The use of unmanned aerial vehicles in flood hazard assessment
Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency analyses or rainfall‐runoff models into distributed predictions of flood hazard in terms of water depth, inundation extent, and flow velocity. The a...
Uložené v:
| Vydané v: | Journal of flood risk management Ročník 13; číslo 4 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford, UK
Blackwell Publishing Ltd
01.12.2020
John Wiley & Sons, Inc Wiley |
| Predmet: | |
| ISSN: | 1753-318X, 1753-318X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency analyses or rainfall‐runoff models into distributed predictions of flood hazard in terms of water depth, inundation extent, and flow velocity. The accuracy of flood hazard maps depends on the availability of distributed observations of inundation outlines. Unfortunately, the acquisition of aerial photographs or satellite images is costly and in addition, their temporal resolution is strongly limited by weather conditions. Remote sensing based on unmanned aerial vehicles (UAV) is becoming increasingly popular due its flexibility and quickly decreasing costs. In particular, UAV can provide precise up to date georeferenced information about the location of a river shorelines, channel geometry, and vegetation. This information is particularly useful for the calibration and validation of distributed flood routing models. The application of cheap, well georeferenced UAV images of river shorelines is an unprecedented source of distributed observations. The aim of this article is to present a procedure for the updating of boundary conditions of the hydrodynamic model, based on UAV‐born data. The approach proposed is also a very effective means of on‐line updating of flood risk maps and their verification. |
|---|---|
| AbstractList | Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency analyses or rainfall‐runoff models into distributed predictions of flood hazard in terms of water depth, inundation extent, and flow velocity. The accuracy of flood hazard maps depends on the availability of distributed observations of inundation outlines. Unfortunately, the acquisition of aerial photographs or satellite images is costly and in addition, their temporal resolution is strongly limited by weather conditions. Remote sensing based on unmanned aerial vehicles (UAV) is becoming increasingly popular due its flexibility and quickly decreasing costs. In particular, UAV can provide precise up to date georeferenced information about the location of a river shorelines, channel geometry, and vegetation. This information is particularly useful for the calibration and validation of distributed flood routing models. The application of cheap, well georeferenced UAV images of river shorelines is an unprecedented source of distributed observations. The aim of this article is to present a procedure for the updating of boundary conditions of the hydrodynamic model, based on UAV‐born data. The approach proposed is also a very effective means of on‐line updating of flood risk maps and their verification. Abstract Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency analyses or rainfall‐runoff models into distributed predictions of flood hazard in terms of water depth, inundation extent, and flow velocity. The accuracy of flood hazard maps depends on the availability of distributed observations of inundation outlines. Unfortunately, the acquisition of aerial photographs or satellite images is costly and in addition, their temporal resolution is strongly limited by weather conditions. Remote sensing based on unmanned aerial vehicles (UAV) is becoming increasingly popular due its flexibility and quickly decreasing costs. In particular, UAV can provide precise up to date georeferenced information about the location of a river shorelines, channel geometry, and vegetation. This information is particularly useful for the calibration and validation of distributed flood routing models. The application of cheap, well georeferenced UAV images of river shorelines is an unprecedented source of distributed observations. The aim of this article is to present a procedure for the updating of boundary conditions of the hydrodynamic model, based on UAV‐born data. The approach proposed is also a very effective means of on‐line updating of flood risk maps and their verification. |
| Author | Doroszkiewicz, Joanna Karamuz, Emilia Romanowicz, Renata J. |
| Author_xml | – sequence: 1 givenname: Emilia orcidid: 0000-0002-7226-7412 surname: Karamuz fullname: Karamuz, Emilia email: emikar@igf.edu.pl organization: Polish Academy of Sciences – sequence: 2 givenname: Renata J. surname: Romanowicz fullname: Romanowicz, Renata J. organization: Polish Academy of Sciences – sequence: 3 givenname: Joanna surname: Doroszkiewicz fullname: Doroszkiewicz, Joanna organization: Polish Academy of Sciences |
| BookMark | eNp9kV1LHDEUhkOxUD96018w4I0Iq_maJHMjiGirCEJR8C6cnZy4WWYTTWaU9dc765RSRHpuckie9z0nvDtkK6aIhPxg9IiNdbz0WRwxrjj_QraZrsVMMHO_9U__jeyUsqRUaaPlNjm5XWA1FKySr4a4ghjRVYA5QFc94yK0HZYqxMp3KblqAa-Qx_dSsJQVxn6PfPXQFfz-59wldxfnt2e_Ztc3Py_PTq9nrRSKz7x2gNgw1KwZxxoxV055LWqUXoLgHpFqcJTOnedCtsY5yZzh0GihwHGxSy4nX5dgaR9zWEFe2wTBvl-k_GAh95ttrVGccQ0SZeslx7pp55J5bsB5OefSjV4Hk9djTk8Dlt6uQmmx6yBiGorlmhlRq5o2I7r_AV2mIcfxp5ZLRVXNeG1G6nCi2pxKyej_Lsio3cRiN7HY91hGmH6A29BDH1LsM4TucwmbJC-hw_V_zO3VxW8xad4AAcWf2Q |
| CitedBy_id | crossref_primary_10_3390_drones7010032 crossref_primary_10_3390_robotics13080117 crossref_primary_10_3390_buildings12010080 crossref_primary_10_1111_jfr3_12937 crossref_primary_10_3390_w14244134 crossref_primary_10_1016_j_rsase_2023_100977 crossref_primary_10_1016_j_nbsj_2024_100120 crossref_primary_10_3390_rs16142565 crossref_primary_10_1109_ACCESS_2024_3487413 crossref_primary_10_1007_s11629_024_9020_2 crossref_primary_10_3390_atmos14010052 crossref_primary_10_1016_j_jenvman_2022_115492 crossref_primary_10_1016_j_jestch_2021_05_020 crossref_primary_10_1016_j_jhydrol_2025_133178 crossref_primary_10_1088_1742_6596_2203_1_012027 crossref_primary_10_2166_hydro_2023_178 crossref_primary_10_1111_jfr3_12666 crossref_primary_10_32604_cmc_2024_056183 crossref_primary_10_3390_hydrology10080158 crossref_primary_10_3390_rs14102481 crossref_primary_10_3390_urbansci8040255 crossref_primary_10_1007_s13753_021_00377_z crossref_primary_10_1016_j_scitotenv_2022_156736 crossref_primary_10_1111_risa_14317 crossref_primary_10_3390_su13147925 crossref_primary_10_3390_su142114093 crossref_primary_10_1016_j_ecoinf_2025_103433 crossref_primary_10_3390_computation11020027 crossref_primary_10_1016_j_earscirev_2024_104957 crossref_primary_10_1016_j_engappai_2023_106813 crossref_primary_10_1080_02723646_2025_2467912 crossref_primary_10_3390_rs13142661 crossref_primary_10_1007_s10661_024_13597_9 crossref_primary_10_1016_j_jhydrol_2025_133026 crossref_primary_10_1088_1361_6501_adf871 crossref_primary_10_1111_jfr3_70027 crossref_primary_10_3390_w15213813 crossref_primary_10_1080_15481603_2024_2435851 crossref_primary_10_3390_app132111688 crossref_primary_10_12944_CWE_16_2_22 crossref_primary_10_3390_su13179568 crossref_primary_10_3390_land12081514 crossref_primary_10_3390_rs17081351 |
| Cites_doi | 10.1016/j.jhydrol.2017.02.038 10.1111/j.1747-6593.1996.tb00009.x 10.3390/rs8080650 10.1002/hyp.398 10.1002/hyp.10698 10.3390/w7041437 10.5194/hess-20-697-2016 10.1080/02626669809492117 10.1016/j.geomorph.2019.05.016 10.3390/s17030446 10.1016/j.measurement.2016.12.002 10.5194/hess-20-4005-2016 10.1016/j.advwatres.2005.11.012 10.3390/rs5126382 10.3390/w9010012 10.3390/rs71115702 10.3390/w9110861 10.1016/j.rse.2018.08.035 10.3390/rs70708586 10.3390/s151127969 10.3390/drones3010014 10.5194/isprs-annals-IV-5-151-2018 10.1007/978-3-540-45063-4_3 10.5194/hess-9-412-2005 10.1002/esp.4060 10.1061/(ASCE)IS.1943-555X.0000464 10.1109/TGRS.2008.2010457 10.1002/2014WR015952 10.1016/B978-0-444-53260-2.10015-8 10.1080/19475683.2018.1450787 10.1109/ICSensT.2013.6727744 10.1002/(SICI)1099-1085(199711)11:14<1777::AID-HYP543>3.0.CO;2-E 10.1109/TGRS.2016.2539957 10.1002/esp.3728 10.3390/s150715717 10.1890/120150 10.3390/s19071486 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Chartered Institution of Water and Environmental Management and John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 H97 KL. L.G 7S9 L.6 DOA |
| DOI | 10.1111/jfr3.12622 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1753-318X |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_862127a4e4cf42e59cb41f28adf4b24d 10_1111_jfr3_12622 JFR312622 |
| Genre | article |
| GrantInformation_xml | – fundername: Ministry of Science and Higher Education – fundername: National Science Centre funderid: 2018/30/Q/ST10/00654 |
| GroupedDBID | 05W 0R~ 1OC 24P 29K 31~ 4.4 5DZ 5GY 6KP 8-1 AAESR AAHHS AANHP AAYCA AAZKR ABCUV ABJCF ACBWZ ACCFJ ACCMX ACGFO ACGFS ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADMGS ADNMO ADPDF ADXAS AEEZP AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ASPBG ATCPS AVWKF AZFZN AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BRXPI C45 CAG CCPQU COF CS3 D-I DCZOG EBS EJD FEDTE G-S GODZA GROUPED_DOAJ HCIFZ HVGLF HZ~ LH4 LITHE LOXES LUTES LW6 LYRES M7S MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OIG OK1 OVD OVEED P2P P2W PATMY PCBAR PIMPY PTHSS PYCSY ROL SUPJJ TEORI WBKPD WIN WOHZO XV2 ZZTAW AAMMB AAYXX AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB 7QH 7TG 7UA C1K F1W H96 H97 KL. L.G 7S9 L.6 |
| ID | FETCH-LOGICAL-c4362-f7daee91e71987483b6d6f735e4f4a32fee07ad00bdf234c8dd41d82a9736ad23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1753-318X |
| IngestDate | Fri Oct 03 12:52:00 EDT 2025 Fri Sep 05 17:18:47 EDT 2025 Wed Aug 13 10:49:58 EDT 2025 Sat Nov 29 01:49:04 EST 2025 Tue Nov 18 21:53:40 EST 2025 Wed Jan 22 16:31:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4362-f7daee91e71987483b6d6f735e4f4a32fee07ad00bdf234c8dd41d82a9736ad23 |
| Notes | Funding information National Science Centre, Grant/Award Number: 2018/30/Q/ST10/00654; Ministry of Science and Higher Education ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7226-7412 |
| OpenAccessLink | https://doaj.org/article/862127a4e4cf42e59cb41f28adf4b24d |
| PQID | 2460651258 |
| PQPubID | 1006409 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_862127a4e4cf42e59cb41f28adf4b24d proquest_miscellaneous_2718356509 proquest_journals_2460651258 crossref_primary_10_1111_jfr3_12622 crossref_citationtrail_10_1111_jfr3_12622 wiley_primary_10_1111_jfr3_12622_JFR312622 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 20201201 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: London |
| PublicationTitle | Journal of flood risk management |
| PublicationYear | 2020 |
| Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2002; 16 2009; 47 2015; 15 2019; 3 2018; IV‐5 1996; 1996 2010 2003; 2683 2009 2016; 54 2008; 37 2007 2019; 19 2016; 30 2013; 5 1998; 43 2015; 7 1996; 10 2017; 9 2018; 24 2019; 341 2017; 548 2014; 2 2013; 11 1997; 11 2017; 17 2015; 40 2018; 217 2005; 9 2017; 98 2019; 25 2016; 42 2016; 20 2018 2006; 29 2016 2013 2014; 50 2016; 8 e_1_2_8_28_1 e_1_2_8_29_1 Romanowicz R. J. (e_1_2_8_40_1) 1996 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Witek M. (e_1_2_8_45_1) 2014; 2 e_1_2_8_3_1 e_1_2_8_2_1 Alom M. Z. (e_1_2_8_4_1) 2018 e_1_2_8_5_1 e_1_2_8_7_1 Beven K. J. (e_1_2_8_12_1) 2009 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 Bates P. (e_1_2_8_10_1) 2013 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Xie C. (e_1_2_8_46_1) 2008; 37 e_1_2_8_32_1 Brunner G. W. (e_1_2_8_15_1) 2016 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – year: 2018 article-title: The history began from AlexNet: A comprehensive survey on deep learning approaches publication-title: arXiv – volume: 20 start-page: 4005 year: 2016 end-page: 4015 article-title: Technical note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs) publication-title: Hydrology and Earth System Sciences – volume: 11 start-page: 1777 issue: 14 year: 1997 end-page: 1795 article-title: Integrating remote sensing observations of flood hydrology and hydraulic modelling publication-title: Hydrological Processes – volume: 9 start-page: 12 year: 2017 article-title: Monitoring of the spatio‐temporal dynamics of the floods in the Guayas Watershed (Ecuadorian Pacific Coast) using global monitoring ENVISAT ASAR images and rainfall data publication-title: Water – year: 2009 – volume: 98 start-page: 221 year: 2017 end-page: 227 article-title: Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle publication-title: Measurement – volume: 2683 year: 2003 – volume: 7 start-page: 1437 year: 2015 end-page: 1455 article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China publication-title: Water – volume: 548 start-page: 237 year: 2017 end-page: 250 article-title: Measuring water level in rivers and lakes from lightweight unmanned aerial vehicles publication-title: Journal of Hydrology – volume: 15 start-page: 15717 year: 2015 end-page: 15737 article-title: UAV deployment exercise for mapping purposes: Evaluation of emergency response applications publication-title: Sensors – volume: 11 start-page: 138 year: 2013 end-page: 146 article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology publication-title: Frontiers in Ecology and the Environment – volume: 8 start-page: 650 year: 2016 article-title: Quantifying the effect of aerial imagery resolution in automated hydromorphological river characterisation publication-title: Remote Sensing – year: 2007 – volume: 42 start-page: 355 year: 2016 end-page: 364 article-title: Bathymetric structure‐from‐motion: Extracting shallow stream bathymetry from multi‐view stereo photogrammetry publication-title: Earth Surface Processes and Landforms – start-page: 213 year: 2010 end-page: 217 – volume: 43 start-page: 181 issue: 2 year: 1998 end-page: 196 article-title: Dynamic real‐time prediction of flood inundation probabilities publication-title: Hydrological Sciences Journal – volume: 20 start-page: 697 year: 2016 end-page: 713 article-title: Estimating evaporation with thermal UAV data and two‐source energy balance models publication-title: Hydrology and Earth System Sciences – volume: 54 start-page: 4331 year: 2016 end-page: 4342 article-title: A new semiautomated detection mapping of flood extent from TerraSAR‐X satellite image using rule‐based classification and taguchi optimization techniques publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 2 start-page: 3 year: 2014 end-page: 11 article-title: An experimental approach to verifying prognoses of floods using an unmanned aerial vehicle publication-title: Meteorology Hydrology and Water Management Research Operations and Applications – volume: 217 start-page: 491 year: 2018 end-page: 505 article-title: Robust quantification of riverine land cover dynamics by high‐resolution remote sensing publication-title: Remote Sensing of Environment – volume: 7 start-page: 15702 year: 2015 end-page: 15728 article-title: On the use of global flood forecasts and satellite‐derived inundation maps for flood monitoring in data‐sparse regions publication-title: Remote Sensing – year: 2016 – volume: 24 start-page: 113 year: 2018 end-page: 123 article-title: A near real‐time flood‐mapping approach by integrating social media and post‐event satellite imagery publication-title: Annals of GIS – volume: 25 start-page: 2 year: 2019 article-title: Applications of UAVs in civil infrastructure publication-title: Journal of Infrastructure Systems – volume: 341 start-page: 102 year: 2019 end-page: 114 article-title: Retrieving shallow stream bathymetry from UAV‐assisted RGB imagery using a geospatial regression method publication-title: Geomorphology – volume: 16 start-page: 2001 year: 2002 end-page: 2016 article-title: Assessing the uncertainty in distributed model predictions using observed binary information within GLUE publication-title: Hydrological Processes – volume: 17 start-page: 446 year: 2017 article-title: Unmanned aerial vehicle systems for remote estimation of flooded areas based on complex image processing publication-title: Sensors – volume: 9 start-page: 412 year: 2005 end-page: 430 article-title: Utility of different data types for calibrating flood inundation models within a GLUE framework publication-title: Hydrology and Earth System Sciences – volume: 9 start-page: 861 year: 2017 article-title: Building a high‐precision 2D hydrodynamic flood model using UAV photogrammetry and sensor network monitoring publication-title: Water – volume: 7 start-page: 8586 year: 2015 end-page: 8609 article-title: Multitemporal monitoring of the morphodynamics of a mid‐mountain stream using UAS photogrammetry publication-title: Remote Sensing – volume: 29 start-page: 1430 issue: 10 year: 2006 end-page: 1449 article-title: Influence of uncertain boundary conditions and model structure on flood inundation predictions publication-title: Advances in Water Resources – volume: 30 start-page: 1114 year: 2016 end-page: 1130 article-title: Assessment of drone‐based surface flow observations publication-title: Hydrological Processes – volume: IV‐5 start-page: 151 year: 2018 end-page: 158 article-title: Role of SAR data in water body mapping and reservoir sedimentation assessment publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 47 start-page: 722 issue: 3 year: 2009 end-page: 738 article-title: Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 15 start-page: 27969 issue: 11 year: 2015 end-page: 27989 article-title: Automated identification of river hydromorphological features using UAV high resolution aerial imagery publication-title: Sensors (Basel) – volume: 40 start-page: 1464 year: 2015 end-page: 1476 article-title: UAS‐based remote sensing of fluvial change following an extreme flood event publication-title: Earth Surface Processes and Landforms – volume: 1996 start-page: 333 year: 1996 end-page: 360 – volume: 37 start-page: 165 year: 2008 end-page: 168 article-title: Water body information extraction from high resolution airborne SAR image with technique of imaging in different directions and object‐oriented publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 50 start-page: 7470 year: 2014 end-page: 7483 article-title: Orienting the camera and firing lasers to enhance large scale particle imagevelocimetry for streamflow monitoring publication-title: Water Resources Research – volume: 3 start-page: 14 year: 2019 article-title: UAVs for hydrologic scopes: Application of a low‐cost UAV to estimate surface water velocity by using three different image‐based methods publication-title: Drones – start-page: 230 year: 2013 end-page: 267 – volume: 10 start-page: 59 year: 1996 end-page: 64 article-title: A comparison of ERS‐1 satellite radar and aerial photography for river flood mapping publication-title: Water and Environment Journal – volume: 5 start-page: 6382 year: 2013 end-page: 6407 article-title: Seamless mapping of river channels at high resolution using mobile LiDAR and UAV‐photography publication-title: Remote Sensing – volume: 19 start-page: 1486 issue: 7 year: 2019 article-title: Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data publication-title: Sensors – year: 2013 – ident: e_1_2_8_8_1 doi: 10.1016/j.jhydrol.2017.02.038 – ident: e_1_2_8_13_1 doi: 10.1111/j.1747-6593.1996.tb00009.x – ident: e_1_2_8_17_1 doi: 10.3390/rs8080650 – ident: e_1_2_8_7_1 doi: 10.1002/hyp.398 – ident: e_1_2_8_44_1 doi: 10.1002/hyp.10698 – ident: e_1_2_8_20_1 doi: 10.3390/w7041437 – ident: e_1_2_8_26_1 doi: 10.5194/hess-20-697-2016 – ident: e_1_2_8_41_1 doi: 10.1080/02626669809492117 – volume-title: HEC‐RAS river analysis system: User's manual year: 2016 ident: e_1_2_8_15_1 – ident: e_1_2_8_29_1 doi: 10.1016/j.geomorph.2019.05.016 – ident: e_1_2_8_36_1 doi: 10.3390/s17030446 – ident: e_1_2_8_3_1 doi: 10.1016/j.measurement.2016.12.002 – ident: e_1_2_8_35_1 doi: 10.5194/hess-20-4005-2016 – ident: e_1_2_8_34_1 doi: 10.1016/j.advwatres.2005.11.012 – ident: e_1_2_8_21_1 doi: 10.3390/rs5126382 – ident: e_1_2_8_22_1 doi: 10.3390/w9010012 – ident: e_1_2_8_39_1 doi: 10.3390/rs71115702 – start-page: 333 volume-title: Floodplain processes year: 1996 ident: e_1_2_8_40_1 – ident: e_1_2_8_31_1 doi: 10.3390/w9110861 – ident: e_1_2_8_32_1 doi: 10.1016/j.rse.2018.08.035 – ident: e_1_2_8_33_1 doi: 10.3390/rs70708586 – ident: e_1_2_8_16_1 doi: 10.3390/s151127969 – ident: e_1_2_8_30_1 doi: 10.3390/drones3010014 – ident: e_1_2_8_38_1 doi: 10.5194/isprs-annals-IV-5-151-2018 – ident: e_1_2_8_23_1 doi: 10.1007/978-3-540-45063-4_3 – ident: e_1_2_8_28_1 doi: 10.5194/hess-9-412-2005 – ident: e_1_2_8_18_1 doi: 10.1002/esp.4060 – ident: e_1_2_8_25_1 doi: 10.1061/(ASCE)IS.1943-555X.0000464 – start-page: 1803.01164 year: 2018 ident: e_1_2_8_4_1 article-title: The history began from AlexNet: A comprehensive survey on deep learning approaches publication-title: arXiv – ident: e_1_2_8_11_1 doi: 10.1109/TGRS.2008.2010457 – ident: e_1_2_8_43_1 doi: 10.1002/2014WR015952 – ident: e_1_2_8_2_1 doi: 10.1016/B978-0-444-53260-2.10015-8 – ident: e_1_2_8_19_1 – ident: e_1_2_8_27_1 doi: 10.1080/19475683.2018.1450787 – ident: e_1_2_8_6_1 doi: 10.1109/ICSensT.2013.6727744 – ident: e_1_2_8_9_1 doi: 10.1002/(SICI)1099-1085(199711)11:14<1777::AID-HYP543>3.0.CO;2-E – volume-title: Environmental modelling: An uncertain future? year: 2009 ident: e_1_2_8_12_1 – ident: e_1_2_8_37_1 doi: 10.1109/TGRS.2016.2539957 – start-page: 230 volume-title: Applied uncertainty analysis for flood risk management year: 2013 ident: e_1_2_8_10_1 – volume: 37 start-page: 165 year: 2008 ident: e_1_2_8_46_1 article-title: Water body information extraction from high resolution airborne SAR image with technique of imaging in different directions and object‐oriented publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ident: e_1_2_8_42_1 doi: 10.1002/esp.3728 – ident: e_1_2_8_14_1 doi: 10.3390/s150715717 – volume: 2 start-page: 3 year: 2014 ident: e_1_2_8_45_1 article-title: An experimental approach to verifying prognoses of floods using an unmanned aerial vehicle publication-title: Meteorology Hydrology and Water Management Research Operations and Applications – ident: e_1_2_8_5_1 doi: 10.1890/120150 – ident: e_1_2_8_24_1 doi: 10.3390/s19071486 |
| SSID | ssj0067874 |
| Score | 2.4284296 |
| Snippet | Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from flood‐frequency... Abstract Flood inundation models are central components of any flood risk analysis system because they transform the bulk discharge outputs from... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Aerial photographs Aerial photography Boundary conditions distributed model calibration and validation Environmental risk field studies Flood control Flood frequency Flood hazards Flood mapping Flood predictions Flood risk Flood routing Floods Flow velocity Frequency analysis Geographic information systems geometry georeferencing Hazard assessment hazard characterization Hydrodynamic models Hydrodynamics Hydrologic models Image acquisition photogrammetry Rain Rainfall forecasting Rainfall-runoff relationships Remote sensing risk Risk analysis risk management River channels Rivers Runoff Runoff models Satellite imagery satellites Shorelines Spaceborne remote sensing Temporal resolution Unmanned aerial vehicles vegetation Water depth Weather Weather conditions |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9K64M-2PpFo7Ws6ItCJNmdZDdQCrb0EB9KEYV7C7PZWVvQXLnr9aF_vbt7uXAFEcS3kExg2fnenfkNwDuufIxSfV43KHP0ZHJyinJLhhXZEAKgS8Mm9Pm5mU6biy04WvfCrPAhxgO3qBnJXkcFJ7vYVHI_Vx9LWctggHfKUpk4uEHixdoOByucMJgjFGXsEZ4O4KSpjmf89547Sqj990LNzYA1eZzJ7v-tdQ8eD5Gm-LQSjSewxf1TeLSBP_gMjoOQiOWCxcyLZf-Los0VlGRS3PJlqpgTV73wsbpdXNJdECdBI5bnc_g-Oft2-jkfBirkHcbuKK8dMTcl63jUgEbZ2tVeq4rRIynpmQtNriis81JhZ5zD0hlJjVY1OalewHY_63kfhC6KjmujqMBgaytrpde2qTVy5VBTmcH79b623YA2Hode_GzHrCPsSZv2JIO3I-31CmPjj1QnkT0jRcTFTi9m8x_toGZtyM9KqQkZO4-Sq6YL4ualIefRSnQZHKyZ2w7KumglhiwuBD6VyeDN-DmoWbw7oZ5ny0ATfLiqItxgBh8Sq_-y1PbL5KtKTy__hfgVPJQxm0_FMgewfTNf8mt40N3eXC3mh0m4fwOM__ot priority: 102 providerName: Wiley-Blackwell |
| Title | The use of unmanned aerial vehicles in flood hazard assessment |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.12622 https://www.proquest.com/docview/2460651258 https://www.proquest.com/docview/2718356509 https://doaj.org/article/862127a4e4cf42e59cb41f28adf4b24d |
| Volume | 13 |
| WOSCitedRecordID | wos000535504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1753-318X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1753-318X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1753-318X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: WIN dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1753-318X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067874 issn: 1753-318X databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB2a0ENzCEk_iPOFSntpwa0tjS35EkhDl7aHJZSW5mbG1ogEWm_YzeaQXx9J9poNlObSizH2YMQ8afTGHr8BeMuFCyzVpWWFMkVHJiWrKG3IsKLGUwC0sdmEnk7NxUV1vtbqK9SE9fLAveM-esadS03I2DqUXFStf4CThqzDRqIN0deznlUy1cdgH4E1DmKksW7HzdWHXJZSPth-okr_A2q5TlDjDjPZge2BGorTfki78IS757C1Jhj4Ak48qmK5YDFzYtn9oRAkBcVJJG75Mpa4iatOuFCOLi7pzuMvaBTffAk_J59_nH1Jhw4IaYvhdyanLTFXOevwbgCNakpbOq0KRoekpGPONNksa6yTCltjLebWSKq0KslK9Qo2u1nHeyB0lrVcGkUZ-uBYNI10uqlKjVxY1JQn8G7lmLod5MFDl4rf9ZgmeCfW0YkJvBltr3tRjL9afQr-HS2CkHW84OGtB3jrx-BN4HCFTj2srkUt0addnqkUJoHX422_LsLHDup4tvQ2ftNVRdAHTOB9RPUfQ62_Tb6reLb_PwZ9AM9kSMtj1cshbN7Ml3wET9vbm6vF_Bg2JJ4fx_nqj7--Tu8BjpTufw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA9yCnoPfovVUyP6olBpk2mTvggqLnd6LiIn7luYNhPv4OzK7u09-NebyXbLHoggvpV2CiHzkd8kk98I8ZyqwCg15HUDKoeANkevMW_RksY2QgDwqdmEmU7tbNZ8Hmpz-C7Mmh9i3HBjz0jxmh2cN6S3vTws9KtS1SpG4MsQkQZ3bvh2MN0E4hiGEwkzc1HyJeHZwE6aCnnGfy-sR4m2_wLW3EasacmZ3PjPwd4U1wesKd-sjeOWuET9bbG7xUB4R7yOZiJXS5LzIFf9D-SoKzFZpTyn41QzJ096Gbi-XR7jr2hQEkc2z7vi6-T90bv9fGipkHfA96OC8UjUlGR4swGsbmtfB6MrggCoVSAqDPqiaH1QGjrrPZTeKmyMrtErfU_s9POe7gtpiqKj2mosIEbbqm1VMG1TG6DKg8EyEy82E-u6gW-c216cujHviHPi0pxk4tko-3PNsvFHqbesn1GCmbHTi_niuxsczcUMrVQGgaALoKhqumhwQVn0AVoFPhN7G-26wV2XTkHM4yL0qWwmno6fo6Px6Qn2NF9FmbiK64oJBzPxMun6L0N1HyZfdHp68C_CT8TV_aNPh-7wYPrxobimOLdPpTN7YudssaJH4kp3fnayXDxOlv4bHhr-hQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_kFPEe_Barp0b0RaFHm0yb9EXwa_GLZRGFfQvTZuIdeN1j9_Ye_OtNst2yByKIb6WdQkh-85VMfgPwnCsfo1Sf1w3KHD2ZnJyivCXDitoQAqBLzSb0dGrm82Y21ObEuzAbfohxwy1qRrLXUcH51PldLfdLdVjKWgYLfBkrXUZQS5xtDXEww4mEOXJRxkvC84GdNBXyjP9e8EeJtv9CrLkbsSaXM7nxn4O9CdeHWFO83oDjFlzi_jbs7zAQ3oFXASZivWKx8GLdn1C0uoISKsU5H6WaOXHcCx_r28UR_QqAEjSyed6F75P3395-yIeWCnmH8X6U146Ym5J13GxAo9ra1V6ritEjKemZC02uKFrnpcLOOIelM5IarWpyUt2DvX7R830Quig6ro2iAoO1rdpWet02tUauHGoqM3ixnVjbDXzjse3FTzvmHWFObJqTDJ6Nsqcblo0_Sr2J6zNKRGbs9GKx_GEHRbMhQyulJmTsPEqumi4AzktDzmMr0WVwsF1dO6jrykoMeVwIfSqTwdPxc1C0eHpCPS_WQSZ4cVVFwsEMXqa1_stQ7afJV5WeHvyL8BO4Ons3sV8-Tj8_hGsypvapcuYA9s6Wa34EV7rzs-PV8nEC-m8pw_2c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+unmanned+aerial+vehicles+in+flood+hazard+assessment&rft.jtitle=Journal+of+flood+risk+management&rft.au=Karamuz%2C+Emilia&rft.au=Romanowicz%2C+Renata+J&rft.au=Doroszkiewicz%2C+Joanna&rft.date=2020-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1753-318X&rft.volume=13&rft.issue=4&rft_id=info:doi/10.1111%2Fjfr3.12622&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-318X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-318X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-318X&client=summon |