A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem

A strongly polynomial-time algorithm is proposed for the strict homogeneous linear-inequality feasibility problem in the positive orthant, that is, to obtain x ∈ R n , such that A x > 0 , x > 0 , for an m × n matrix A , m ≥ n . This algorithm requires O ( p ) iterations and O ( m 2 ( n + p ) )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods of operations research (Heidelberg, Germany) Jg. 80; H. 3; S. 267 - 284
1. Verfasser: Oliveira, Paulo Roberto
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Schlagworte:
ISSN:1432-2994, 1432-5217
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A strongly polynomial-time algorithm is proposed for the strict homogeneous linear-inequality feasibility problem in the positive orthant, that is, to obtain x ∈ R n , such that A x > 0 , x > 0 , for an m × n matrix A , m ≥ n . This algorithm requires O ( p ) iterations and O ( m 2 ( n + p ) ) arithmetical operations to ensure that the distance between the solution and the iteration is 10 - p . No matrix inversion is needed. An extension to the non-homogeneous linear feasibility problem is presented.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1432-2994
1432-5217
DOI:10.1007/s00186-014-0480-y