A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem

A strongly polynomial-time algorithm is proposed for the strict homogeneous linear-inequality feasibility problem in the positive orthant, that is, to obtain x ∈ R n , such that A x > 0 , x > 0 , for an m × n matrix A , m ≥ n . This algorithm requires O ( p ) iterations and O ( m 2 ( n + p ) )...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods of operations research (Heidelberg, Germany) Ročník 80; číslo 3; s. 267 - 284
Hlavní autor: Oliveira, Paulo Roberto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Témata:
ISSN:1432-2994, 1432-5217
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A strongly polynomial-time algorithm is proposed for the strict homogeneous linear-inequality feasibility problem in the positive orthant, that is, to obtain x ∈ R n , such that A x > 0 , x > 0 , for an m × n matrix A , m ≥ n . This algorithm requires O ( p ) iterations and O ( m 2 ( n + p ) ) arithmetical operations to ensure that the distance between the solution and the iteration is 10 - p . No matrix inversion is needed. An extension to the non-homogeneous linear feasibility problem is presented.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1432-2994
1432-5217
DOI:10.1007/s00186-014-0480-y