The use of unmanned aerial vehicles in flood hazard assessment

Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency analyses or rainfall‐runoff models into distributed predictions of flood hazard in terms of water depth, inundation extent, and flow velocity. The a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of flood risk management Ročník 13; číslo 4
Hlavní autori: Karamuz, Emilia, Romanowicz, Renata J., Doroszkiewicz, Joanna
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.12.2020
John Wiley & Sons, Inc
Wiley
Predmet:
ISSN:1753-318X, 1753-318X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency analyses or rainfall‐runoff models into distributed predictions of flood hazard in terms of water depth, inundation extent, and flow velocity. The accuracy of flood hazard maps depends on the availability of distributed observations of inundation outlines. Unfortunately, the acquisition of aerial photographs or satellite images is costly and in addition, their temporal resolution is strongly limited by weather conditions. Remote sensing based on unmanned aerial vehicles (UAV) is becoming increasingly popular due its flexibility and quickly decreasing costs. In particular, UAV can provide precise up to date georeferenced information about the location of a river shorelines, channel geometry, and vegetation. This information is particularly useful for the calibration and validation of distributed flood routing models. The application of cheap, well georeferenced UAV images of river shorelines is an unprecedented source of distributed observations. The aim of this article is to present a procedure for the updating of boundary conditions of the hydrodynamic model, based on UAV‐born data. The approach proposed is also a very effective means of on‐line updating of flood risk maps and their verification.
AbstractList Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency analyses or rainfall‐runoff models into distributed predictions of flood hazard in terms of water depth, inundation extent, and flow velocity. The accuracy of flood hazard maps depends on the availability of distributed observations of inundation outlines. Unfortunately, the acquisition of aerial photographs or satellite images is costly and in addition, their temporal resolution is strongly limited by weather conditions. Remote sensing based on unmanned aerial vehicles (UAV) is becoming increasingly popular due its flexibility and quickly decreasing costs. In particular, UAV can provide precise up to date georeferenced information about the location of a river shorelines, channel geometry, and vegetation. This information is particularly useful for the calibration and validation of distributed flood routing models. The application of cheap, well georeferenced UAV images of river shorelines is an unprecedented source of distributed observations. The aim of this article is to present a procedure for the updating of boundary conditions of the hydrodynamic model, based on UAV‐born data. The approach proposed is also a very effective means of on‐line updating of flood risk maps and their verification.
Abstract Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency analyses or rainfall‐runoff models into distributed predictions of flood hazard in terms of water depth, inundation extent, and flow velocity. The accuracy of flood hazard maps depends on the availability of distributed observations of inundation outlines. Unfortunately, the acquisition of aerial photographs or satellite images is costly and in addition, their temporal resolution is strongly limited by weather conditions. Remote sensing based on unmanned aerial vehicles (UAV) is becoming increasingly popular due its flexibility and quickly decreasing costs. In particular, UAV can provide precise up to date georeferenced information about the location of a river shorelines, channel geometry, and vegetation. This information is particularly useful for the calibration and validation of distributed flood routing models. The application of cheap, well georeferenced UAV images of river shorelines is an unprecedented source of distributed observations. The aim of this article is to present a procedure for the updating of boundary conditions of the hydrodynamic model, based on UAV‐born data. The approach proposed is also a very effective means of on‐line updating of flood risk maps and their verification.
Author Doroszkiewicz, Joanna
Karamuz, Emilia
Romanowicz, Renata J.
Author_xml – sequence: 1
  givenname: Emilia
  orcidid: 0000-0002-7226-7412
  surname: Karamuz
  fullname: Karamuz, Emilia
  email: emikar@igf.edu.pl
  organization: Polish Academy of Sciences
– sequence: 2
  givenname: Renata J.
  surname: Romanowicz
  fullname: Romanowicz, Renata J.
  organization: Polish Academy of Sciences
– sequence: 3
  givenname: Joanna
  surname: Doroszkiewicz
  fullname: Doroszkiewicz, Joanna
  organization: Polish Academy of Sciences
BookMark eNp9kV1LHDEUhkOxUD96018w4I0Iq_maJHMjiGirCEJR8C6cnZy4WWYTTWaU9dc765RSRHpuckie9z0nvDtkK6aIhPxg9IiNdbz0WRwxrjj_QraZrsVMMHO_9U__jeyUsqRUaaPlNjm5XWA1FKySr4a4ghjRVYA5QFc94yK0HZYqxMp3KblqAa-Qx_dSsJQVxn6PfPXQFfz-59wldxfnt2e_Ztc3Py_PTq9nrRSKz7x2gNgw1KwZxxoxV055LWqUXoLgHpFqcJTOnedCtsY5yZzh0GihwHGxSy4nX5dgaR9zWEFe2wTBvl-k_GAh95ttrVGccQ0SZeslx7pp55J5bsB5OefSjV4Hk9djTk8Dlt6uQmmx6yBiGorlmhlRq5o2I7r_AV2mIcfxp5ZLRVXNeG1G6nCi2pxKyej_Lsio3cRiN7HY91hGmH6A29BDH1LsM4TucwmbJC-hw_V_zO3VxW8xad4AAcWf2Q
CitedBy_id crossref_primary_10_3390_drones7010032
crossref_primary_10_3390_robotics13080117
crossref_primary_10_3390_buildings12010080
crossref_primary_10_1111_jfr3_12937
crossref_primary_10_3390_w14244134
crossref_primary_10_1016_j_rsase_2023_100977
crossref_primary_10_1016_j_nbsj_2024_100120
crossref_primary_10_3390_rs16142565
crossref_primary_10_1109_ACCESS_2024_3487413
crossref_primary_10_1007_s11629_024_9020_2
crossref_primary_10_3390_atmos14010052
crossref_primary_10_1016_j_jenvman_2022_115492
crossref_primary_10_1016_j_jestch_2021_05_020
crossref_primary_10_1016_j_jhydrol_2025_133178
crossref_primary_10_1088_1742_6596_2203_1_012027
crossref_primary_10_2166_hydro_2023_178
crossref_primary_10_1111_jfr3_12666
crossref_primary_10_32604_cmc_2024_056183
crossref_primary_10_3390_hydrology10080158
crossref_primary_10_3390_rs14102481
crossref_primary_10_3390_urbansci8040255
crossref_primary_10_1007_s13753_021_00377_z
crossref_primary_10_1016_j_scitotenv_2022_156736
crossref_primary_10_1111_risa_14317
crossref_primary_10_3390_su13147925
crossref_primary_10_3390_su142114093
crossref_primary_10_1016_j_ecoinf_2025_103433
crossref_primary_10_3390_computation11020027
crossref_primary_10_1016_j_earscirev_2024_104957
crossref_primary_10_1016_j_engappai_2023_106813
crossref_primary_10_1080_02723646_2025_2467912
crossref_primary_10_3390_rs13142661
crossref_primary_10_1007_s10661_024_13597_9
crossref_primary_10_1016_j_jhydrol_2025_133026
crossref_primary_10_1088_1361_6501_adf871
crossref_primary_10_1111_jfr3_70027
crossref_primary_10_3390_w15213813
crossref_primary_10_1080_15481603_2024_2435851
crossref_primary_10_3390_app132111688
crossref_primary_10_12944_CWE_16_2_22
crossref_primary_10_3390_su13179568
crossref_primary_10_3390_land12081514
crossref_primary_10_3390_rs17081351
Cites_doi 10.1016/j.jhydrol.2017.02.038
10.1111/j.1747-6593.1996.tb00009.x
10.3390/rs8080650
10.1002/hyp.398
10.1002/hyp.10698
10.3390/w7041437
10.5194/hess-20-697-2016
10.1080/02626669809492117
10.1016/j.geomorph.2019.05.016
10.3390/s17030446
10.1016/j.measurement.2016.12.002
10.5194/hess-20-4005-2016
10.1016/j.advwatres.2005.11.012
10.3390/rs5126382
10.3390/w9010012
10.3390/rs71115702
10.3390/w9110861
10.1016/j.rse.2018.08.035
10.3390/rs70708586
10.3390/s151127969
10.3390/drones3010014
10.5194/isprs-annals-IV-5-151-2018
10.1007/978-3-540-45063-4_3
10.5194/hess-9-412-2005
10.1002/esp.4060
10.1061/(ASCE)IS.1943-555X.0000464
10.1109/TGRS.2008.2010457
10.1002/2014WR015952
10.1016/B978-0-444-53260-2.10015-8
10.1080/19475683.2018.1450787
10.1109/ICSensT.2013.6727744
10.1002/(SICI)1099-1085(199711)11:14<1777::AID-HYP543>3.0.CO;2-E
10.1109/TGRS.2016.2539957
10.1002/esp.3728
10.3390/s150715717
10.1890/120150
10.3390/s19071486
ContentType Journal Article
Copyright 2020 The Authors. published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7TG
7UA
C1K
F1W
H96
H97
KL.
L.G
7S9
L.6
DOA
DOI 10.1111/jfr3.12622
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1753-318X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_862127a4e4cf42e59cb41f28adf4b24d
10_1111_jfr3_12622
JFR312622
Genre article
GrantInformation_xml – fundername: Ministry of Science and Higher Education
– fundername: National Science Centre
  funderid: 2018/30/Q/ST10/00654
GroupedDBID 05W
0R~
1OC
24P
29K
31~
4.4
5DZ
5GY
6KP
8-1
AAESR
AAHHS
AANHP
AAYCA
AAZKR
ABCUV
ABJCF
ACBWZ
ACCFJ
ACCMX
ACGFO
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADMGS
ADNMO
ADPDF
ADXAS
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ASPBG
ATCPS
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
C45
CAG
CCPQU
COF
CS3
D-I
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HVGLF
HZ~
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7S
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
ROL
SUPJJ
TEORI
WBKPD
WIN
WOHZO
XV2
ZZTAW
AAMMB
AAYXX
AEFGJ
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
7QH
7TG
7UA
C1K
F1W
H96
H97
KL.
L.G
7S9
L.6
ID FETCH-LOGICAL-c4362-f7daee91e71987483b6d6f735e4f4a32fee07ad00bdf234c8dd41d82a9736ad23
IEDL.DBID DOA
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1753-318X
IngestDate Fri Oct 03 12:52:00 EDT 2025
Fri Sep 05 17:18:47 EDT 2025
Wed Aug 13 10:49:58 EDT 2025
Sat Nov 29 01:49:04 EST 2025
Tue Nov 18 21:53:40 EST 2025
Wed Jan 22 16:31:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4362-f7daee91e71987483b6d6f735e4f4a32fee07ad00bdf234c8dd41d82a9736ad23
Notes Funding information
National Science Centre, Grant/Award Number: 2018/30/Q/ST10/00654; Ministry of Science and Higher Education
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7226-7412
OpenAccessLink https://doaj.org/article/862127a4e4cf42e59cb41f28adf4b24d
PQID 2460651258
PQPubID 1006409
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_862127a4e4cf42e59cb41f28adf4b24d
proquest_miscellaneous_2718356509
proquest_journals_2460651258
crossref_primary_10_1111_jfr3_12622
crossref_citationtrail_10_1111_jfr3_12622
wiley_primary_10_1111_jfr3_12622_JFR312622
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: London
PublicationTitle Journal of flood risk management
PublicationYear 2020
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: Wiley
References 2002; 16
2009; 47
2015; 15
2019; 3
2018; IV‐5
1996; 1996
2010
2003; 2683
2009
2016; 54
2008; 37
2007
2019; 19
2016; 30
2013; 5
1998; 43
2015; 7
1996; 10
2017; 9
2018; 24
2019; 341
2017; 548
2014; 2
2013; 11
1997; 11
2017; 17
2015; 40
2018; 217
2005; 9
2017; 98
2019; 25
2016; 42
2016; 20
2018
2006; 29
2016
2013
2014; 50
2016; 8
e_1_2_8_28_1
e_1_2_8_29_1
Romanowicz R. J. (e_1_2_8_40_1) 1996
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Witek M. (e_1_2_8_45_1) 2014; 2
e_1_2_8_3_1
e_1_2_8_2_1
Alom M. Z. (e_1_2_8_4_1) 2018
e_1_2_8_5_1
e_1_2_8_7_1
Beven K. J. (e_1_2_8_12_1) 2009
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
Bates P. (e_1_2_8_10_1) 2013
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Xie C. (e_1_2_8_46_1) 2008; 37
e_1_2_8_32_1
Brunner G. W. (e_1_2_8_15_1) 2016
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – year: 2018
  article-title: The history began from AlexNet: A comprehensive survey on deep learning approaches
  publication-title: arXiv
– volume: 20
  start-page: 4005
  year: 2016
  end-page: 4015
  article-title: Technical note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)
  publication-title: Hydrology and Earth System Sciences
– volume: 11
  start-page: 1777
  issue: 14
  year: 1997
  end-page: 1795
  article-title: Integrating remote sensing observations of flood hydrology and hydraulic modelling
  publication-title: Hydrological Processes
– volume: 9
  start-page: 12
  year: 2017
  article-title: Monitoring of the spatio‐temporal dynamics of the floods in the Guayas Watershed (Ecuadorian Pacific Coast) using global monitoring ENVISAT ASAR images and rainfall data
  publication-title: Water
– year: 2009
– volume: 98
  start-page: 221
  year: 2017
  end-page: 227
  article-title: Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle
  publication-title: Measurement
– volume: 2683
  year: 2003
– volume: 7
  start-page: 1437
  year: 2015
  end-page: 1455
  article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China
  publication-title: Water
– volume: 548
  start-page: 237
  year: 2017
  end-page: 250
  article-title: Measuring water level in rivers and lakes from lightweight unmanned aerial vehicles
  publication-title: Journal of Hydrology
– volume: 15
  start-page: 15717
  year: 2015
  end-page: 15737
  article-title: UAV deployment exercise for mapping purposes: Evaluation of emergency response applications
  publication-title: Sensors
– volume: 11
  start-page: 138
  year: 2013
  end-page: 146
  article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology
  publication-title: Frontiers in Ecology and the Environment
– volume: 8
  start-page: 650
  year: 2016
  article-title: Quantifying the effect of aerial imagery resolution in automated hydromorphological river characterisation
  publication-title: Remote Sensing
– year: 2007
– volume: 42
  start-page: 355
  year: 2016
  end-page: 364
  article-title: Bathymetric structure‐from‐motion: Extracting shallow stream bathymetry from multi‐view stereo photogrammetry
  publication-title: Earth Surface Processes and Landforms
– start-page: 213
  year: 2010
  end-page: 217
– volume: 43
  start-page: 181
  issue: 2
  year: 1998
  end-page: 196
  article-title: Dynamic real‐time prediction of flood inundation probabilities
  publication-title: Hydrological Sciences Journal
– volume: 20
  start-page: 697
  year: 2016
  end-page: 713
  article-title: Estimating evaporation with thermal UAV data and two‐source energy balance models
  publication-title: Hydrology and Earth System Sciences
– volume: 54
  start-page: 4331
  year: 2016
  end-page: 4342
  article-title: A new semiautomated detection mapping of flood extent from TerraSAR‐X satellite image using rule‐based classification and taguchi optimization techniques
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 2
  start-page: 3
  year: 2014
  end-page: 11
  article-title: An experimental approach to verifying prognoses of floods using an unmanned aerial vehicle
  publication-title: Meteorology Hydrology and Water Management Research Operations and Applications
– volume: 217
  start-page: 491
  year: 2018
  end-page: 505
  article-title: Robust quantification of riverine land cover dynamics by high‐resolution remote sensing
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 15702
  year: 2015
  end-page: 15728
  article-title: On the use of global flood forecasts and satellite‐derived inundation maps for flood monitoring in data‐sparse regions
  publication-title: Remote Sensing
– year: 2016
– volume: 24
  start-page: 113
  year: 2018
  end-page: 123
  article-title: A near real‐time flood‐mapping approach by integrating social media and post‐event satellite imagery
  publication-title: Annals of GIS
– volume: 25
  start-page: 2
  year: 2019
  article-title: Applications of UAVs in civil infrastructure
  publication-title: Journal of Infrastructure Systems
– volume: 341
  start-page: 102
  year: 2019
  end-page: 114
  article-title: Retrieving shallow stream bathymetry from UAV‐assisted RGB imagery using a geospatial regression method
  publication-title: Geomorphology
– volume: 16
  start-page: 2001
  year: 2002
  end-page: 2016
  article-title: Assessing the uncertainty in distributed model predictions using observed binary information within GLUE
  publication-title: Hydrological Processes
– volume: 17
  start-page: 446
  year: 2017
  article-title: Unmanned aerial vehicle systems for remote estimation of flooded areas based on complex image processing
  publication-title: Sensors
– volume: 9
  start-page: 412
  year: 2005
  end-page: 430
  article-title: Utility of different data types for calibrating flood inundation models within a GLUE framework
  publication-title: Hydrology and Earth System Sciences
– volume: 9
  start-page: 861
  year: 2017
  article-title: Building a high‐precision 2D hydrodynamic flood model using UAV photogrammetry and sensor network monitoring
  publication-title: Water
– volume: 7
  start-page: 8586
  year: 2015
  end-page: 8609
  article-title: Multitemporal monitoring of the morphodynamics of a mid‐mountain stream using UAS photogrammetry
  publication-title: Remote Sensing
– volume: 29
  start-page: 1430
  issue: 10
  year: 2006
  end-page: 1449
  article-title: Influence of uncertain boundary conditions and model structure on flood inundation predictions
  publication-title: Advances in Water Resources
– volume: 30
  start-page: 1114
  year: 2016
  end-page: 1130
  article-title: Assessment of drone‐based surface flow observations
  publication-title: Hydrological Processes
– volume: IV‐5
  start-page: 151
  year: 2018
  end-page: 158
  article-title: Role of SAR data in water body mapping and reservoir sedimentation assessment
  publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 47
  start-page: 722
  issue: 3
  year: 2009
  end-page: 738
  article-title: Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 15
  start-page: 27969
  issue: 11
  year: 2015
  end-page: 27989
  article-title: Automated identification of river hydromorphological features using UAV high resolution aerial imagery
  publication-title: Sensors (Basel)
– volume: 40
  start-page: 1464
  year: 2015
  end-page: 1476
  article-title: UAS‐based remote sensing of fluvial change following an extreme flood event
  publication-title: Earth Surface Processes and Landforms
– volume: 1996
  start-page: 333
  year: 1996
  end-page: 360
– volume: 37
  start-page: 165
  year: 2008
  end-page: 168
  article-title: Water body information extraction from high resolution airborne SAR image with technique of imaging in different directions and object‐oriented
  publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 50
  start-page: 7470
  year: 2014
  end-page: 7483
  article-title: Orienting the camera and firing lasers to enhance large scale particle imagevelocimetry for streamflow monitoring
  publication-title: Water Resources Research
– volume: 3
  start-page: 14
  year: 2019
  article-title: UAVs for hydrologic scopes: Application of a low‐cost UAV to estimate surface water velocity by using three different image‐based methods
  publication-title: Drones
– start-page: 230
  year: 2013
  end-page: 267
– volume: 10
  start-page: 59
  year: 1996
  end-page: 64
  article-title: A comparison of ERS‐1 satellite radar and aerial photography for river flood mapping
  publication-title: Water and Environment Journal
– volume: 5
  start-page: 6382
  year: 2013
  end-page: 6407
  article-title: Seamless mapping of river channels at high resolution using mobile LiDAR and UAV‐photography
  publication-title: Remote Sensing
– volume: 19
  start-page: 1486
  issue: 7
  year: 2019
  article-title: Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data
  publication-title: Sensors
– year: 2013
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jhydrol.2017.02.038
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1747-6593.1996.tb00009.x
– ident: e_1_2_8_17_1
  doi: 10.3390/rs8080650
– ident: e_1_2_8_7_1
  doi: 10.1002/hyp.398
– ident: e_1_2_8_44_1
  doi: 10.1002/hyp.10698
– ident: e_1_2_8_20_1
  doi: 10.3390/w7041437
– ident: e_1_2_8_26_1
  doi: 10.5194/hess-20-697-2016
– ident: e_1_2_8_41_1
  doi: 10.1080/02626669809492117
– volume-title: HEC‐RAS river analysis system: User's manual
  year: 2016
  ident: e_1_2_8_15_1
– ident: e_1_2_8_29_1
  doi: 10.1016/j.geomorph.2019.05.016
– ident: e_1_2_8_36_1
  doi: 10.3390/s17030446
– ident: e_1_2_8_3_1
  doi: 10.1016/j.measurement.2016.12.002
– ident: e_1_2_8_35_1
  doi: 10.5194/hess-20-4005-2016
– ident: e_1_2_8_34_1
  doi: 10.1016/j.advwatres.2005.11.012
– ident: e_1_2_8_21_1
  doi: 10.3390/rs5126382
– ident: e_1_2_8_22_1
  doi: 10.3390/w9010012
– ident: e_1_2_8_39_1
  doi: 10.3390/rs71115702
– start-page: 333
  volume-title: Floodplain processes
  year: 1996
  ident: e_1_2_8_40_1
– ident: e_1_2_8_31_1
  doi: 10.3390/w9110861
– ident: e_1_2_8_32_1
  doi: 10.1016/j.rse.2018.08.035
– ident: e_1_2_8_33_1
  doi: 10.3390/rs70708586
– ident: e_1_2_8_16_1
  doi: 10.3390/s151127969
– ident: e_1_2_8_30_1
  doi: 10.3390/drones3010014
– ident: e_1_2_8_38_1
  doi: 10.5194/isprs-annals-IV-5-151-2018
– ident: e_1_2_8_23_1
  doi: 10.1007/978-3-540-45063-4_3
– ident: e_1_2_8_28_1
  doi: 10.5194/hess-9-412-2005
– ident: e_1_2_8_18_1
  doi: 10.1002/esp.4060
– ident: e_1_2_8_25_1
  doi: 10.1061/(ASCE)IS.1943-555X.0000464
– start-page: 1803.01164
  year: 2018
  ident: e_1_2_8_4_1
  article-title: The history began from AlexNet: A comprehensive survey on deep learning approaches
  publication-title: arXiv
– ident: e_1_2_8_11_1
  doi: 10.1109/TGRS.2008.2010457
– ident: e_1_2_8_43_1
  doi: 10.1002/2014WR015952
– ident: e_1_2_8_2_1
  doi: 10.1016/B978-0-444-53260-2.10015-8
– ident: e_1_2_8_19_1
– ident: e_1_2_8_27_1
  doi: 10.1080/19475683.2018.1450787
– ident: e_1_2_8_6_1
  doi: 10.1109/ICSensT.2013.6727744
– ident: e_1_2_8_9_1
  doi: 10.1002/(SICI)1099-1085(199711)11:14<1777::AID-HYP543>3.0.CO;2-E
– volume-title: Environmental modelling: An uncertain future?
  year: 2009
  ident: e_1_2_8_12_1
– ident: e_1_2_8_37_1
  doi: 10.1109/TGRS.2016.2539957
– start-page: 230
  volume-title: Applied uncertainty analysis for flood risk management
  year: 2013
  ident: e_1_2_8_10_1
– volume: 37
  start-page: 165
  year: 2008
  ident: e_1_2_8_46_1
  article-title: Water body information extraction from high resolution airborne SAR image with technique of imaging in different directions and object‐oriented
  publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– ident: e_1_2_8_42_1
  doi: 10.1002/esp.3728
– ident: e_1_2_8_14_1
  doi: 10.3390/s150715717
– volume: 2
  start-page: 3
  year: 2014
  ident: e_1_2_8_45_1
  article-title: An experimental approach to verifying prognoses of floods using an unmanned aerial vehicle
  publication-title: Meteorology Hydrology and Water Management Research Operations and Applications
– ident: e_1_2_8_5_1
  doi: 10.1890/120150
– ident: e_1_2_8_24_1
  doi: 10.3390/s19071486
SSID ssj0067874
Score 2.4284296
Snippet Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency...
Abstract Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aerial photographs
Aerial photography
Boundary conditions
distributed model calibration and validation
Environmental risk
field studies
Flood control
Flood frequency
Flood hazards
Flood mapping
Flood predictions
Flood risk
Flood routing
Floods
Flow velocity
Frequency analysis
Geographic information systems
geometry
georeferencing
Hazard assessment
hazard characterization
Hydrodynamic models
Hydrodynamics
Hydrologic models
Image acquisition
photogrammetry
Rain
Rainfall forecasting
Rainfall-runoff relationships
Remote sensing
risk
Risk analysis
risk management
River channels
Rivers
Runoff
Runoff models
Satellite imagery
satellites
Shorelines
Spaceborne remote sensing
Temporal resolution
Unmanned aerial vehicles
vegetation
Water depth
Weather
Weather conditions
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9K64M-2PpFo7Ws6ItCJNmdZDdQCrb0EB9KEYV7C7PZWVvQXLnr9aF_vbt7uXAFEcS3kExg2fnenfkNwDuufIxSfV43KHP0ZHJyinJLhhXZEAKgS8Mm9Pm5mU6biy04WvfCrPAhxgO3qBnJXkcFJ7vYVHI_Vx9LWctggHfKUpk4uEHixdoOByucMJgjFGXsEZ4O4KSpjmf89547Sqj990LNzYA1eZzJ7v-tdQ8eD5Gm-LQSjSewxf1TeLSBP_gMjoOQiOWCxcyLZf-Los0VlGRS3PJlqpgTV73wsbpdXNJdECdBI5bnc_g-Oft2-jkfBirkHcbuKK8dMTcl63jUgEbZ2tVeq4rRIynpmQtNriis81JhZ5zD0hlJjVY1OalewHY_63kfhC6KjmujqMBgaytrpde2qTVy5VBTmcH79b623YA2Hode_GzHrCPsSZv2JIO3I-31CmPjj1QnkT0jRcTFTi9m8x_toGZtyM9KqQkZO4-Sq6YL4ualIefRSnQZHKyZ2w7KumglhiwuBD6VyeDN-DmoWbw7oZ5ny0ATfLiqItxgBh8Sq_-y1PbL5KtKTy__hfgVPJQxm0_FMgewfTNf8mt40N3eXC3mh0m4fwOM__ot
  priority: 102
  providerName: Wiley-Blackwell
Title The use of unmanned aerial vehicles in flood hazard assessment
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.12622
https://www.proquest.com/docview/2460651258
https://www.proquest.com/docview/2718356509
https://doaj.org/article/862127a4e4cf42e59cb41f28adf4b24d
Volume 13
WOSCitedRecordID wos000535504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: WIN
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1753-318X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067874
  issn: 1753-318X
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB2a0ENzCEk_iPOFSntpwa0tjS35EkhDl7aHJZSW5mbG1ogEWm_YzeaQXx9J9poNlObSizH2YMQ8afTGHr8BeMuFCyzVpWWFMkVHJiWrKG3IsKLGUwC0sdmEnk7NxUV1vtbqK9SE9fLAveM-esadS03I2DqUXFStf4CThqzDRqIN0deznlUy1cdgH4E1DmKksW7HzdWHXJZSPth-okr_A2q5TlDjDjPZge2BGorTfki78IS757C1Jhj4Ak48qmK5YDFzYtn9oRAkBcVJJG75Mpa4iatOuFCOLi7pzuMvaBTffAk_J59_nH1Jhw4IaYvhdyanLTFXOevwbgCNakpbOq0KRoekpGPONNksa6yTCltjLebWSKq0KslK9Qo2u1nHeyB0lrVcGkUZ-uBYNI10uqlKjVxY1JQn8G7lmLod5MFDl4rf9ZgmeCfW0YkJvBltr3tRjL9afQr-HS2CkHW84OGtB3jrx-BN4HCFTj2srkUt0addnqkUJoHX422_LsLHDup4tvQ2ftNVRdAHTOB9RPUfQ62_Tb6reLb_PwZ9AM9kSMtj1cshbN7Ml3wET9vbm6vF_Bg2JJ4fx_nqj7--Tu8BjpTufw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA9yCnoPfovVUyP6olBpk2mTvggqLnd6LiIn7luYNhPv4OzK7u09-NebyXbLHoggvpV2CiHzkd8kk98I8ZyqwCg15HUDKoeANkevMW_RksY2QgDwqdmEmU7tbNZ8Hmpz-C7Mmh9i3HBjz0jxmh2cN6S3vTws9KtS1SpG4MsQkQZ3bvh2MN0E4hiGEwkzc1HyJeHZwE6aCnnGfy-sR4m2_wLW3EasacmZ3PjPwd4U1wesKd-sjeOWuET9bbG7xUB4R7yOZiJXS5LzIFf9D-SoKzFZpTyn41QzJ096Gbi-XR7jr2hQEkc2z7vi6-T90bv9fGipkHfA96OC8UjUlGR4swGsbmtfB6MrggCoVSAqDPqiaH1QGjrrPZTeKmyMrtErfU_s9POe7gtpiqKj2mosIEbbqm1VMG1TG6DKg8EyEy82E-u6gW-c216cujHviHPi0pxk4tko-3PNsvFHqbesn1GCmbHTi_niuxsczcUMrVQGgaALoKhqumhwQVn0AVoFPhN7G-26wV2XTkHM4yL0qWwmno6fo6Px6Qn2NF9FmbiK64oJBzPxMun6L0N1HyZfdHp68C_CT8TV_aNPh-7wYPrxobimOLdPpTN7YudssaJH4kp3fnayXDxOlv4bHhr-hQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_kFPEe_Barp0b0RaFHm0yb9EXwa_GLZRGFfQvTZuIdeN1j9_Ye_OtNst2yByKIb6WdQkh-85VMfgPwnCsfo1Sf1w3KHD2ZnJyivCXDitoQAqBLzSb0dGrm82Y21ObEuzAbfohxwy1qRrLXUcH51PldLfdLdVjKWgYLfBkrXUZQS5xtDXEww4mEOXJRxkvC84GdNBXyjP9e8EeJtv9CrLkbsSaXM7nxn4O9CdeHWFO83oDjFlzi_jbs7zAQ3oFXASZivWKx8GLdn1C0uoISKsU5H6WaOXHcCx_r28UR_QqAEjSyed6F75P3395-yIeWCnmH8X6U146Ym5J13GxAo9ra1V6ritEjKemZC02uKFrnpcLOOIelM5IarWpyUt2DvX7R830Quig6ro2iAoO1rdpWet02tUauHGoqM3ixnVjbDXzjse3FTzvmHWFObJqTDJ6Nsqcblo0_Sr2J6zNKRGbs9GKx_GEHRbMhQyulJmTsPEqumi4AzktDzmMr0WVwsF1dO6jrykoMeVwIfSqTwdPxc1C0eHpCPS_WQSZ4cVVFwsEMXqa1_stQ7afJV5WeHvyL8BO4Ons3sV8-Tj8_hGsypvapcuYA9s6Wa34EV7rzs-PV8nEC-m8pw_2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+unmanned+aerial+vehicles+in+flood+hazard+assessment&rft.jtitle=Journal+of+flood+risk+management&rft.au=Karamuz%2C+Emilia&rft.au=Romanowicz%2C+Renata+J&rft.au=Doroszkiewicz%2C+Joanna&rft.date=2020-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1753-318X&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1111%2Fjfr3.12622&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-318X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-318X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-318X&client=summon