYzaZPwe2ems-eL2yU-QOOqg7TfX3-c1yb0uqJxOylmF6JkCtkx6ct4-o5MFxXLZCssvQhPMBtPj_mjIYQQKPinFjISmXyZVBY2m1WpBb65_0Gq2RHQTTA9Rkdh2OiscARmdGeoA-HRVLeWFvW7rdYI5f_-EjLpHw07Pd-wPvuIMrLcE19EYOLiOYogBRA6xXRFqY2KjpVChDpiKZRhIhUi7KEq1MuDdyIRLiCEVe0oaJdzgOaF5GjKRsyLKo5AriPmLIOciSQukMwyS1CNivcqZcqXRkaHja7YVIgUZLosj7sRlya48Em56VnV5kDv0ObSCtOkg5xcIrxOt7PPgOAt74nTY6fSyxCMHa0nLYC3xS44sNbx-GC4RoFbh31vEKcdHYx55Vovo7-mBhQafNfBIbCXxzvPOjk4HePbiXzsekJ3e8FM_658MPr4kD2rkDUIpX5HGcr7Sr8l9dbmcLOZvnOb-Ai3mQi4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6KXdpe-kj6UF_ZQ8lNRdKu9TgV48RxUmNMsKlvy2of1KSWhR8lveUnFHrvj8sv6cxKdnFJIZQeDAbvrlfamdlvVp_mI-RdK1IBswYfstrcB6MI_Jxx5kvYW6Lcpppp7sQmksEgnUyyYS0HhO_CVPUhtgdu6BkuXqODm1LbP7088PF9t5oTGTOevAdA2eQtAA4N0jw6747728Ccxk6zGCus-WkYT3aJPTeOtbNbNfHGX94ERXeRrduauo_-60U9Jg9rhErblUk9IXdMsUf22wVk57Nv9JA6zqg7jN8j9zsbvbh98hMsjtbU9uur74tK5N5oKmfTYl4ie0bDlklPz9tDOl1SLJetsPwiNMHTYHrSH484jEABk1I8kTD087QsodGsXC_p9dUPWs5XyG6C6SErEtvO5roWIKNzS2sCPl2XK3nhfnf1OiGcf3hKxt3jUafn1-oPvuIMorcE6GgtfLiJYsgBkhxyOx0aa2NrZKJCEzAVyzCQCpl2UZQZZQHdyJRLyCEVe0YaBfzBC0LzLGRJznSURyFXkPPrIOdJmmmUMwzSzCPJZpWFqkujo0LHF7GTIgUCl6UW7sRlEZceCbc9y6o8yC36HDpD2naQiwuk1yUt8WlwIsJecjbqdHoi9cjBxtIErCU-yZGFgdsPw6UJuFX49xZxxvHSmEeeVyb6e3oQoQGzBh6JnSXeet7i-GyA317-a8cDcm941BX908HHV-RBRbxBJuVr0lgt1uYNuau-rqbLxdvacX8BVhJBqQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+insulin-regulated+aminopeptidase+IRAP+is+colocalised+with+GLUT4+in+the+mouse+hippocampus--potential+role+in+modulation+of+glucose+uptake+in+neurones%3F&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Fernando%2C+Ruani+N&rft.au=Albiston%2C+Anthony+L&rft.au=Chai%2C+Siew+Y&rft.date=2008-08-01&rft.issn=1460-9568&rft.eissn=1460-9568&rft.volume=28&rft.issue=3&rft.spage=588&rft_id=info:doi/10.1111%2Fj.1460-9568.2008.06347.x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |